Innovative Therapeutic Strategies in the Treatment of Brain Metastases
Abstract
:1. Introduction
2. Brain Metastases Development
2.1. Invasion
2.2. Angiogenesis
2.3. Molecular Features
2.4. MicroRNA
2.5. Cancer Stem Cells
3. Blood–Brain Barrier (BBB)
4. Therapeutic Approaches in Brain Metastases
4.1. Surgery
4.2. Radiotherapy
4.3. Radiosurgery
4.4. Chemotherapy
5. Molecular Targeted Therapy
5.1. Trastuzumab
5.2. Lapatinib
5.3. Erlotinib and Gefitinib
5.4. Multitarget Tyrosine Kinase Inhibitors
5.5. Cediranib
5.6. Bevacizumab
5.7. Other Molecules
6. Conclusions
References
- Kyritsis, A.P.; Markoula, S.; Levin, V.A. A systematic approach to the management of patients with brain metastases of known or unknown primary site. Cancer Chemother. Pharmacol 2012, 69, 1–13. [Google Scholar]
- Fidler, I.J. The role of the organ microenvironment in brain metastasis. Semin. Cancer Biol 2011, 21, 107–112. [Google Scholar]
- Mehta, M.P.; Rodrigus, P.; Terhaard, C.H.; Rao, A.; Suh, J.; Roa, W.; Souhami, L.; Bezjak, A.; Leibenhaut, M.; Komaki, R.; et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J. Clin. Oncol 2003, 21, 2529–2536. [Google Scholar]
- Melisko, M.E.; Moore, D.H.; Sneed, P.K.; De Franco, J.; Rugo, H.S. Brain metastases in breast cancer: Clinical and pathologic characteristics associated with improvements in survival. J. Neurooncol 2008, 88, 359–365. [Google Scholar]
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.; Demas, W.; Ryu, J.; Bahary, J.P.; et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial. Lancet 2004, 363, 1665–1672. [Google Scholar]
- Sanghavi, S.N.; Miranpuri, S.S.; Chappell, R.; Buatti, J.M.; Sneed, P.K.; Suh, J.H.; Regine, W.F.; Weltman, E.; King, V.J.; Goetsch, S.J.; et al. Radiosurgery for patients with brain metastases: A multi-institutional analysis, stratified by the RTOG recursive partitioning analysis method. Int. J. Radiat. Oncol. Biol. Phys 2001, 51, 426–434. [Google Scholar]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med 1990, 322, 494–500. [Google Scholar]
- Addeo, R.; De Rosa, C.; Faiola, V.; Leo, L.; Cennamo, G.; Montella, L.; Guarrasi, R.; Vincenzi, B.; Caraglia, M.; Del Prete, S. Phase 2 trial of temozolomide using protracted low-dose and whole-brain radiotherapy for nonsmall cell lung cancer and breast cancer patients with brain metastases. Cancer 2008, 113, 2524–2531. [Google Scholar]
- Atkins, M.B.; Sosman, J.A.; Agarwala, S.; Logan, T.; Clark, J.I.; Ernstoff, M.S.; Lawson, D.; Dutcher, J.P.; Weiss, G.; Curti, B.; et al. Temozolomide, thalidomide, and whole brain radiation therapy for patients with brain metastasis from metastatic melanoma. Cancer 2008, 113, 2139–2145. [Google Scholar]
- Verger, E.; Gil, M.; Yaya, R.; Vinolas, N.; Villà, S.; Pujol, T.; Quintò, L.; Graus, F. Temozolomide and concomitant whole brain radiotherapy in patients with brain metastases: A phase II randomized trial. Int. J. Radiat. Oncol. Biol. Phys 2005, 61, 185–191. [Google Scholar]
- Wels, J.; Kaplan, R.N.; Rafii, S.; Lyden, D. Migratory neighbors and distant invaders: Tumor-associated niche cells. Genes Dev 2008, 22, 559–574. [Google Scholar]
- Chiang, A.C.; Massague, J. Molecular basis of metastasis. N. Engl. J. Med 2008, 359, 2814–2823. [Google Scholar]
- Nguyen, D.X.; Massague, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet 2007, 8, 341–352. [Google Scholar]
- Minn, A.J.; Kang, Y.; Serganova, I.; Gupta, G.P.; Giri, D.D.; Doubrovin, M.; Ponomarev, V.; Gerald, W.; Blasberg, R.; Massagué, J. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J. Clin. Invest 2005, 115, 44–55. [Google Scholar]
- Wang, J.; Loberg, R.; Taichman, R.S. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev 2006, 25, 573–587. [Google Scholar]
- Bremnes, R.M.; Veve, R.; Hirsch, F.R.; Franklin, W.A. The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 2002, 36, 115–124. [Google Scholar]
- Felding-Habermann, B.; O’Toole, T.; Smith, J.; Fransvea, E.; Ruggeri, Z.M.; Ginsberg, M.H.; Hughes, P.E.; Pampori, N.; Shattil, S.J.; Saven, A.; et al. Integrin activation controls metastasis in human breast cancer. Proc. Natl. Acad. Sci. USA 2001, 98, 1853–1858. [Google Scholar]
- Yoshimasu, T.; Sakurai, T.; Oura, S.; Hirai, I.; Tanino, H.; Kokawa, Y.; Naito, Y.; Okamura, Y.; Ota, I.; Tani, N.; et al. Increased expression of integrin alpha3beta1 in highly brain metastatic subclone of a human non-small cell lung cancer cell line. Cancer Sci 2004, 95, 142–148. [Google Scholar]
- Lorger, M.; Krueger, J.S.; O’Neal, M.; Staflin, K.; Felding-Habermann, B. Activation of tumor cell integrin ανβ3 controls angiogenesis and metastatic growth in the brain. Proc. Natl. Acad. Sci. USA 2009, 106, 10666–10671. [Google Scholar]
- Egeblad, M.; Werb, Z. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2002, 2, 161–174. [Google Scholar]
- Jaalinoja, J.; Herva, R.; Korpela, M.; Hoytya, M.; Turpeenniemi-Hujanen, T. Matrix metalloproteinase 2 (MMP-2) immunoreactive protein is associated with poor grade and survival in brain neoplasms. J. Neurooncol 2000, 46, 81–90. [Google Scholar]
- Arnold, S.M.; Young, A.B.; Munn, R.K.; Patchell, R.A.; Nanayakkara, N.; Markesbery, W.R. Expression of p53, bcl-2, E-cadherin, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 in paired primary tumors and brain metastasis. Clin. Cancer Res 1999, 5, 4028–4033. [Google Scholar]
- Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov 2007, 6, 273–286. [Google Scholar]
- Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473, 298–307. [Google Scholar]
- Jain, R.K.; di Tomaso, E.; Duda, D.G.; Loeffler, J.S.; Sorensen, A.G.; Batchelor, T.T. Angiogenesis in brain tumours. Nat. Rev. Neurosci 2007, 8, 610–622. [Google Scholar]
