Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of Freeze-Dried MCFAs-Vit C Complex Nanoliposomes
2.2. Transmission Electron Microscopy of Complex Nanoliposomes
2.3. Storage Stability
3. Experimental Section
3.1. Materials
3.2. Preparation of MCFAs-Vit C Complex Nanoliposomes by DE-DHPM
3.3. Preparation of Freeze-Dried MCFAs-Vit C Complex Nanoliposomes
3.4. Reconstitution of the Freeze-Dried MCFAs-Vit C Complex Nanoliposomes
3.5. Determination of Entrapment Efficiency (EE) of MCFAs
3.6. Determination of Encapsulation Efficiency (EE) of Vit C
3.7. Characteristics of MCFAs-Vit C Complex Nanoliposomes
3.7.1. Particle Size and Size Distribution
3.7.2. Transmission Electron Microscopy (TEM)
3.7.3. Stability of MCFAs-Vit C Complex Nanoliposomes
3.8. Statistical Analysis
4. Conclusions
Samples | Particle size (nm) | Polydispersity index | EEvit C (%) | EEMCFAs (%) |
---|---|---|---|---|
Sample before lyophilization | 115.3 ± 9.37 | 0.257 | 61.37 ± 3.17 | 46.23 ± 1.25 |
Lyophilized nanoliposomes with sucrose | 110.4 ± 7.28 | 0.232 | 62.25 ± 3.43 | 44.26 ± 3.34 |
Lyophilized nanoliposomes without sucrose | 151.4 ± 10.76 | 0.384 | - | - |
Days | Mean diameter (nm) | Polydispersity index | EEMCFAs (%) | EEvit C (%) | ||||
---|---|---|---|---|---|---|---|---|
FPL | FDL | FPL | FDL | FPL | FDL | FPL | FDL | |
1 | 99.5 ± 2.08 | 110.4 ± 7.28 | 0.232 | 0.257 | 46.83 ± 2.98 | 44.26 ± 3.34 | 65.32 ± 3.42 | 62.25 ± 3.43 |
4 | 98.8 ± 4.68 | 112.8 ± 6.62 | 0.267 | 0.273 | 45.54 ± 3.14 | 43.32 ± 5.24 | 64.82 ± 2.68 | 63.72 ± 3.57 |
7 | 108 ± 3.87 | 118 ± 5.23 | 0.343 | 0.316 | 42.63 ± 2.55 | 42.27 ± 4.23 | 63.77 ± 2.42 | 61.25 ± 4.42 |
10 | 112 ± 2.38 | 125 ± 4.25 | 0.310 | 0.328 | 44.01 ± 3.25 | 41.01 ± 4.55 | 61.57 ± 1.88 | 59.27 ± 3.82 |
13 | 118 ± 4.98 | 130 ± 4.36 | 0.384 | 0.354 | 40.75 ± 2.28 | 38.24 ± 5.16 | 62.76 ± 1.75 | 57.24 ± 4.36 |
16 | 126 ± 3.96 | 138 ± 5.22 | 0.331 | 0.315 | 40.91 ± 3.68 | 37.15 ± 6.53 | 61.43 ± 2.04 | 55.32 ± 3.75 |
30 | 129 ± 5.17 | 140 ± 4.13 | 0.375 | 0.363 | 42.75 ± 2.87 | 37.52 ± 5.32 | 60.23 ± 2.68 | 55.15 ± 4.59 |
45 | 130 ± 4.21 | 143 ± 5.15 | 0.325 | 0.343 | 42.06 ± 1.86 | 36.21 ± 3.15 | 59.75 ± 4.52 | 53.25 ± 4.23 |
60 | 132.3 ± 5.26 | 150.2 ± 4.26 | 0.370 | 0.389 | 40.39 ± 3.17 | 38.27 ± 4.65 | 58.98 ± 3.08 | 52.98 ± 5.05 |
Acknowledgments
Conflicts of Interest
References
- Jones, P.M.; Butt, Y.M.; Bennett, M.J. Effects of odd-numbered medium-chain fatty acids on the accumulation of long-chain 3-hydroxy-fatty acids in long-chain l-3-hydroxyacyl CoA dehydrogenase and mitochondrial trifunctional protein deficient skin fibroblasts. Mol. Genet. Metab 2004, 2, 96–99. [Google Scholar]
- Bach, A.C.; Babayan, V.K. Medium-chain triglycerides: An update. Am. J. Clin. Nutr 1982, 5, 950–962. [Google Scholar]
- Hirazawa, N.; Oshima, S.; Hara, T.; Mitsuboshi, T.; Hata, K. Antiparasitic effect of medium-chain fatty acids against the ciliate Cryptocaryon irritans infestation in the red sea bream Pagrus major. Aquaculture 2001, 198, 219–228. [Google Scholar]
