Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy
Abstract
:1. Introduction
2. DCs in Health and Disease
3. MS, Vitamin D and DC Activity
4. Immunoregulatory DCs
5. Experimental Autoimmune Encephalomyelitis (EAE): A Model of MS
6. Can DCs Be Found in the Normal CNS?
7. Could DCs Control Anti-CNS Immunity in the Periphery?
8. The Cervical Lymph Node as a Site of CNS Immune Regulation
9. Targeted Therapy to the Cervical Lymph Nodes?
10. Conclusions
References
- Lassmann, H.; van Horssen, J.; Mahad, D. Progressive multiple sclerosis: Pathology and pathogenesis. Nat. Rev. Neurol 2012, 8, 647–656. [Google Scholar]
- Antel, J.; Antel, S.; Caramanos, Z.; Arnold, D.L.; Kuhlmann, T. Primary progressive multiple sclerosis: Part of the MS disease spectrum or separate disease entity? Acta Neuropathol 2012, 123, 627–638. [Google Scholar]
- Goverman, J. Autoimmune T cell responses in the central nervous system. Nat. Rev. Immunol 2009, 9, 393–407. [Google Scholar]
- Patsopoulos, N.A.; Esposito, F.; Reischl, J.; Lehr, S.; Bauer, D.; Heubach, J.; Sandbrink, R.; Pohl, C.; Edan, G.; Kappos, L.; et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann. Neurol 2011, 70, 897–912. [Google Scholar]
- Sawcer, S.; Hellenthal, G.; Pirinen, M.; Spencer, C.C.; Patsopoulos, N.A.; Moutsianas, L.; Dilthey, A.; Su, Z.; Freeman, C.; Hunt, S.E.; et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476, 214–219. [Google Scholar] [Green Version]
- Bergamaschi, L.; Leone, M.A.; Fasano, M.E.; Guerini, F.R.; Ferrante, D.; Bolognesi, E.; Barizzone, N.; Corrado, L.; Naldi, P.; Agliardi, C.; et al. HLA-class I markers and multiple sclerosis susceptibility in the Italian population. Genes Immun 2010, 11, 173–180. [Google Scholar]
- D’Alfonso, S.; Bolognesi, E.; Guerini, F.R.; Barizzone, N.; Bocca, S.; Ferrante, D.; Castelli, L.; Bergamaschi, L.; Agliardi, C.; Ferrante, P.; et al. A sequence variation in the MOG gene is involved in multiple sclerosis susceptibility in Italy. Genes Immun 2008, 9, 7–15. [Google Scholar]
- Greer, J.M.; Pender, M.P. The presence of glutamic acid at positions 71 or 74 in pocket 4 of the HLA-DRbeta1 chain is associated with the clinical course of multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 2005, 76, 656–662. [Google Scholar]
- Hafler, D.A.; Compston, A.; Sawcer, S.; Lander, E.S.; Daly, M.J.; de Jager, P.L.; de Bakker, P.I.; Gabriel, S.B.; Mirel, D.B.; Ivinson, A.J.; et al. Risk alleles for multiple sclerosis identified by a genomewide study. N. Engl. J. Med 2007, 357, 851–862. [Google Scholar]
- Raddassi, K.; Kent, S.C.; Yang, J.; Bourcier, K.; Bradshaw, E.M.; Seyfert-Margolis, V.; Nepom, G.T.; Kwok, W.W.; Hafler, D.A. Increased frequencies of myelin oligodendrocyte glycoprotein/MHC class II-binding CD4 cells in patients with multiple sclerosis. J. Immunol 2011, 187, 1039–1046. [Google Scholar]
- Ghoreschi, K.; Bruck, J.; Kellerer, C.; Deng, C.; Peng, H.; Rothfuss, O.; Hussain, R.Z.; Gocke, A.R.; Respa, A.; Glocova, I.; et al. Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J. Exp. Med 2011, 208, 2291–2303. [Google Scholar]
- Killestein, J.; Rudick, R.A.; Polman, C.H. Oral treatment for multiple sclerosis. Lancet Neurol 2011, 10, 1026–1034. [Google Scholar]
- Butovsky, O.; Koronyo-Hamaoui, M.; Kunis, G.; Ophir, E.; Landa, G.; Cohen, H.; Schwartz, M. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc. Natl. Acad. Sci. USA 2006, 103, 11784–11789. [Google Scholar]