- Ricci-Vitiani, L.; Pallini, R.; Biffoni, M.; Todaro, M.; Invernici, G.; Cenci, T.; Maira, G.; Parati, E.A.; Stassi, G.; Larocca, L.M.; et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 2010, 468, 824–828. [Google Scholar]
- Soda, Y.; Marumoto, T.; Friedmann-Morvinski, D.; Soda, M.; Liu, F.; Michiue, H.; Pastorino, S.; Yang, M.; Hoffman, R.M.; Kesari, S.; et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc. Natl. Acad. Sci. USA 2011, 108, 4274–4280. [Google Scholar]
- Kusters, B.; Leenders, W.P.; Wesseling, P.; Smits, D.; Verrijp, K.; Ruiter, D.J.; Peters, J.P.; van Der Kogel, A.J.; de Waal, R.M. Vascular endothelial growth factor-A(165) induces progression of melanoma brain metastases without induction of sprouting angiogenesis. Cancer Res 2002, 62, 341–345. [Google Scholar]
- Carbonell, W.S.; Ansorge, O.; Sibson, N.; Muschel, R. The bascular basement membrane as “soil” in brain metastasis. PLoS One 2009, 4, e5857. [Google Scholar]
- Küsters, B.; deWaal, R.M.; Wesseling, P.; Verrijp, K.; Maass, C.; Heerschap, A.; Barentsz, J.O.; Sweep, F.; Ruiter, D.J.; Leenders, W.P. Differential effects of vascular endothelial growth factor-A isoforms in a mouse brain metastasis model of human melanoma. Cancer Res 2003, 63, 5408–5413. [Google Scholar]
- Kim, L.; Huang, S.; Lu, W.; Lev, D.C.; Price, J. Vascular endothelial growth factor expression promotes the growth of breast cancer brain metastases in nude mice. Clin. Exp. Metastasis 2004, 21, 107–118. [Google Scholar]
- Fidler, I.J.; Yano, S.; Zhang, R.D.; Fujimaki, T.; Bucana, C.D. The seed and soil hypothesis: Vascularisation and brain metastases. Lancet Oncol 2002, 3, 53–57. [Google Scholar]
- Barresi, V.; Cerasoli, S.; Vitarelli, E.; Tuccari, G. Density of microvessels positive for CD105 (endoglin) is related to prognosis in meningiomas. Acta Neuropathol 2007, 114, 147–156. [Google Scholar]
- Barresi, V.; Reggiani-Bonetti, L.; Di Gregorio, C.; Ponz de Leon, M.; Barresi, G.; Vitarelli, E. Stage I colorectal carcinoma: Vascular endothelial growth factor (VEGF) immunohistochemical expression, microvessel density and their correlation with clinical outcome. Virchows Arch 2010, 457, 11–19. [Google Scholar]
- Salgado, K.B.; Toscani, N.V.; Silva, L.L.; Hilbig, A.; Barbosa-Coutinho, L.M. Immunoexpression of endoglin in brain metastasis secondary to malignant melanoma: Evaluation of angiogenesis and comparison with brain metastasis secondary to breast and lung carcinomas. Clin. Exp. Metastasis 2007, 24, 403–410. [Google Scholar]
- Folberg, R.M.A. Vasculogenic mimicry. APMIS 2004, 112, 508–525. [Google Scholar]
- Mihic-Probst, D.; Ikenberg, K.; Tinguely, M.; Schraml, P.; Behnke, S.; Seifert, B.; Civenni, G.; Sommer, L.; Moch, H.; Dummer, R. Tumor cell plasticity and angiogenesis in human melanomas. PLoS One 2012, 7, e33571. [Google Scholar]
- Nathoo, N.; Chahlavi, A.; Barnett, G.H.; Toms, S.A. Pathobiology of brain metastases. J. Clin. Pathol 2005, 58, 237–342. [Google Scholar]
- Steeg, P. Metastasis suppressors alter the signal transduction of cancer cells. Nat. Rev. Cancer 2003, 3, 55–63. [Google Scholar]
- De Marzo, A.M.; Knudsen, B.; Chan-Tack, K.; Epstein, J.I. E-cadherin expression as a marker of tumor aggressiveness in routinely processed radical prostatectomy specimens. Urology 1999, 53, 707–713. [Google Scholar]
- Yaguchi, H.; Ohkura, N.; Tsukada, T.; Yamaguchi, K. Menin, the multiple endocrine neoplasia type 1 gene product, exhibits GTP-hydrolyzing activity in the presence of the tumor metastasis suppressor Nm23. J. Biol. Chem 2002, 277, 38197–38204. [Google Scholar]
- Fournier, H.N.; Albiges-Rizo, C.; Block, M.R. New insights into Nm23 control of cell adhesion and migration. J. Bioenerg. Biomembr 2003, 35, 81–87. [Google Scholar]
- Yoshida, B.A.; Dubauskas, Z.; Chekmareva, M.A.; Christiano, T.R.; Stadler, W.M.; Rinker-Schaeffer, C.W. Mitogen-activated protein kinase kinase 4/stress-activated protein/Erk kinase 1 (MKK4/SEK1), a prostate cancer metastasis suppressor gene encoded by human chromosome 17. Cancer Res 1999, 59, 5483–5487. [Google Scholar]
- Gao, A.C.; Lou, W.; Sleeman, J.P.; Isaacs, J.T. Metastasis suppression by the standard CD44 isoform does not require the binding of prostate cancer cells to hyaluronate. Cancer Res 1998, 58, 2350–2352. [Google Scholar]
- Hori, A.; Honda, S.; Asada, M.; Ohtaki, T.; Oda, K.; Watanabe, T.; Shintani, Y.; Yamada, T.; Suenaga, M.; Kitada, C.; et al. Metastin suppresses the motility and growth of CHO cells transfected with its receptor. Biochem. Biophys. Res. Commun 2001, 286, 958–963. [Google Scholar]
- Samant, R.S.; Seraj, M.J.; Saunders, M.M.; Sakamaki, T.S.; Shevde, L.A.; Harms, J.F.; Leonard, T.O.; Goldberg, S.F.; Budgeon, L.; Meehan, W.J.; et al. Analysis of mechanisms underlying BRMS1 suppression of metastasis. Clin. Exp. Metastasis 2000, 18, 683–693. [Google Scholar]
- Gildea, J.J.; Seraj, M.J.; Oxford, G.; Harding, M.A.; Hampton, G.M.; Moskaluk, C.A.; Frierson, H.F.; Conaway, M.R.; Theodorescu, D. RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 2002, 62, 6418–6423. [Google Scholar]
- Tamura, M.; Gu, J.; Takino, T.; Yamada, K.M. Tumor suppressor PTEN inhibition of cell invasion, migration, and growth: Differential involvement of focal adhesion kinase and p130Cas. Cancer Res 1999, 59, 442–449. [Google Scholar]
- Hahn, M.; Wieland, I.; Koufaki, O.N.; Gorgens, H.; Sobottka, S.B.; Schackert, G.; Schackert, H.K. Genetic alterations of the tumor suppressor gene PTEN/MMAC1 in human brain metastases. Clin. Cancer Res 1999, 5, 2431–2437. [Google Scholar]
- McClatchey, A.; Saotome, I.; Mercer, K.; Crowley, D.; Gusella, J.; Bronson, R.; Jacks, T. Mice heterozygous for a mutation at the Nf2 tumor suppressor locus develop a range of highly metastatic tumors. Genes Dev 1998, 12, 1121–1133. [Google Scholar]