- Wong, P.Y.Y.; Nakamura, S.; Kitts, D.D. Functional and biological activities of casein glycomacropeptide as influenced by lipophilization with medium and long chain fatty acid. Food Chem 2006, 2, 310–317. [Google Scholar]
- Decuypere, J.A.; Dierick, N.A. The combined use of triacylglycerols containing medium-chain fatty acids and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in piglets: Concept, possibilities and limitations. An overview. Nutr. Res. Rev 2003, 2, 193–210. [Google Scholar]
- Liu, N.; Park, H.J. Factors effect on the loading efficiency of Vitamin C loaded chitosan-coated nanoliposomes. Colloids Surf. B 2010, 1, 16–19. [Google Scholar]
- Tejero, E.; Perichart, O.; Pfeffer, F.; Casanueva, E.; Vadillo-Orteg, F. Collagen synthesis during pregnancy, vitamin C availability, and risk of premature rupture of fetal membranes. Int. J. Gynecol. Obstet 2003, 1, 29–34. [Google Scholar]
- Wintergerst, E.S.; Maggini, S.; Hornig, D.H. Immune-enhancing role of vitamin C and zinc and effect on clinical conditions. Ann. Nutr. Metab 2006, 2, 85–94. [Google Scholar]
- Lin, J.; Selim, M.A.; Shea, C.R.; Grichnik, J.M.; Omar, M.M.; Monteiro-Riviere, N.A.; Pinnell, S.R. UV photoprotection by combination topical antioxidants vitamin C and vitamin E. J. Am. Acad. Dermatol 2003, 6, 866–874. [Google Scholar]
- Zhang, L.; Lerner, S.; Rustrum, W.V.; Hofmann, G.A. Electroporation-mediated topical delivery of vitamin C for cosmetic applications. Bioelectrochem. Bioenerg 1999, 2, 453–461. [Google Scholar]
- Kirjavainen, M.; Urtti, A.; Jaaskelainen, I.; Suhonen, T.M.; Paronen, P.; Valjakka-Koskela, R.; Kiesvaara, J.; Monkkonen, J. Interaction of liposomes with human skin in vitro-the influence of lipid composition and structure. Biochim. Biophys. Acta 1996, 3, 179–189. [Google Scholar]
- Ma, Q.; Kuang, Y.; Hao, X. Preparation and characterization of tea polyphenols and vitamin E loaded nanoscale complex liposome. J. Nanosci. Nanotechnol 2009, 2, 1379–1383. [Google Scholar]
- Lee, J.S.; Chung, D.; Lee, H.G. Preparation and characterization of calcium pectinate gel beads entrapping catechin-loaded liposomes. Int. J. Biol. Macromol 2008, 2, 178–184. [Google Scholar]
- Kaiser, J.M.; Imai, H.; Haakenson, J.K.; Brucklacher, R.M.; Fox, T.E.; Shanmugavelandy, S.S.; Unrath, K.A.; Pedersen, M.M.; Dai, P.; Freeman, W.M.; et al. Nanoliposomal minocycline for ocular drug delivery. Nanomedicine 2013, 9, 130–140. [Google Scholar]
- Acosta, E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr. Opin. Colloid Interface Sci 2009, 1, 3–15. [Google Scholar]
- Huang, Q.R.; Yu, H.L.; Ru, Q.M. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci 2010, 1, 50–57. [Google Scholar]
- Xia, S.; Xu, S. Ferrous sulfate liposomes: Preparation, stability and application in fluid milk. Food Res. Int 2005, 3, 289–296. [Google Scholar]
- Marsanasco, M.; Marquez, A.L.; Wagner, J.R.; del Valle Alonso, S.; Chiaramoni, N.S. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res. Int 2011, 9, 3039–3046. [Google Scholar]
- Sharma, A.; Sharma, U.S. Liposomes in drug delivery: Progress and limitations. Int. J. Pharm 1997, 2, 123–140. [Google Scholar]