- Vieira, P.L.; Heystek, H.C.; Wormmeester, J.; Wierenga, E.A.; Kapsenberg, M.L. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J. Immunol 2003, 170, 4483–4488. [Google Scholar]
- Aung, L.L.; Fitzgerald-Bocarsly, P.; Dhib-Jalbut, S.; Balashov, K. Plasmacytoid dendritic cells in multiple sclerosis: Chemokine and chemokine receptor modulation by interferon-beta. J. Neuroimmunol 2010, 226, 158–164. [Google Scholar]
- Lande, R.; Gafa, V.; Serafini, B.; Giacomini, E.; Visconti, A.; Remoli, M.E.; Severa, M.; Parmentier, M.; Ristori, G.; Salvetti, M.; et al. Plasmacytoid dendritic cells in multiple sclerosis: intracerebral recruitment and impaired maturation in response to interferon-beta. J. Neuropathol. Exp. Neurol 2008, 67, 388–401. [Google Scholar]
- Tsai, V.W.; Mohammad, M.G.; Tolhurst, O.; Breit, S.N.; Sawchenko, P.E.; Brown, D.A. CCAAT/enhancer binding protein-delta expression by dendritic cells regulates CNS autoimmune inflammatory disease. J. Neurosci 2011, 31, 17612–17621. [Google Scholar]
- Ponomarev, E.D.; Dittel, B.N. Gamma delta T cells regulate the extent and duration of inflammation in the central nervous system by a Fas ligand-dependent mechanism. J. Immunol 2005, 174, 4678–4687. [Google Scholar]
- Merelli, E.; Sola, P.; Faglioni, P.; Giordani, S.; Mussini, D.; Montagnani, G. Natural killer cells and lymphocyte subsets in active MS and acute inflammation of the CNS. Acta Neurol. Scand 1991, 84, 127–131. [Google Scholar]
- Sun, D.; Meyermann, R.; Wekerle, H. Cytotoxic T cells in autoimmune disease of the central nervous system. Ann. N. Y. Acad. Sci 1988, 532, 221–229. [Google Scholar]
- Raedler, A.; Bredow, G.; Kirch, W.; Thiele, H.G.; Greten, H. In vivo activated peripheral T cells in autoimmune disease. J. Clin. Lab. Immunol 1986, 19, 181–186. [Google Scholar]
- Jacobson, S.; Flerlage, M.L.; McFarland, H.F. Impaired measles virus-specific cytotoxic T cell responses in multiple sclerosis. J. Exp. Med 1985, 162, 839–850. [Google Scholar]
- Hafler, D.A.; Buchsbaum, M.; Johnson, D.; Weiner, H.L. Phenotypic and functional analysis of T cells cloned directly from the blood and cerebrospinal fluid of patients with multiple sclerosis. Ann. Neurol 1985, 18, 451–458. [Google Scholar]
- Colombo, M.; Dono, M.; Gazzola, P.; Roncella, S.; Valetto, A.; Chiorazzi, N.; Mancardi, G.L.; Ferrarini, M. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. J. Immunol 2000, 164, 2782–2789. [Google Scholar]
- Terasaki, P.I.; Park, M.S.; Opelz, G.; Ting, A. Multiple sclerosis and high incidence of a B lymphocyte antigen. Science 1976, 193, 1245–1247. [Google Scholar]
- Compston, D.A.; Batchelor, J.R.; McDonald, W.I. B-lymphocyte alloantigens associated with multiple sclerosis. Lancet 1976, 2, 1261–1265. [Google Scholar]
- Vermersch, P.; Benrabah, R.; Schmidt, N.; Zephir, H.; Clavelou, P.; Vongsouthi, C.; Dubreuil, P.; Moussy, A.; Hermine, O. Masitinib treatment in patients with progressive multiple sclerosis: A randomized pilot study. BMC Neurol 2012, 12, 36. [Google Scholar]
- Sayed, B.A.; Walker, M.E.; Brown, M.A. Cutting edge: Mast cells regulate disease severity in a relapsing-remitting model of multiple sclerosis. J. Immunol 2011, 186, 3294–3298. [Google Scholar]
- Olsson, Y. Mast cells in plaques of multiple sclerosis. Acta Neurol. Scand 1974, 50, 611–618. [Google Scholar]
- Barnett, M.H.; Henderson, A.P.; Prineas, J.W. The macrophage in MS: Just a scavenger after all? Pathology and pathogenesis of the acute MS lesion. Mult. Scler 2006, 12, 121–132. [Google Scholar]