- Kirsch, D.G.; Kastan, M.B. Tumor-suppressor p53: Implications for tumor development and prognosis. J. Clin. Oncol 1998, 16, 3158–3168. [Google Scholar]
- Nguyen, D.X.; Chiang, A.C.; Zhang, X.H.; Kim, J.Y.; Kris, M.G.; Ladanyi, M.; Gerald, W.L.; Massaqué, J. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 2009, 138, 51–62. [Google Scholar]
- Bos, P.D.; Zhang, X.H.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009, 459, 1005–1009. [Google Scholar]
- Webb, C.; van de Woude, G. Methods in Enzymology; Balch, W., Der, C., Hall, A., Eds.; Academic Press: San Diego, CA, USA, 2001; Volume 333, pp. 318–329. [Google Scholar]
- Bromberg, J.F. Stat proteins and oncogenesis. J. Clin. Invest 2002, 109, 1139–1142. [Google Scholar]
- Chiu, W.T.; Lee, H.T.; Huang, F.J.; Aldape, K.D.; Yao, J.; Steeg, P.S.; Chou, C.Y.; Lu, Z.; Xie, K.; Huang, S. Caveolin-1 upregulation mediates suppression of primary breast tumor growth and brain metastases by Stat3 inhibition. Cancer Res 2011, 71, 493–443. [Google Scholar]
- Xie, T.X.; Huang, F.J.; Aldape, K.D.; Kang, S.H.; Liu, M.; Gershenwald, J.E.; Xie, K.; Sawaya, R.; Huang, S. Activation of Stat3 in human melanoma promotes brain metastasis. Cancer Res 2006, 66, 3188–3196. [Google Scholar]
- Kong, D.; Li, Y.; Wang, Z.; Sarkar, F.H. Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins? Cancers (Basel) 2011, 3, 716–729. [Google Scholar]
- Ahmad, A.; Aboukameel, A.; Kong, D.; Wang, Z.; Sethi, S.; Chen, W.; Sarkar, F.H.; Raz, A. Phosphoglucose isomerase/autocrine motility factor mediates epithelial-mesenchymal transition regulated by miR-200 in breast cancer cells. Cancer Res 2011, 71, 3400–3409. [Google Scholar]
- Kahlert, C.; Lahes, S.; Radhakrishnan, P.; Dutta, S.; Mogler, C.; Herpel, E.; Brand, K.; Steinert, G.; Schneider, M.; Mollenhauer, M.; et al. Overexpression of ZEB2 at the invasion front of colorectal cancer is an independent prognostic marker and regulates tumor invasion in vitro. Clin. Cancer Res 2011, 17, 7654–7663. [Google Scholar]
- Nass, D.; Rosenwald, S.; Meiri, E.; Gilad, S.; Tabibian-Keissar, H.; Schlosberg, A.; Kuker, H.; Sion-Vardy, N.; Tobar, A.; Kharenko, O.; et al. MiR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol 2009, 19, 375–383. [Google Scholar]
- Zhang, L.; Sullivan, P.S.; Goodman, J.C.; Gunaratne, P.H.; Marchetti, D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting heparanase. Cancer Res 2011, 71, 645–654. [Google Scholar]
- Marchetti, D.; Nicolson, G. Human heparanase: A molecular determinant of brain metastasis. Adv. Enzyme Reg 2001, 41, 343–359. [Google Scholar]
- Li, X.; Pan, Y.Z.; Seigel, G.M.; Hu, Z.H.; Huang, M.; Yu, A.M. Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520h) and their differential expression in stem-like ABCG2þ cancer cells. Biochem. Pharmacol 2011, 81, 783–792. [Google Scholar]
- Hwang, S.J.; Seol, H.J.; Park, Y.M.; Kim, H.K.; Gorospe, M.; Nam, D.H.; Kim, H.H. MicroRNA-146a suppresses metastatic activity in brain metastasis. Mol. Cells 2012, 34, 329–334. [Google Scholar]
- Li, W.Q.; Li, Y.M.; Tao, B.B.; Lu, Y.C.; Hu, G.H.; Liu, H.M.; He, J.; Xu, Y.; Yu, H.Y. Downregulation of ABCG2 expression in glioblastoma cancer stem cells with miRNA-328 may decrease their chemoresistance. Med. Sci. Monit 2010, 16, HY27–30. [Google Scholar]
- Arora, S.; Ranade, A.R.; Tran, N.L.; Nasser, S.; Sridhar, S.; Korn, R.L.; Ross, J.T.; Dhruv, H.; Foss, K.M.; Sibenaller, Z.; et al. MicroRNA-328 is associated with (non-small) cell lung cancer (NSCLC) brain metastasis and mediates NSCLC migration. Int. J. Cancer 2011, 129, 2621–2631. [Google Scholar]
- Feller, L.; Bouckaert, M.; Chikte, U.M.; Wood, N.H.; Khammissa, R.A.; Meyerov, R.; Lemmer, J. A short account of cancer-specifically in relation to squamous cell carcinoma. SADJ 2010, 65, 322–324. [Google Scholar]
- Wicha, M.S.; Liu, S.; Dontu, G. Cancer stem cells: An old idea-a paradigm shift. Cancer Res 2006, 66, 1883–1890. [Google Scholar]
- Croker, A.K.; Allan, A.L. Cancer stem cells: Implications for the progression and treatment of metastatic disease. J. Cell. Mol. Med 2008, 12, 374–390. [Google Scholar]
- Kucia, M.; Reca, R.; Miekus, K.; Wanzeck, J.; Wojakowski, W.; Janowska-Wieczorek, A.; Ratajczak, J.; Ratajczak, M.Z. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis. Stem Cells 2005, 23, 879–894. [Google Scholar]
- Glass, D.A., II; Bialek, P.; Ahn, J.D.; Starbuck, M.; Patel, M.S.; Clevers, H.; Taketo, M.M.; Long, F.; McMahon, A.P.; Lang, R.A.; et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 2005, 8, 751–764. [Google Scholar]
- Mani, S.A.; Guo, W.; Liao, M.J.; Eaton, E.N.; Ayyanan, A.; Zhou, A.Y.; Brooks, M.; Reinhard, F.; Zhang, C.C.; Shipitsin, M.; et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008, 133, 704–715. [Google Scholar]
- Pommier, S.J.; Quan, G.G.; Christante, D.; Muller, P.; Newell, A.E.H.; Olson, S.B.; Diggs, B.; Muldoon, L.; Neuwelt, E.; Pommier, R.F. Characterizing the HER2/neu status and metastatic potential of breast cancer stem/progenitor cells. Ann. Surg. Oncol. 2010, 17, 613–623. [Google Scholar]
- Guo, L.; Fan, D.; Zhang, F.; Price, J.E.; Lee, J.S.; Marchetti, D.; Fidler, I.J.; Langley, R.R. Selection of brain metastasis-initiating breast cancer cells determined by growth on hard agar. Am. J. Pathol 2011, 178, 2357–2366. [Google Scholar]
- Wang, C.; Natsume, A.; Lee, H.J.; Motomura, K.; Ohno, M.; Ito, M.; Kinjo, S.; Momota, H.; Iwami, K.; Ohka, F.; et al. Neural stem cell-based dual suicide gene delivery for metastatic brain tumors. Cancer Gene Ther 2012, 19, 796–801. [Google Scholar]