- Alex, R.; Bodmeier, R. Encapsulation of water-soluble drugs by a modified solvent evaporation method. I. Effect of process and formulation variables on drug entrapment. J. Microencapsul 1990, 3, 347–355. [Google Scholar]
- Cohen, S.; Yoshioka, T.; Lucarelli, M.; Hwang, L.H.; Langer, R. Controlled delivery systems for proteins based on poly (lactic/glycolic acid) microspheres. Pharm. Res 1991, 6, 713–720. [Google Scholar]
- Liu, W.; Liu, J.; Xie, M.; Liu, C.; Liu, W.; Wan, J. Characterization and high-pressure microfluidization-induced activation of polyphenoloxidase from Chinese Pear (Pyrus pyrifolia Nakai). J. Agric. Food Chem 2009, 12, 5376–5380. [Google Scholar]
- Takahashi, M.; Inafuku, K.; Miyagi, T.; Oku, H.; Wada, K.; Imura, T.; Kitamoto, D. Efficient preparation of liposomes encapsulating food materials using lecithins by a mechanochemical method. J. Oleo Sci 2007, 1, 35–42. [Google Scholar]
- Barnadas-Rodriguez, R.; Sabes, M. Factors involved in the production of liposomes with a high-pressure homogenizer. Int. J. Pharm 2001, 213, 175–186. [Google Scholar]
- Zheng, S.; Alkan-Onyuksel, H.; Beissinger, R.L.; Wasan, D.T. Liposome microencapsulations without using any organic solvent. J. Dispers. Sci. Technol 1999, 4, 1189–1203. [Google Scholar]
- Jafari, S.M.; He, Y.; Bhandar, B. Nano-emulsion production by sonication and microfluidization—A comparison. Int. J. Food Prop 2006, 3, 475–485. [Google Scholar]
- Cui, J.X.; Li, C.L.; Deng, Y.J.; Wang, Y.; Wang, W. Freeze-drying of liposomes using tertiary butyl alcohol/water cosolvent systems. Int. J. Pharm 2006, 312, 131–136. [Google Scholar]
- Tang, X.; Pikal, M. Design of freeze-drying processes for pharmaceuticals: Practical advice. Pharm. Res 2003, 2, 191–199. [Google Scholar]
- Komatsu, H.; Saito, H.; Okada, S.; Tanaka, M.; Egashira, M.; Handa, T. Effects of the acyl chain composition of phosphatidylcholines on the stability of freeze-dried small liposomes in the presence of maltose. Chem. Phys. Lipids 2001, 113, 29–39. [Google Scholar]
- Alexopoulou, E.; Georgopoulos, A.; Kagkadis, K.A.; Demetzos, C. Preparation and characterization of lyophilized liposomes with incorporated quercetin. J. Liposome Res 2006, 1, 17–25. [Google Scholar]
- Liu, C.M.; Yang, S.B.; Liu, W.; Wang, R.L.; Wan, J.; Liu, W. Preparation and characterization of medium-chain fatty acid liposomes by lyophilization. J. Liposome Res 2010, 3, 183–190. [Google Scholar]
- Bharali, D.J.; Sahoo, S.K.; Mozumdar, S.; Maitra, A. Cross-linked polyvinylpyrrolidone nanoparticles: A potential carrier for hydrophilic drugs. J. Colloid Interface Sci 2003, 2, 415–423. [Google Scholar]
- Angelini, G.; Boncompagni, S.; de Maria, P.; de Nardi, M.; Fontana, A.; Gasbarri, C.; Menna, E. Layer-by-layer deposition of shortened nanotubes or polyethylene glycol-derivatized nanotubes on liposomes: A tool for increasing liposome stability. Carbon 2007, 45, 2479–2485. [Google Scholar]