- Doring, A.; Yong, V.W. The good, the bad and the ugly. Macrophages/microglia with a focus on myelin repair. Front. Biosci 2011, 3, 846–856. [Google Scholar]
- Almolda, B.; Gonzalez, B.; Castellano, B. Antigen presentation in EAE: Role of microglia, macrophages and dendritic cells. Front. Biosci 2011, 16, 1157–1171. [Google Scholar]
- Kort, J.J.; Kawamura, K.; Fugger, L.; Weissert, R.; Forsthuber, T.G. Efficient presentation of myelin oligodendrocyte glycoprotein peptides but not protein by astrocytes from HLA-DR2 and HLA-DR4 transgenic mice. J. Neuroimmunol 2006, 173, 23–34. [Google Scholar]
- Constantinescu, C.S.; Tani, M.; Ransohoff, R.M.; Wysocka, M.; Hilliard, B.; Fujioka, T.; Murphy, S.; Tighe, P.J.; Das Sarma, J.; Trinchieri, G.; Rostami, A. Astrocytes as antigen-presenting cells: Expression of IL-12/IL-23. J. Neurochem 2005, 95, 331–340. [Google Scholar]
- Zeinstra, E.; Wilczak, N.; De Keyser, J. Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2. J. Neuroimmunol 2003, 135, 166–171. [Google Scholar]
- Tan, L.; Gordon, K.B.; Mueller, J.P.; Matis, L.A.; Miller, S.D. Presentation of proteolipid protein epitopes and B7-1-dependent activation of encephalitogenic T cells by IFN-gamma-activated SJL/J astrocytes. J. Immunol 1998, 160, 4271–4279. [Google Scholar]
- Traugott, U.; Lebon, P. Interferon-γ and Ia antigen are present on astrocytes in active chronic multiple sclerosis lesions. J. Neurol. Sci 1988, 84, 257–264. [Google Scholar]
- Traugott, U.; Raine, C.S. Multiple sclerosis. Evidence for antigen presentation in situ by endothelial cells and astrocytes. J. Neurol. Sci 1985, 69, 365–370. [Google Scholar]
- Fontana, A.; Fierz, W.; Wekerle, H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature 1984, 307, 273–276. [Google Scholar]
- Pollinger, B.; Krishnamoorthy, G.; Berer, K.; Lassmann, H.; Bosl, M.R.; Dunn, R.; Domingues, H.S.; Holz, A.; Kurschus, F.C.; Wekerle, H. Spontaneous relapsing-remitting EAE in the SJL/J mouse: MOG-reactive transgenic T cells recruit endogenous MOG-specific B cells. J. Exp. Med 2009, 206, 1303–1316. [Google Scholar]
- Bettelli, E.; Pagany, M.; Weiner, H.L.; Linington, C.; Sobel, R.A.; Kuchroo, V.K. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med 2003, 197, 1073–1081. [Google Scholar]
- Crawford, M.P.; Yan, S.X.; Ortega, S.B.; Mehta, R.S.; Hewitt, R.E.; Price, D.A.; Stastny, P.; Douek, D.C.; Koup, R.A.; Racke, M.K.; Karandikar, N.J. High prevalence of autoreactive, neuroantigen-specific CD8+ T cells in multiple sclerosis revealed by novel flow cytometric assay. Blood 2004, 103, 4222–4231. [Google Scholar]
- Sapoznikov, A.; Jung, S. Probing in vivo dendritic cell functions by conditional cell ablation. Immunol. Cell Biol 2008, 86, 409–415. [Google Scholar]
- Colton, C.A. Immune heterogeneity in neuroinflammation: Dendritic cells in the brain. J. Neuroimmune Pharmacol. 2012. [Google Scholar] [CrossRef]
- Sellebjerg, F.; Hesse, D.; Limborg, S.; Lund, H.; Sondergaard, H.; Krakauer, M.; Sorensen, P. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis. Mult. Scler. 2012. [Google Scholar] [CrossRef]
- Galicia-Rosas, G.; Pikor, N.; Schwartz, J.A.; Rojas, O.; Jian, A.; Summers-Deluca, L.; Ostrowski, M.; Nuesslein-Hildesheim, B.; Gommerman, J.L. A Sphingosine-1-phosphate receptor 1-directed agonist reduces central nervous system inflammation in a plasmacytoid dendritic cell-dependent manner. J. Immunol 2012, 189, 3700–3706. [Google Scholar]