- Aboody, K.S.; Najbauer, J.; Schmidt, N.O.; Yang, W.; Wu, J.K.; Zhuge, Y.; Przylecki, W.; Carroll, R.; Black, P.M.; Perides, G. Targeting of melanoma brain metastases using engineered neural stem/progenitor cells. Neuro-Oncology 2006, 8, 119–126. [Google Scholar]
- Seol, H.J.; Jin, J.; Seong, D.H.; Joo, K.M.; Kang, W.; Yang, H.; Kim, J.; Shin, C.S.; Kim, Y.; Kim, K.H.; et al. Genetically engineered human neural stem cells with rabbit carboxyl esterase can target brain metastasis from breast cancer. Cancer Letters 2011, 311, 152–159. [Google Scholar]
- Glinsky, G.V.; Berezovska, O.; Glinskii, A.B. Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer. J. Clin. Invest 2005, 115, 1503–1521. [Google Scholar]
- Hoenerhoff, M.J.; Chu, I.; Barkan, D.; Liu, Z.; Datta, S.; Dimri, G.P.; Green, J.E. BMI1 cooperates with H-RAS to induce an aggressive breast cancer phenotype with brain metastases. Oncogene 2009, 28, 3022–3032. [Google Scholar]
- Nam, D.; Jeon, H.; Kim, S.; Kim, M.H.; Lee, M.S.; Kim, H.; Joo, K.M.; Lee, D.S.; Price, J.E.; Bang, S.I.; et al. Activation of notch signaling in a xenograft model of brain metastasis. Clin. Cancer Res 2008, 14, 4059–4066. [Google Scholar]
- McGowan, P.M.; Simedrea, C.; Ribot, E.J.; Foster, P.J.; Palmieri, D.; Steeg, P.S.; Allan, A.L.; Chambers, A.F. Notch1 inhibition alters the CD44hi/CD24lo population and reduces the formation of brain metastases from breast cancer. Mol. Cancer Res 2011, 9, 834–844. [Google Scholar]
- Caruso, G.; Caffo, M.; Raudino, G.; Alafaci, C.; Salpietro, F.M.; Tomasello, F. Antisense oligonucleotides as innovative therapeutic strategy in the treatment of high-grade gliomas. Recent Pat. CNS Drug Discov 2010, 5, 53–69. [Google Scholar]
- Caruso, G.; Caffo, M.; Alafaci, C.; Raudino, G.; Cafarella, D.; Lucerna, S.; Salpietro, F.M.; Tomasello, F. Could nanoparticles systems have a role in the treatment of cerebral gliomas? Nanomedicine 2011, 7, 744–752. [Google Scholar]
- Caruso, G.; Raudino, G.; Caffo, M.; Alafaci, C.; Granata, F.; Lucerna, S.; Salpietro, F.M.; Tomasello, F. Nanotechnology platforms in diagnosis and treatments of primary brain tumors. Recent Pat. Nanotechn 2010, 4, 119–122. [Google Scholar]
- Cardoso, F.L.; Brites, D.; Brito, M.A. Looking at the blood-brain barrier: Molecular anatomy and possible investigation approaches. Brain Res. Rev 2010, 64, 328–363. [Google Scholar]
- Uchino, H.; Kanai, Y.; Kim, K.; Wempe, M.F.; Chairoungdua, Y.; Morimoto, E.; Anders, M.W.; Endou, H. Transport of amino acid-related compounds mediated by l-type amino acid transporter1 (LAT1): Insights into the mechanisms of substrate recognition. Mol. Pharmacol 2002, 61, 729–737. [Google Scholar]
- Urquhart, B.L.; Kim, R.B. Blood-brain barrier transporters and response to CNS-active drugs. Eur. J. Clin. Pharmacol 2009, 65, 1063–1070. [Google Scholar]
- Kemper, E.M.; Boogerd, W.; Thuis, I.; Beijnen, J.H.; van Tellingen, O. Modulation of the blood-brain barrier in oncology: Therapeutic opportunities for the treatment of brain tumours? Cancer Treat. Rev 2004, 30, 415–423. [Google Scholar]
- Pardridge, W.M. Blood-brain barrier delivery. Drug Discov. Today 2007, 12, 54–61. [Google Scholar]
- Boado, R.J.; Zhang, Y.; Pardridge, W.M. Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol. Bioeng 2007, 96, 381–391. [Google Scholar]
- Moos, T.; Morgan, E.H. The metabolism of neuronal iron and its pathogenic role in neurological disease: Review. Ann. N. Y. Acad. Sci 2004, 1012, 14–26. [Google Scholar]
- Rapoport, N.; Marin, A.P.; Timoshin, A.A. Effect of a polymeric surfactant on electron transport in HL-60 cells. Arch. Biochem. Biophys 2000, 384, 100–108. [Google Scholar]
- Adenot, M.; Merida, P.; Lahana, R. Applications of a blood-brain barrier technology platform to predict CNS penetration of various chemotherapeutic agents. 2. Cationic peptide vectors for brain delivery. Chemotherapy 2007, 53, 73–76. [Google Scholar]
- Bindal, R.K.; Sawaya, R.; Leavens, M.E.; Lee, J.J. Surgical treatment of multiple brain metastases. J. Neurosurg 1993, 79, 210–216. [Google Scholar]
- Iwadate, Y.; Namba, H.; Yamaura, A. Significance of surgical resection for the treatment of multiple brain metastases. Anticancer Res 2000, 20, 573–577. [Google Scholar]
- Marsh, J.C.; Gielda, B.T.; Herskovic, A.M.; Abrams, R.A. Cognitive sparing during the administration of whole brain radiotherapy and prophylactic cranial irradiation: Current concepts and approaches. J. Oncol 2010, 2010, 198–208. [Google Scholar]
- Li, J.; Bentzen, S.M.; Li, J.; Renschler, M.; Mehta, M.P. Relationship between neurocognitive function and quality of life after whole-brain radiotherapy in patients with brain metastasis. Int. J. Radiat. Oncol. Biol. Phys 2008, 71, 64–70. [Google Scholar]
- Welzel, G.; Fleckenstein, K.; Schaefer, J.; Hermann, B.; Kraus-Tiefenbacher, U.; Mai, S.K.; Wenz, F. Memory function before and after whole brain radiotherapy in patients with and without brain metastases. Int. J. Radiat. Oncol. Biol. Phys 2008, 72, 1311–1318. [Google Scholar]
- Gaspar, L.E.; Mehta, M.P.; Patchell, R.A.; Burri, S.H.; Robinson, P.D.; Morris, R.E.; Ammirati, M.; Andrews, D.W.; Asher, A.L.; Cobbs, C.S.; et al. The role of whole brain radiation therapy in the management of newly diagnosed bain metastases: A systematic review and evidence-based clinical practice guideline. J. Neurooncol 2010, 96, 17–32. [Google Scholar]
- Hoegler, D. Radiotherapy for palliation of symptoms in incurable Cancer. Curr. Probl. Cancer 1997, 21, 129–183. [Google Scholar]