- Liu, W.; Liu, W.L.; Liu, C.M.; Liu, J.H.; Yang, S.B.; Zheng, H.J.; Lei, H.W.; Ruan, R.; Li, T.; Tu, Z.C.; et al. Medium-chain fatty acid nanoliposomes for easy energy supply. Nutrition 2011, 2, 700–706. [Google Scholar]
- Hombreiro Perez, M.; Zinutti, C.; Lamprecht, A.; Ubrich, N.; Astier, A.; Hoffman, M.; Bodmeier, R.; Maincent, P. The preparation and evaluation of poly ([epsilon]-caprolactone) microparticles containing both a lipophilic and a hydrophilic drug. J. Control. Release 2000, 3, 429–438. [Google Scholar]
- Wang, T.; Deng, Y.J.; Geng, Y.H.; Gao, Z.; Zou, J.; Wang, Z. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochim. Biophys. Acta 2006, 2, 222–231. [Google Scholar]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res 1986, 1, 114–120. [Google Scholar]
- Samman, S.; Chow, J.W.Y.; Foster, M.J.; Ahmad, Z.I.; Phuyal, J.L.; Petocz, P. Fatty acid composition of edible oils derived from certified organic and conventional agricultural methods. Food Chem 2008, 3, 670–674. [Google Scholar]
- Hernandez, Y.; Lobo, M.G.; Gonzalez, M. Determination of vitamin C in tropical fruits: A comparative evaluation of methods. Food Chem 2006, 4, 654–664. [Google Scholar]
- Zhao, L.; Xiong, H.; Peng, H.; Wang, Q.; Han, D.; Bai, C.; Liu, Y.; Shi, S.; Deng, B. PEG-coated lyophilized proliposomes: Preparation, characterizations and in vitro release evaluation of vitamin E. Eur. Food Res. Technol 2011, 4, 647–654. [Google Scholar]
- Alonso-Romanowski, S.; Chiaramoni, N.S.; Lioy, V.S.; Gargini, R.A.; Viera, L.I.; Taira, M.C. Characterization of diacetylenic liposomes as carriers for oral vaccines. Chem. Phys. Lipids 2003, 122, 191–203. [Google Scholar]
- Hatziantoniou, S.; Nezis, I.P.; Margaritis, L.H.; Demetzos, C. Visualisation of liposomes prepared from skin and stratum corneum lipids by transmission electron microscopy. Micron 2007, 8, 777–781. [Google Scholar]
- Christensen, D.; Foged, C.; Rosenkrands, I.; Nielsen, H.M.; Andersen, P.; Agger, E. Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochim. Biophys. Acta 2007, 9, 2120–2129. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, S.; Liu, C.; Liu, W.; Yu, H.; Zheng, H.; Zhou, W.; Hu, Y. Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization. Int. J. Mol. Sci. 2013, 14, 19763-19773. https://doi.org/10.3390/ijms141019763
Yang S, Liu C, Liu W, Yu H, Zheng H, Zhou W, Hu Y. Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization. International Journal of Molecular Sciences. 2013; 14(10):19763-19773. https://doi.org/10.3390/ijms141019763
Chicago/Turabian StyleYang, Shuibing, Chengmei Liu, Wei Liu, Haixia Yu, Huijuan Zheng, Wei Zhou, and Yaqin Hu. 2013. "Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization" International Journal of Molecular Sciences 14, no. 10: 19763-19773. https://doi.org/10.3390/ijms141019763
APA StyleYang, S., Liu, C., Liu, W., Yu, H., Zheng, H., Zhou, W., & Hu, Y. (2013). Preparation and Characterization of Nanoliposomes Entrapping Medium-Chain Fatty Acids and Vitamin C by Lyophilization. International Journal of Molecular Sciences, 14(10), 19763-19773. https://doi.org/10.3390/ijms141019763