- Peng, H.; Guerau-de-Arellano, M.; Mehta, V.B.; Yang, Y.; Huss, D.J.; Papenfuss, T.L.; Lovett-Racke, A.E.; Racke, M.K. Dimethyl fumarate inhibits dendritic cell maturation via nuclear factor κB (NF-κB) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) and mitogen stress-activated kinase 1 (MSK1) signaling. J. Biol. Chem 2012, 287, 28017–28026. [Google Scholar]
- Kong, W.; Yen, J.H.; Ganea, D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigen-specific Th1/Th17 differentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav. Immun 2011, 25, 872–882. [Google Scholar]
- Pluchino, S.; Zanotti, L.; Brambilla, E.; Rovere-Querini, P.; Capobianco, A.; Alfaro-Cervello, C.; Salani, G.; Cossetti, C.; Borsellino, G.; Battistini, L.; et al. Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS One 2009, 4, e5959. [Google Scholar]
- Martin-Fontecha, A.; Lanzavecchia, A.; Sallusto, F. Dendritic cell migration to peripheral lymph nodes. Handb. Exp. Pharmacol. 2009, 31–49. [Google Scholar]
- Yogev, N.; Frommer, F.; Lukas, D.; Kautz-Neu, K.; Karram, K.; Ielo, D.; von Stebut, E.; Probst, H.C.; van den Broek, M.; Riethmacher, D.; et al. Dendritic cells ameliorate Aautoimmunity in the CNS by controlling the homeostasis of PD-1 Receptor(+) regulatory T Cells. Immunity 2012, 37, 264–275. [Google Scholar]
- McFarland, H.F.; Greenstein, J.; McFarlin, D.E.; Eldridge, R.; Xu, X.H.; Krebs, H. Family and twin studies in multiple sclerosis. Ann. N. Y. Acad. Sci 1984, 436, 118–124. [Google Scholar]
- Simon, K.C.; Munger, K.L.; Ascherio, A. Vitamin D and multiple sclerosis: Epidemiology, immunology, and genetics. Curr. Opin. Neurol 2012, 25, 246–251. [Google Scholar]
- Ascherio, A.; Munger, K.L.; Giovannucci, E. Sun exposure and vitamin D are independent risk factors for CNS demyelination. Neurology 2011, 77, 1405–1406. [Google Scholar]
- Munger, K.L.; Ascherio, A. Prevention and treatment of MS: Studying the effects of vitamin D. Mult. Scler 2011, 17, 1405–1411. [Google Scholar]
- Hart, P.H.; Gorman, S.; Finlay-Jones, J.J. Modulation of the immune system by UV radiation: More than just the effects of vitamin D? Nat. Rev. Immunol 2011, 11, 584–596. [Google Scholar]
- Kushwah, R.; Hu, J. Role of dendritic cells in the induction of regulatory T cells. Cell Biosci 2011, 1, 20. [Google Scholar]
- Schwab, N.; Zozulya, A.L.; Kieseier, B.C.; Toyka, K.V.; Wiendl, H. An imbalance of two functionally and phenotypically different subsets of plasmacytoid dendritic cells characterizes the dysfunctional immune regulation in multiple sclerosis. J. Immunol 2010, 184, 5368–5374. [Google Scholar]
- Ilarregui, J.M.; Rabinovich, G.A. Tolerogenic dendritic cells in the control of autoimmune neuroinflammation: An emerging role of protein-glycan interactions. Neuroimmunomodulation 2010, 17, 157–160. [Google Scholar]
- Nemeth, E.; Baird, A.W.; O’Farrelly, C. Microanatomy of the liver immune system. Semin. Immunopathol 2009, 31, 333–343. [Google Scholar]
- Lehner, T. Special regulatory T cell review: The resurgence of the concept of contrasuppression in immunoregulation. Immunology 2008, 123, 40–44. [Google Scholar]
- Trucco, M.; Giannoukakis, N. Immunoregulatory dendritic cells to prevent and reverse new-onset type 1 diabetes mellitus. Expert Opin. Biol. Ther 2007, 7, 951–963. [Google Scholar]
- Lutz, M.B.; Kurts, C. Induction of peripheral CD4+ T-cell tolerance and CD8+ T-cell cross-tolerance by dendritic cells. Eur. J. Immunol 2009, 39, 2325–2330. [Google Scholar]