- Sun, A.; Bae, K.; Gore, E.M.; Movsas, B.; Wong, S.J.; Meyers, C.A.; Bonner, J.A.; Schild, S.E.; Gaspar, L.E.; Bogart, J.A.; et al. Phase III trial of prophylactic cranial irradiation compared with observation in patients with locally advanced non-small-cell lung cancer: Neurocognitive and quality-of-life analysis. J. Clin. Oncol 2011, 29, 279–286. [Google Scholar]
- Alexander, E.; Moriarty, T.M.; Davis, R.B.; Wen, P.Y.; Fine, H.A.; Black, P.M.; Kooy, H.M.; Loeffler, J.S. Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J. Natl. Cancer Inst 1995, 87, 34–40. [Google Scholar]
- Chang, S.D.; Murphy, M.; Geis, P.; Martin, D.P.; Hancock, S.L.; Doty, J.R.; Adler, J.R., Jr. Clinical experience with image-guided robotic radiosurgery (the cyberknife) in the treatment of brain and spinal cord tumors. Neurol. Med. Chir. (Tokyo) 1998, 38, 780–783. [Google Scholar]
- Wang, Z.; Yuan, Z.; Zhang, W.; You, J.; Wang, P. Brain metastasis treated with cyberknife. Chin. Med. J 2009, 122, 1847–1850. [Google Scholar]
- Boogerd, W.; Dalesio, O.; Bais, E.M.; van der Sande, J.J. Respone of brain metastases from breast cancer to systemic chemotherapy. Cancer 1992, 69, 972–980. [Google Scholar]
- Ardizzoni, A.; Hansen, H.; Dombernowsky, P.; Gamucci, T.; Kaplan, S.; Postmus, P.; Giaccone, G.; Schaefer, B.; Wanders, J.; Verweij, J. Topotecan, a new active drug in the second-line treatment of small-cell lung cancer: A phase II study in patients with refractory and sensitive disease. J. Clin. Oncol 1997, 15, 2090–2096. [Google Scholar]
- Wong, E.T.; Berkenblit, A. The role of topotecan in the treatment of brain metastases. Oncologist 2004, 9, 68–79. [Google Scholar]
- Lorusso, V.; Galetta, D.; Giotta, F.; Rinaldi, A.; Romito, S.; Brunetti, C.; Silvestris, N.; Colucci, G. Topotecan in the treatment of brain metastases. A phase II study of GOIM (gruppo oncologico dell’italia meridionale). Anticancer Res 2006, 26, 2259–2264. [Google Scholar]
- Paul, M.J.; Summers, Y.; Calvert, H.; Rustin, G.; Brampton, M.H.; Thatcher, N.; Middleton, M.R. Effect of temozolomide on central nervous system relapse in patients with advanced melanoma. Melanoma Res. 2002, 12, 175–178. [Google Scholar]
- Park, Y.H.; Park, M.J.; Ji, S.H.; Yi, S.Y.; Lim, D.H.; Nam, D.H.; Lee, J.I.; Park, W.; Choi, D.H.; Huh, S.J.; et al. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients. Br. J. Cancer 2009, 100, 894–900. [Google Scholar]
- Palmieri, D.; Bronder, J.; Herring, J.; Yoneda, T.; Weil, R.J.; Stark, A.M.; Kurek, R.; Vega-valle, E.; Feigenbaum, L.; Halverson, D. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 2007, 67, 4190–4198. [Google Scholar]
- Nam, B.H.; Kim, S.Y.; Han, H.S.; Kwon, Y.; Lee, K.S.; Kim, T.H.; Ro, J. Breast cancer subtypes and survival in patients with brain metastases. Breast Cancer Res 2008, 10, R20. [Google Scholar]
- Bartsch, R.; Rottenfusser, A.; Wenzel, C.; Dieckmann, K.; Pluschnig, U.; Altorjai, G.; Rudas, M.; Mader, R.M.; Poetter, R.; Zielinski, C.C.; et al. Trastuzumab prolongs overall survival in patients with brain metastases from Her2 positive breast cancer. J. Neurooncol 2007, 85, 311–317. [Google Scholar]
- Bria, E.; Cuppone, F.; Fornier, M.; Nisticò, C.; Carlini, P.; Milella, M.; Sperduti, I.; Terzoli, E.; Cognetti, F.; Giannarelli, D.; et al. Cardiotoxicity and incidence of brain metastases after adjuvant trastuzumab for early breast cancer: The dark side of the moon? A meta-analysis of the randomised trials. Breast Cancer Res. Treat 2008, 109, 231–239. [Google Scholar]
- Braen, A.P.; Perron, J.; Tellier, P.; Catala, A.R.; Kolaitis, G.; Geng, W. A 4-week intrathecal toxicity and pharmacokinetic study with trastuzumab in cynomolgus monkeys. Int. J. Toxicol 2010, 3, 259–267. [Google Scholar]
- Gaspar, L.; Scott, C.; Rotman, M.; Asbell, S.; Phillips, T.; Wasserman, T.; McKenna, W.G.; Byhardt, R. Recursive partitioning analysis (RPA) of prognostic factors in three radiation therapy oncology group (RTOG) brain metastases trials. Int. J. Radiat. Oncol. Biol. Phys. 1997, 37, 745–751. [Google Scholar]
- Gril, B.; Palmieri, D.; Bronder, J.L.; Herring, J.M.; Vega-Valle, E.; Feigenbaum, L.; Liwher, D.J.; Steinberg, S.M.; Merino, M.J.; Rubin, S.D.; et al. Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl. Cancer Inst 2008, 100, 1092–1103. [Google Scholar]
- Geyer, C.E.; Forster, J.; Lindquist, D.; Chan, S.; Romieu, C.G.; Pienkowski, T.; Jagiello-Gruzsfeld, A.; Crown, J.; Chan, A.; Kaufman, B.; et al. Lapatinib plus capecitabine for HER-2-positive advanced breast cancer. N. Engl. J. Med 2006, 355, 2733–2743. [Google Scholar]
- Iwata, H.; Narabayashi, M.; Ito, Y.; Saji, S.; Fujiwara, Y.; Usami, S.; Katsura, K.; Sasaki, Y. A phase II study of lapatinib for brain metastases in patients with HER2-overexpressing breast cancer following trastuzumab based systemic therapy and cranial radiotherapy: Subset analysis of Japanese patients. Int. J. Clin. Oncol 2012. [Google Scholar] [CrossRef]
- Lin, N.U.; Diéras, V.; Paul, D.; Lossignol, D.; Christodoulou, C.; Stemmler, H.J.; Roché, H.; Liu, M.C.; Greil, R.; Ciruelos, E.; et al. Multicenter phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res 2009, 15, 1452–1459. [Google Scholar]
- Burel-Vandenbons, F.; Ambrosetti, D.; Coutts, M.; Pedeutour, F. EGFR mutation in brain metastases of non-small cell lung carcinoma. J. Neurooncol 2013, 111, 1–10. [Google Scholar]
- Rosell, R.; Moran, T.; Queralt, C.; Porta, R.; Cardenal, F.; Camps, C.; Majem, M.; Lopez-Vivanco, G.; Isla, D.; Provencio, M.; et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med 2009, 361, 958–967. [Google Scholar]
- Ishida, A.; Kanoh, K.; Nishisaka, T.; Miyazu, Y.; Iwamoto, Y.; Kohno, N.; Miyazawa, T. Gefinitib as a first line of therapy in non-small cell lung cancer with brain metastases. Intern. Med 2004, 43, 718–720. [Google Scholar]