- Bonasio, R.; Scimone, M.L.; Schaerli, P.; Grabie, N.; Lichtman, A.H.; von Andrian, U.H. Clonal deletion of thymocytes by circulating dendritic cells homing to the thymus. Nat. Immunol 2006, 7, 1092–1100. [Google Scholar]
- Luckey, U.; Schmidt, T.; Pfender, N.; Romer, M.; Lorenz, N.; Martin, S.F.; Bopp, T.; Schmitt, E.; Nikolaev, A.; Yogev, N.; et al. Crosstalk of regulatory T cells and tolerogenic dendritic cells prevents contact allergy in subjects with low zone tolerance. J. Allergy Clin. Immunol 2012, 130, 781–797. [Google Scholar]
- Moreau, A.; Varey, E.; Beriou, G.; Hill, M.; Bouchet-Delbos, L.; Segovia, M.; Cuturi, M.C. Tolerogenic dendritic cells and negative vaccination in transplantation: From rodents to clinical trials. Front. Immunol 2012, 3, 218. [Google Scholar]
- Amodio, G.; Gregori, S. Dendritic cells a double-edge sword in autoimmune responses. Front. Immunol 2012, 3, 233. [Google Scholar]
- Monti, P.; Leone, B.E.; Zerbi, A.; Balzano, G.; Cainarca, S.; Sordi, V.; Pontillo, M.; Mercalli, A.; di Carlo, V.; Allavena, P.; Piemonti, L. Tumor-derived MUC1 mucins interact with differentiating monocytes and induce IL-10highIL-12low regulatory dendritic cell. J. Immunol 2004, 172, 7341–7349. [Google Scholar]
- Janikashvili, N.; Bonnotte, B.; Katsanis, E.; Larmonier, N. The dendritic cell-regulatory T lymphocyte crosstalk contributes to tumor-induced tolerance. Clin. Dev. Immunol 2011, 2011, 430394. [Google Scholar]
- Thomson, A.W.; Knolle, P.A. Antigen-presenting cell function in the tolerogenic liver environment. Nat. Rev. Immunol 2010, 10, 753–766. [Google Scholar]
- Sumpter, T.L.; Lunz, J.G.r.; Castellaneta, A.; Matta, B.; Tokita, D.; Turnquist, H.R.; Mazariegos, G.V.; Demetris, A.J.; Thomson, A.W. Dendritic cell immunobiology in relation to liver transplant outcome. Front. Biosci 2009, 1, 99–114. [Google Scholar]
- Benseler, V.; McCaughan, G.W.; Schlitt, H.J.; Bishop, G.A.; Bowen, D.G.; Bertolino, P. The liver: A special case in transplantation tolerance. Semin. Liver Dis 2007, 27, 194–213. [Google Scholar]
- Hambleton, S.; Salem, S.; Bustamante, J.; Bigley, V.; Boisson-Dupuis, S.; Azevedo, J.; Fortin, A.; Haniffa, M.; Ceron-Gutierrez, L.; Bacon, C.M.; et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med 2011, 365, 127–138. [Google Scholar]
- Lee, W.I.; Huang, J.L.; Yeh, K.W.; Jaing, T.H.; Lin, T.Y.; Huang, Y.C.; Chiu, C.H. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J. Formos. Med. Assoc 2011, 110, 750–758. [Google Scholar]
- Doring, Y.; Soehnlein, O.; Drechsler, M.; Shagdarsuren, E.; Chaudhari, S.M.; Meiler, S.; Hartwig, H.; Hristov, M.; Koenen, R.R.; Hieronymus, T.; et al. Hematopoietic interferon regulatory factor 8-deficiency accelerates atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol 2012, 32, 1613–1623. [Google Scholar]
- Tailor, P.; Tamura, T.; Morse, H.C., III; Ozato, K. The BXH2 mutation in IRF8 differentially impairs dendritic cell subset development in the mouse. Blood 2008, 111, 1942–1945. [Google Scholar]
- Tailor, P.; Tamura, T.; Kong, H.J.; Kubota, T.; Kubota, M.; Borghi, P.; Gabriele, L.; Ozato, K. The feedback phase of type I interferon induction in dendritic cells requires interferon regulatory factor 8. Immunity 2007, 27, 228–239. [Google Scholar]
- The International Multiple Sclerosis Genetics Consortium. The genetic association of variants in CD6, TNFRSF1A and IRF8 to multiple sclerosis: A multicenter case-control study. PLoS One 2011, 6, e18813.