- Nishi, N.; Kawai, S.; Yonezawa, T.; Fujimoto, K.; Masui, K. Effect of gefitinib on brain metastases from non-small cell lung cancer. Two case reports. Neurol. Med. Chir. (Tokyo) 2006, 46, 504–507. [Google Scholar]
- Tang, W.H.; Chen, J.H.; Ye, R.H.; Ho, C.L. Near total regression of diffuse brain metastases in adenocardcinoma of the lung with an EGFR exon 19 mutations: A case report and review of the literature. Case Rep. Oncol 2011, 4, 445–451. [Google Scholar]
- Masago, K.; Togashi, Y.; Fukudo, M.; Terada, T.; Irisa, K.; Sakamori, Y.; Fujita, S.; Kim, Y.H.; Mio, T.; Inui, K.; et al. Good clinical response to erlotinib in a non-small cell lung cancer patient harboring multiple brain metastases and a double active somatic epidermal growth factor gene mutation. Case Rep. Oncol 2010, 3, 98–105. [Google Scholar]
- Lai, C.S.; Boshoff, C.; Falzon, M.; Lee, S.M. Complete response to erlotinib treatment in brain metastases from recurrent NSCLC. Thorax 2006, 61, 91. [Google Scholar]
- Ceresoli, G.L.; Cappuzzo, F.; Gregorc, V.; Bartolini, S.; Crinò, L.; Villa, E. Gefitinib in patients with brain metastases from non-small-cell lung cancer: A prospective trial. Ann. Oncol 2004, 15, 1042–1047. [Google Scholar]
- Kim, J.E.; Lee, D.H.; Choi, Y.; Yoon, D.H.; Kim, S.W.; Suh, C.; Lee, J.S. Epidermal growth receptor tyrosine kinase inhibitors as a first-line therapy for non-smokers with adenocarcinoma of the lung having asymptomatic synchronous brain metastases. Lung Cancer 2009, 65, 351–354. [Google Scholar]
- Heon, S.; Yeap, B.Y.; Britt, G.J.; Costa, D.B.; Rabin, M.S.; Jackman, D.M.; Johnson, B.E. Development of central nervous system metastases in patients with advanced non-small cell lung cancer and somatic EGFR mutations treated with gefinitib or erlotinib. Clin. Cancer Res 2010, 16, 5873–82. [Google Scholar]
- Shimato, S.; Mitsudomi, T.; Kosaka, T.; Yatabe, Y.; Wakabayashi, T.; Mizuno, N.; Nakahara, N.; Hatano, H.; Natsume, A.; Ishii, D.; et al. EGFR mutations in patients with brain metastases from lung cancer: Association with the efficacy of gefitinib. Neuro Oncol 2006, 8, 137–144. [Google Scholar]
- Zeng, Y.D.; Zhang, L.; Liao, H.; Liang, Y.; Xu, F.; Liu, J.L.; Dinglin, X.X.; Chen, K. Gefitinib alone or with concomitant whole brain radiotherapy for patients with brain metastasis from non-small cell lung cancer: A retrospective study. Asian Pac. J. Cancer Prev 2012, 13, 909–914. [Google Scholar]
- Escudier, B.; Eisen, T.; Stadler, W.M.; Szczylik, C.; Oudard, S.; Siebels, M.; Negrier, S.; Chevreau, C.; Solska, E.; Desai, A.A.; et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Eng. J. Med 2007, 356, 125–134. [Google Scholar]
- Pouessel, D.; Culine, S. High frequency of intracerebral hemorrhage in metastatic renal carcinoma patients with brain metastases treated with tyrosine kinase inhibitors targeting the vascular endothelial growth factor receptor. Eur. Urol 2008, 53, 376–381. [Google Scholar]
- Massard, C.; Zonierek, J.; Gross-Goupil, M.; Fizazi, K.; Szczylik, C.; Escudier, B. Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann. Oncol. 2010, 21, 1027–1031. [Google Scholar]
- Walid, M.S.; Johnston, K.W. Successful treatment of a brain-metastatized renal cell carcinoma. Ger. Med. Sci 2009, 7. [Google Scholar] [CrossRef]
- Shen, Y.; Ruan, M.; Luo, Q.; Yu, Y.; Lu, H.; Zhu, R.; Chen, L. Brain metastasis from follicular thyroid carcinoma: Treatment with sorafenib. Thyroid 2012, 22, 856–860. [Google Scholar]
- Tsao, H.; Zhang, X.; Fowlkes, K.; Haluska, F.G. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res 2000, 60, 1800–1804. [Google Scholar]
- Long, G.V.; Menzies, A.M.; Nagrial, A.M.; Haydu, L.E.; Hamilton, A.L.; Mann, G.J.; Hughes, T.M.; Thompson, J.F.; Scolyer, R.A.; Kefford, R.F. Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol 2011, 29, 1239–1246. [Google Scholar]
- Jakob, J.A.; Bassett, R.L., Jr; Ng, C.S.; Curry, J.L.; Joseph, R.W.; Alvarado, G.C.; Rohlfs, M.L.; Richard, J.; Gershenwald, J.E.; Kim, K.B.; et al. Cancer 2012, 118, 4014–4023.
- Flaherty, K.T.; Schiller, J.; Schuchter, L.M.; Liu, G.; Tuveson, D.A.; Redlinger, M.; Lathia, C.; Xia, C.; Petrenciuc, O.; Hingorani, S.R.; et al. A phase I trial of the oral, multikinase inhibitor sorafenib in combination with carboplatin and paclitaxel. Clin. Cancer Res 2008, 14, 4836–4842. [Google Scholar]
- Menzies, A.M.; Long, G.V.; Murali, R. Dabrafenib and its potential for the treatment of metastatic melanoma. Drug Des. Devel. Ther 2012, 6, 391–405. [Google Scholar]
- Bollag, G.; Hirth, P.; Tsai, J.; Zhang, J.; Ibrahim, P.N.; Cho, H.; Spevak, W.; Zhang, C.; Zhang, Y.; Habets, G.; et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010, 467, 596–599. [Google Scholar]
- Joseph, E.W.; Pratilas, C.A.; Poulikakos, P.I.; Tadi, M.; Wang, W.; Taylor, B.S.; Halilovic, E.; Persaud, Y.; Xing, F.; Viale, A.; et al. The RAF inhibitor PLX4032 inhibits ERK signaling and tumor cell proliferation in a V600E BRAF-selective manner. Proc. Natl. Acad. Sci. USA 2010, 107, 14903–14908. [Google Scholar]
- Chapman, P.B.; Hauschild, A.; Robert, C.; Haanen, J.B.; Ascierto, P.; Larhin, J.; Dummer, R.; Garbe, C.; Testori, A.; Maio, M.; et al. BRIM-3 study group. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med 2011, 364, 2507–2516. [Google Scholar]
- Dummer, R.; Goldinger, S.; Turtschi, C.; Eggmann, N.; Michielin, O.; Mitchell, L.; Veronese, L.; Hilfiker, P.R.; Rinderknecht, J.D. Open-label pilot study of vemurafenib in previously Treated Metastatic Melanoma (mM) Patients (pts) with Symptomatic Brain Metastases (BM). Ann. Oncol. 2012. Available online: http://abstracts.webges.com/viewing/view.php?congress=esmo2012&congress_id=370&publication_id=2720 accessed on 10 January 2013.