- De Jager, P.L.; Jia, X.; Wang, J.; de Bakker, P.I.; Ottoboni, L.; Aggarwal, N.T.; Piccio, L.; Raychaudhuri, S.; Tran, D.; Aubin, C.; et al. Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat. Genet 2009, 41, 776–782. [Google Scholar]
- Ransohoff, R.M.; Brown, M.A. Innate immunity in the central nervous system. J. Clin. Invest 2012, 122, 1164–1171. [Google Scholar]
- Ransohoff, R.M.; Perry, V.H. Microglial physiology: Unique stimuli, specialized responses. Annu. Rev. Immunol 2009, 27, 119–145. [Google Scholar]
- Prodinger, C.; Bunse, J.; Kruger, M.; Schiefenhovel, F.; Brandt, C.; Laman, J.D.; Greter, M.; Immig, K.; Heppner, F.; Becher, B.; Bechmann, I. CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 2011, 121, 445–458. [Google Scholar]
- Bulloch, K.; Miller, M.M.; Gal-Toth, J.; Milner, T.A.; Gottfried-Blackmore, A.; Waters, E.M.; Kaunzner, U.W.; Liu, K.; Lindquist, R.; Nussenzweig, M.C.; et al. CD11c/EYFP transgene illuminates a discrete network of dendritic cells within the embryonic, neonatal, adult, and injured mouse brain. J. Comp. Neurol 2008, 508, 687–710. [Google Scholar]
- Van Zwam, M.; Huizinga, R.; Melief, M.J.; Wierenga-Wolf, A.F.; van Meurs, M.; Voerman, J.S.; Biber, K.P.; Boddeke, H.W.; Hopken, U.E.; Meisel, C.; et al. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J. Mol. Med 2009, 87, 273–286. [Google Scholar]
- Brown, D.A.; Sawchenko, P.E. Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J. Comp. Neurol 2007, 502, 236–260. [Google Scholar]
- Lucchinetti, C.F.; Popescu, B.F.; Bunyan, R.F.; Moll, N.M.; Roemer, S.F.; Lassmann, H.; Bruck, W.; Parisi, J.E.; Scheithauer, B.W.; Giannini, C.; et al. Inflammatory cortical demyelination in early multiple sclerosis. N. Engl. J. Med 2011, 365, 2188–2197. [Google Scholar]
- Steinman, L.; Zamvil, S.S. How to successfully apply animal studies in experimental allergic encephalomyelitis to research on multiple sclerosis. Ann. Neurol 2006, 60, 12–21. [Google Scholar]
- Slavin, A.; Kelly-Modis, L.; Labadia, M.; Ryan, K.; Brown, M.L. Pathogenic mechanisms and experimental models of multiple sclerosis. Autoimmunity 2010, 43, 504–513. [Google Scholar]
- Langrish, C.L.; Chen, Y.; Blumenschein, W.M.; Mattson, J.; Basham, B.; Sedgwick, J.D.; McClanahan, T.; Kastelein, R.A.; Cua, D.J. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med 2005, 201, 233–240. [Google Scholar]
- Lovett-Racke, A.E.; Yang, Y.; Racke, M.K. Th1 versus Th17: Are T cell cytokines relevant in multiple sclerosis? Biochim Biophys. Acta 2011, 1812, 246–251. [Google Scholar]
- Fletcher, J.M.; Lalor, S.J.; Sweeney, C.M.; Tubridy, N.; Mills, K.H. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol 2010, 162, 1–11. [Google Scholar]
- Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat. Med 2007, 13, 1173–1175. [Google Scholar]
- Greter, M.; Heppner, F.L.; Lemos, M.P.; Odermatt, B.M.; Goebels, N.; Laufer, T.; Noelle, R.J.; Becher, B. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med 2005, 11, 328–334. [Google Scholar]
- Bailey-Bucktrout, S.L.; Caulkins, S.C.; Goings, G.; Fischer, J.A.; Dzionek, A.; Miller, S.D. Cutting edge: Central nervous system plasmacytoid dendritic cells regulate the severity of relapsing experimental autoimmune encephalomyelitis. J. Immunol 2008, 180, 6457–6461. [Google Scholar]
- Bailey, S.L.; Schreiner, B.; McMahon, E.J.; Miller, S.D. CNS myeloid DCs presenting endogenous myelin peptides “preferentially” polarize CD4+ T(H)-17 cells in relapsing EAE. Nat. Immunol 2007, 8, 172–180. [Google Scholar]
- Miller, S.D.; McMahon, E.J.; Schreiner, B.; Bailey, S.L. Antigen presentation in the CNS by myeloid dendritic cells drives progression of relapsing experimental autoimmune encephalomyelitis. Ann. N. Y. Acad. Sci 2007, 1103, 179–191. [Google Scholar]
- Bailey, S.L.; Carpentier, P.A.; McMahon, E.J.; Begolka, W.S.; Miller, S.D. Innate and adaptive immune responses of the central nervous system. Crit. Rev. Immunol 2006, 26, 149–188. [Google Scholar]
- Isaksson, M.; Lundgren, B.A.; Ahlgren, K.M.; Kampe, O.; Lobell, A. Conditional DC depletion does not affect priming of encephalitogenic Th cells in EAE. Eur. J. Immunol 2012, 42, 2555–2563. [Google Scholar]
- Becher, B.; Greter, M. Acquitting an APC: DCs found “not guilty” after trial by ablation. Eur. J. Immunol 2012, 42, 2551–2554. [Google Scholar]
- Shirai, Y. On the transplantation ofthe rat sarcoma in adult heterogeneous animals. Jpn. Med. World 1921, 1, 14–15. [Google Scholar]
- Murphy, J.B.; Sturm, E. Conditions determining the transplantability of tissues in the brain. J. Exp. Med 1923, 38, 183–197. [Google Scholar]
- Tansley, K. The development of the rat eye in graft. J. Exp. Biol 1946, 22, 221–224. [Google Scholar]
- Morton, J.J. On the failure in hetroplastic transplantation of human maamary carcinoma into the brains of rats. J. Cancer Res. 1929, 359–362. [Google Scholar]
- Billingham, R.E.; Brent, L.; Medawar, P.B. Actively acquired tolerance of foreign cells. Nature 1953, 172, 603–606. [Google Scholar]
- Weller, R.O.; Galea, I.; Carare, R.O.; Minagar, A. Pathophysiology of the lymphatic drainage of the central nervous system: Implications for pathogenesis and therapy of multiple sclerosis. Pathophysiology 2009, 17, 295–306. [Google Scholar]
- Hickey, W.F.; Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988, 239, 290–292. [Google Scholar]
- Hart, D.N.; Fabre, J.W. Demonstration and characterization of Ia-positive dendritic cells in the interstitial connective tissues of rat heart and other tissues, but not brain. J. Exp. Med 1981, 154, 347–361. [Google Scholar]
- Craggs, R.I.; Webster, H.D. Ia antigens in the normal rat nervous system and in lesions of experimental allergic encephalomyelitis. Acta Neuropathol 1985, 68, 263–272. [Google Scholar]
- Matyszak, M.K.; Perry, V.H. The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 1996, 74, 599–608. [Google Scholar]
- Matyszak, M.K.; Perry, V.H. Delayed-type hypersensitivity lesions in the central nervous system are prevented by inhibitors of matrix metalloproteinases. J. Neuroimmunol 1996, 69, 141–149. [Google Scholar]
- Matyszak, M.K.; Perry, V.H. A comparison of leucocyte responses to heat-killed bacillus Calmette-Guerin in different CNS compartments. Neuropathol. Appl. Neurobiol 1996, 22, 44–53. [Google Scholar]
- Anandasabapathy, N.; Victora, G.D.; Meredith, M.; Feder, R.; Dong, B.; Kluger, C.; Yao, K.; Dustin, M.L.; Nussenzweig, M.C.; Steinman, R.M.; Liu, K. Flt3L controls the development of radiosensitive dendritic cells in the meninges and choroid plexus of the steady-state mouse brain. J. Exp. Med 2011, 208, 1695–1705. [Google Scholar]
- Bettelli, E.; Baeten, D.; Jager, A.; Sobel, R.A.; Kuchroo, V.K. Myelin oligodendrocyte glycoprotein-specific T and B cells cooperate to induce a Devic-like disease in mice. J. Clin. Invest 2006, 116, 2393–2402. [Google Scholar]
- Schwartz, M.; Shechter, R. Systemic inflammatory cells fight off neurodegenerative disease. Nat. Rev. Neurol 2010, 6, 405–410. [Google Scholar]
- Shechter, R.; London, A.; Varol, C.; Raposo, C.; Cusimano, M.; Yovel, G.; Rolls, A.; Mack, M.; Pluchino, S.; Martino, G.; Jung, S.; Schwartz, M. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009, 6, e1000113. [Google Scholar]
- Schwartz, M.; Ziv, Y. Immunity to self and self-maintenance: A unified theory of brain pathologies. Trends Immunol 2008, 29, 211–219. [Google Scholar]