- Davies, M.A.; Liu, P.; McIntyre, S.; Kim, K.B.; Papadopoulos, N.; Hwu, W.J.; Hwu, P.; Bedikian, A. Prognostic factors for survival in melanoma patients with brain metastases. Cancer 2011, 117, 1687–1696. [Google Scholar]
- Carlino, M.S.; Fogarty, G.B.; Long, G.V. Treatment of melanoma brain metastases: A new paradigm. Cancer J 2012, 18, 208–212. [Google Scholar]
- Long, G.V.; Trefzer, U.; Davies, M.A.; Kefford, R.F.; Ascierto, P.A.; Chapman, P.B.; Puzanov, I.; Hauschild, A.; Robert, C.; Algazi, A.; et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): A multicentre, open-label, phase 2 trial. Lancet Oncol 2012, 13, 1087–1095. [Google Scholar]
- Gore, M.E.; Hariharan, S.; Porta, C.; Bracarda, S.; Hawkins, R.; Bjarnason, G.A.; Oudard, S.; Lee, S.H.; Carteni, G.; Nieto, A.; et al. Sunitinib in metastatic renal cell carcinoma patients with brain metastases. Cancer 2011, 117, 501–509. [Google Scholar]
- Novello, S.; Camps, C.; Grossi, F.; Mazieres, J.; Abrey, L.; Vernejoux, J.M.; Thall, A.; Patyna, S.; Usari, T.; Wang, Z.; et al. Phase II study of sunitinib in patients with non-small cell lung cancer and irradiated brain metastases. J. Thorac. Oncol 2011, 6, 1260–1266. [Google Scholar]
- Batchelor, T.T.; Sorensen, A.G.; di Tomaso, E.; Zhang, W.T.; Duda, D.G.; Cohen, K.S.; Kozak, K.R.; Cahill, D.P.; Chen, P.J.; Zhu, M.; et al. AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 2007, 11, 83–95. [Google Scholar]
- JuanYin, J.; Zhang, L.; Munasinghe, J.; Linnoila, I.; Kelly, K. Cediranib/AZD2171 inhibits bone and brain metastasis in a preclinical model of advanced prostate cancer. Cancer Res 2010, 70, 8662–8673. [Google Scholar]
- JuanYin, J.; Tracy, K.; Zhang, L.; Munasinghe, J.; Shapiro, E.; Koretsky, A.; Kelly, K. Noninvasive imaging of the functional effects of anti-VEGF therapy on tumor cell extravasation and regional blood volume in an experimental brain metastasis model. Clin. Exp. Metastasis 2009, 26, 403–414. [Google Scholar]
- Sandler, A. Bevacizumab in non-small cell lung cancer. Clin. Cancer Res 2007, 13, 4613–4616. [Google Scholar]
- Besse, B.; Lasserre, S.F.; Compton, P.; Huang, J.; Augustus, S.; Rohr, U.P. Bevacizumab safety in patients with central nervous system metastases. Clin. Cancer Res 2010, 16, 269–278. [Google Scholar]
- Socinski, M.A.; Langer, C.J.; Huang, J.E.; Kolb, M.M.; Wang, L.; Akerley, W. Safety of bevacizumab in patients with non-small-cell lung cancer and brain metastases. J. Clin. Oncol 2009, 27, 5255–5261. [Google Scholar]
- De Braganca, K.C.; Janjigian, Y.Y.; Azzoli, C.G.; Kris, M.G.; Pietanza, M.C.; Nolan, C.P.; Omuro, A.M.; Omuro, A.M.; Holodny, A.I.; Lassman, A.B. Efficacy and safety of bevacizumab in active brain metastases from non-small cell lung cancer. J. Neurooncol 2010, 100, 443–447. [Google Scholar]
- Yamamoto, D.; Iwase, S.; Tsubota, Y.; Sueoka, N.; Yamamoto, C.; Kitamura, K.; Odagiri, H.; Nagumo, Y. Bevacizumab in the treatment of five patients with breast cancer and brain metastases: Japan breast cancer research betwotk-07 trial. Onco. Targets Ther 2012, 5, 185–189. [Google Scholar]
- Zhao, H.; Cui, K.; Nie, F.; Wang, L.; Brandl, M.B.; Jin, G.; Li, F.; Mao, Y.; Xue, Z.; Rodriguez, A.; et al. The effect of mTOR inhibition alone or combined with MEK inhibitors on brain metastasis: An in vivo analysis in triple-negative breast cancer models. Breast Cancer Res. Treat 2012, 131, 425–436. [Google Scholar]
- Rades, D.; Nadrowitz, R.; Buchmann, I.; Hunold, P.; Noack, F.; Schild, S.E.; Meller, B. Radiolabeled cetuximab plus whole-brain irradiation (WBI) for the treatment of brain metastases from non-small cell lung cancer (NSCLC). Strahlenther Onkol 2010, 186, 458–462. [Google Scholar]
- Gr⊘́nberg, B.H.; Ciuleanu, T.; Flotten, O.; Knuuttila, A.; Abel, E.; Langer, S.W.; Krejcy, K.; Leipa, A.M.; Munoz, M.; Hahka-Kemppinen, M.; et al. A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer. Lung Cancer 2012, 78, 63–69. [Google Scholar]
- Bhojani, M.S.; Van Dort, M.; Rehemtulla, A.; Ross, B.D. Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol. Pharm 2010, 7, 1921–1929. [Google Scholar]
- Choi, M.R.; Stanton-Maxey, K.J.; Stanley, J.K.; Levin, C.S.; Bardhan, R.; Akin, D.; Badve, S.; Sturgis, J.; Robinson, J.P.; Bashir, R.; et al. A cellular trojan horse for delivery of therapeutics nanoparticles into tumors. Nano Lett 2007, 7, 3759–3765. [Google Scholar]
- Campoli, M.; Ferrone, S. HLA antigen changes in malignant cells: Epigenetic mechanisms and biologic significance. Oncogene 2008, 27, 5869–5885. [Google Scholar]
- Cathro, H.; Smolkin, M.; Theodorescu, D.; Jo, V.Y.; Ferrone, S.; Frierson, H.F., Jr. Relationship between HLA class I antigen processing machinery component expression and the clinicopathologic characteristics of bladder carcinomas. Cancer Immunol. Immunother. 2010, 59, 465–472. [Google Scholar]
- Raffaghello, L.; Nozza, P.; Moranti, F.; Camoriano, M.; Wang, X.; Garrè, M.L.; Cama, A.; Basso, G.; Ferrone, S.; Gambini, C.; et al. Expression and functional analysis of human leukocyte antigen class I antigen-processing machinery in medulloblastoma. Cancer Res 2007, 67, 5471–5478. [Google Scholar]
- Liu, Y.; Komohara, Y.; Domenick, N.; Ohno, M.; Ikeura, M.; Hamilton, R.L.; Horbinski, C.; Wang, X.; Ferrone, S.; Okada, H. Expression of antigen processing and presenting molecoles in brain metastasis of breast cancer. Cancer Immunol. Immunother 2012, 61, 789–801. [Google Scholar]
- Nagorsen, D.; Scheibenbogen, C.; Marincola, F.M.; Letsch, A.; Keilholz, U. Natural T cell immunity against cancer. Clin. Cancer Res 2003, 9, 4296–4303. [Google Scholar]
- Caffo, M.; Caruso, G.; Barresi, V.; Pimo, M.A.; Venza, M.; Alafaci, C.; Tomasello, F. Immunohistochemical study of CD68 and CR3/43 in astrocytic gliomas. J. Analyt. Oncol 2012, 1, 42–49. [Google Scholar]
- Swann, J.B.; Smyth, M.J. Immune surveillance of tumors. J. Clin. Invest 2007, 117, 1137–1146. [Google Scholar]
- Comin-Anduix, B.; Chodon, T.; Sazegar, H.; Matsunaga, D.; Mock, S.; Jalil, J.; Escuin-Ordinas, H.; Chmielowski, B.; Koya, R.C.; Ribas, A.; et al. The oncogenic BRAF kinase inhibitor PLX4032/RG7204 does not affect the viability or function of human lymphocytes across a wide range of concentrations. Clin. Cancer Res 2010, 16, 6040–6048. [Google Scholar]
- Boni, A.; Cogdill, A.P.; Dang, P.; Udayakumar, D.; Njauw, C.N.; Sloss, C.M.; Ferrone, C.R.; Flaherty, K.T.; Lawrence, D.P.; Fisher, D.E.; et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res 2010, 70, 5213–5219. [Google Scholar]
- Ascierto, P.A.; Simeone, E.; Giannarelli, D.; Grimaldi, A.M.; Romano, A.; Mozzillo, N. Sequencing of BRAF inhibitors and ipilimumab in patients with metastatic melanoma: A possible algorithm for clinical use. J. Transl. Med 2012, 10, 107. [Google Scholar]
MSG | Chromosome location | Molecular alterations | Effect of the molecular alterations |
---|---|---|---|
KAI1 (CD82) | 11p11.2 | Mutations | Cell cycle control loss, proliferation |
Nm23 | 17q21.3 | Overexpression, amplification | Proliferation/invasion, cell transformation, cell cycle control |
MKK4 | 17p12 | Loss of heterozygosity, deletion, mutation | Proliferation, invasiveness, angiogenesis |
CD44 | 11p11.2 | Deletion, DNA hypermetilation | Proliferation, invasiveness |
KISS-1 | 1q32.1 | Mutations/deletion | Cell cycle control loss, Proliferation, chemiotaxis, invasion |
SSeCKS | 6q24-25.1 | CDKN2/p16 deletion | Cell cycle control loss, proliferation |
Brms1 | 11q13.2 | Loss of heterozygosity | Regulating Akt/PKB signaling pathway loss; proliferation and tumor growth; invasiveness, angiogenesis |
RhoGD12 | 12p12.3 | Loss of heterozygosity | Pro-apoptotic action loss, proliferation |
PTEN/MMAC1 | 10q23.3 | Amplification, overexpression | Cell transformation, Proliferation, invasion |
Drug | Target | Primary tumor | Notes |
---|---|---|---|
Trastuzumab | HER2 | Breast Cancer | Phase I-II with Methotrexate and Carboplatin; Phase II with Everolimus and Vinorelbine |
Neratinib (HK1-272) | HER2 | Breast Cancer | Phase II |
Lapatinib | HER2 EGFR | Breast Cancer, Lung Cancer | Phase II with WBRT; Phase II with Capecitabine |
Afatinib | HER2 EGFR1 | Breast Cancer | Phase II with or without Vinorelbine |
Erlotinib | EGFR | Lung Adenocarcinoma, Non-Small Cell Lung Cancer | Phase II plus Pemetrexed; Phase II with or without WBRT; Phase III with or without WBRT and SRS |
Icotinib | EGFR EGFR mutation | Non-Small Cell Lung Cancer | Phase III with WBRT, Phase II with WBRT, Phase I-II with WBRT, Phase II double dose |
Sorafenib | VEGFR PDGFR | Breast Cancer | Phase I with WBRT; Phase II with SRS |
Sunitinib | VEGFR, PDGFR | Kidney Cancer | Phase I with SRS; Phase II |
Bevacizumab | VEGF | Breast Cancer | Phase I with WBRT; Phase II with Etoposide and Cisplatin |
Dabrafenib | BRAFV600E | Melanoma | Phase II with SRS |
Vemurafenib | BRAFV600E | Melanoma | Phase II |
Everolimus | FKBP-12/mTOR | Breast Cancer | Phase II with Trastuzumab and Vinorelbine |
RO4929097 | NOTCH receptors | Breast Cancer | Phase I-II with WBRT/SRS |
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Caffo, M.; Barresi, V.; Caruso, G.; Cutugno, M.; La Fata, G.; Venza, M.; Alafaci, C.; Tomasello, F. Innovative Therapeutic Strategies in the Treatment of Brain Metastases. Int. J. Mol. Sci. 2013, 14, 2135-2174. https://doi.org/10.3390/ijms14012135
Caffo M, Barresi V, Caruso G, Cutugno M, La Fata G, Venza M, Alafaci C, Tomasello F. Innovative Therapeutic Strategies in the Treatment of Brain Metastases. International Journal of Molecular Sciences. 2013; 14(1):2135-2174. https://doi.org/10.3390/ijms14012135
Chicago/Turabian StyleCaffo, Maria, Valeria Barresi, Gerardo Caruso, Mariano Cutugno, Giuseppe La Fata, Mario Venza, Concetta Alafaci, and Francesco Tomasello. 2013. "Innovative Therapeutic Strategies in the Treatment of Brain Metastases" International Journal of Molecular Sciences 14, no. 1: 2135-2174. https://doi.org/10.3390/ijms14012135
APA StyleCaffo, M., Barresi, V., Caruso, G., Cutugno, M., La Fata, G., Venza, M., Alafaci, C., & Tomasello, F. (2013). Innovative Therapeutic Strategies in the Treatment of Brain Metastases. International Journal of Molecular Sciences, 14(1), 2135-2174. https://doi.org/10.3390/ijms14012135