- Moalem, G.; Leibowitz-Amit, R.; Yoles, E.; Mor, F.; Cohen, I.R.; Schwartz, M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat. Med 1999, 5, 49–55. [Google Scholar]
- Jones, J.L.; Anderson, J.M.; Phuah, C.L.; Fox, E.J.; Selmaj, K.; Margolin, D.; Lake, S.L.; Palmer, J.; Thompson, S.J.; Wilkins, A.; et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain 2010, 133, 2232–2247. [Google Scholar]
- Kirsch, B.M.; Haidinger, M.; Zeyda, M.; Bohmig, G.A.; Tombinsky, J.; Muhlbacher, F.; Watschinger, B.; Horl, W.H.; Saemann, M.D. Alemtuzumab (Campath-1H) induction therapy and dendritic cells: Impact on peripheral dendritic cell repertoire in renal allograft recipients. Transpl. Immunol 2006, 16, 254–257. [Google Scholar]
- Cisse, B.; Caton, M.L.; Lehner, M.; Maeda, T.; Scheu, S.; Locksley, R.; Holmberg, D.; Zweier, C.; den Hollander, N.S.; Kant, S.G.; et al. Transcription factor E2-2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 2008, 135, 37–48. [Google Scholar]
- Riveros, C.; Mellor, D.; Gandhi, K.S.; McKay, F.C.; Cox, M.B.; Berretta, R.; Vaezpour, S.Y.; Inostroza-Ponta, M.; Broadley, S.A.; Heard, R.N.; et al. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010, 5, e14176. [Google Scholar]
- Ling, C.; Sandor, M.; Suresh, M.; Fabry, Z. Traumatic injury and the presence of antigen differentially contribute to T-cell recruitment in the CNS. J. Neurosci 2006, 26, 731–741. [Google Scholar]
- Ling, C.; Sandor, M.; Fabry, Z. In situ processing and distribution of intracerebrally injected OVA in the CNS. J. Neuroimmunol 2003, 141, 90–98. [Google Scholar]
- Karman, J.; Chu, H.H.; Co, D.O.; Seroogy, C.M.; Sandor, M.; Fabry, Z. Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J. Immunol 2006, 177, 7750–7760. [Google Scholar]
- Mana, P.; Fordham, S.A.; Staykova, M.A.; Correcha, M.; Silva, D.; Willenborg, D.O.; Linares, D. Demyelination caused by the copper chelator cuprizone halts T cell mediated autoimmune neuroinflammation. J. Neuroimmunol 2009, 210, 13–21. [Google Scholar]
- Weller, R.O.; Engelhardt, B.; Phillips, M.J. Lymphocyte targeting of the central nervous system: A review of afferent and efferent CNS-immune pathways. Brain Pathol 1996, 6, 275–288. [Google Scholar]
- Herfarth, H.; Scholmerich, J. IL-10 therapy in Crohn’s disease: At the crossroads. Treatment of Crohn’s disease with the anti-inflammatory cytokine interleukin 10. Gut 2002, 50, 146–147. [Google Scholar]
© 2013 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Mohammad, M.G.; Hassanpour, M.; Tsai, V.W.W.; Li, H.; Ruitenberg, M.J.; Booth, D.R.; Serrats, J.; Hart, P.H.; Symonds, G.P.; Sawchenko, P.E.; et al. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy. Int. J. Mol. Sci. 2013, 14, 547-562. https://doi.org/10.3390/ijms14010547
Mohammad MG, Hassanpour M, Tsai VWW, Li H, Ruitenberg MJ, Booth DR, Serrats J, Hart PH, Symonds GP, Sawchenko PE, et al. Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy. International Journal of Molecular Sciences. 2013; 14(1):547-562. https://doi.org/10.3390/ijms14010547
Chicago/Turabian StyleMohammad, Mohammad G., Masoud Hassanpour, Vicky W. W. Tsai, Hui Li, Marc J. Ruitenberg, David R. Booth, Jordi Serrats, Prue H. Hart, Geoffrey P. Symonds, Paul E. Sawchenko, and et al. 2013. "Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy" International Journal of Molecular Sciences 14, no. 1: 547-562. https://doi.org/10.3390/ijms14010547
APA StyleMohammad, M. G., Hassanpour, M., Tsai, V. W. W., Li, H., Ruitenberg, M. J., Booth, D. R., Serrats, J., Hart, P. H., Symonds, G. P., Sawchenko, P. E., Breit, S. N., & Brown, D. A. (2013). Dendritic Cells and Multiple Sclerosis: Disease, Tolerance and Therapy. International Journal of Molecular Sciences, 14(1), 547-562. https://doi.org/10.3390/ijms14010547