Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization
Abstract
:1. Introduction
2. Solid Lipid Nanoparticles of Calix[n]arenes
2.1. SLNs of Para-Acylcalix[4]arenes
2.2. Attempts to Produce SLNs of Para-Acylcalix[6]arenes and Para-Acylcalix[8]arenes
2.3. SLNs of Para-Acylcalix[9]arenes
2.4. SLNs of Other Amphiphilic Calix[4]arene Derivatives
2.4.1. SLNs of Phosphorylated-Calix[4]arenes, 14–15
2.4.2. SLNs of Para-Amino-Substituted-Calix[4]arenes, 17
2.4.3. SLNs of Para-Carboxy-Substituted-Calix[4]arenes, 18
2.4.4. SLNs of an Apparently Non-Polar-Calix[4]arenes Derivative, 19
3. Solid Lipid Nanoparticles of Calix-Resorcinarenes
3.1. SLNs of Resorcinol-Dodecanal Cyclotetramer, 20
3.2. SLNs of Modified Calix-Resorcinarenes
3.2.2. SLNs of Resocinarene Bis-Crown Ethers (CNBC5), 24
4. Conclusions
Lipid | Formula | Melting point |
---|---|---|
Triacylglycerols (Ester derive from glycerol and three fatty acids) | 55 °C | |
66–68 °C | ||
56–57 °C | ||
Acylglycerol mixtures (Ester of the alcohol glycerol in which a hydroxyl group is replaced by a fatty acid) | 58–59 °C | |
83 °C | ||
56 °C | ||
Waxes (Ester of a long chain alcohol and a fatty acid) | 62–64 °C | |
54 °C | ||
Hard Fats (Saturated fatty acid) | 32 °C | |
63 °C | ||
70 °C | ||
80 °C |
Compound | 2a | 2b | 2c | 2d | 3d | 4d |
---|---|---|---|---|---|---|
Average hydrodynamic diameter (nm) | 340 | 353 | 350 | 350 | 325 | 260 |
Concentration mg/L of SLNs | 2a | 2b | 2c | 2d | 3d | 4d |
---|---|---|---|---|---|---|
50 | 0.0 | 0.0 | 0.5 | 0.0 | 0.0 | 1.8 |
75 | 0.0 | 3.2 | 0.0 | 0.0 | 0.0 | 0.0 |
100 | 0.0 | 0.5 | 0.0 | 0.0 | 0.25 | 0.0 |
125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.62 | 0.0 |
150 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Acknowledgments
Conflicts of Interests
References
- Wissing, S.A.; Kayser, O.; Muller, R.H. Solid lipid nanoparticles for parenteral drug delivery. Adv. Drug Deliv. Rev 2004, 56, 1257–1272. [Google Scholar]
- Luks, S.; Muller, R. Medication vehicles made of solid lipid particles EP0605497 A1, 16 September 1992.
- Gasco, M.R. Method for producing solid lipid microspheres having a narrow size distribution U.S. Patent US5250236 A, 5 October 1993.
- Freitas, C.; Muller, R.H. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticles. Int. J. Pharm 1998, 168, 221–229. [Google Scholar]
- Muller, R.H.; Mehnert, W.; Lucks, J.S.; Schwarz, C.; Zur Muhlen, A.; Meyhers, H.; Freitas, C.; Ruhl, D. Solid Lipid Nanoparticles (SLN)-An alternative colloidal carrier system for controlled drug delivery. Eur. J. Pharm. Biopharm 1995, 41, 62–65. [Google Scholar]
- Goppert, T.M.; Muller, R.H. Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur. J. Pharm. Biopharm 2005, 60, 361–372. [Google Scholar]
- Freitas, C.; Muller, R.H. Stability determination of solid lipid nanoparticles (SLN TM) in aqueous dispersion after addition of electrolyte. J. Microencapsul 1999, 16, 59–71. [Google Scholar]
- Scholer, N.; Zimmermann, E.; Katzfey, U.; Hahn, H.; Muller, R.H.; Liesenfeld, O. Effect of solid lipid nanoparticles (SLN) on cytokine production and the viability of murine peritoneal macrophages. J. Microencapsul 2000, 17, 639–650. [Google Scholar]
- Wang, Y.; Wu, W. In situ evading of phagocytic uptake of stealth solid lipid nanoparticles by mouse peritoneal macrophages. Drug Deliv 2006, 13, 189–192. [Google Scholar]
- Wissing, S.A.; Muller, R.H. Cosmetic applications for solid lipid nanoparticles. Int. J. Pharm 2003, 254, 65–68. [Google Scholar]
- Westesen, K.; Siekmann, B.; Koch, M.H. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. J. Int. J. Pharm 1993, 93, 189–199. [Google Scholar]
- Siekmann, B.; Westesen, K. Investigations on solid lipid nanoparticles prepared by precipitation in O/W emulsions. Eur. J. Pharm. Biopharm 1996, 42, 104–109. [Google Scholar]
- Reithmeier, H.; Hermann, J.; Gopferich, A. Development and characterization of lipid microparticles as a drug carrier for somatostatin. Int. J. Pharm 2001, 218, 133–143. [Google Scholar]
- Garcia-Fuentes, M.; Torres, D.; Alonso, M.J. Design of lipid nanoparticles for oral delivery of hydrophilic macromolecules. Colloids Surf. B 2003, 27, 159–168. [Google Scholar]
- Schubert, M.A.; Muller-Goymann, C.C. Solvent injection as a new approach for manufacturing lipid nanoparticles—Evaluation of the method and process parameters. Eur. J. Pharm. Biopharm 2003, 55, 125–131. [Google Scholar]
- Hu, F.Q.; Yuan, H.; Zhang, H.H.; Fang, M. Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization. Int. J. Pharm 2002, 239, 121–128. [Google Scholar]
- Hu, F.Q.; Hong, Y.; Yuan, H. Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm 2004, 273, 29–35. [Google Scholar]
- Trotta, M.; Debernardi, F.; Caputo, O. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm 2003, 257, 153–160. [Google Scholar]
- Souta, E.B.; Muller, R.H. Application of lipid nanoparticles (SLN and NLC) in food industry. J. Food Technol 2006, 4, 90–95. [Google Scholar]
- Mehnert, W.; Mader, K. Solid lipid nanoparticles: Production, characterization and applications. Adv. Drug Deliv. Rev 2001, 47, 165–196. [Google Scholar]
- Uner, M.; Yener, G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int. J. Nanomed 2007, 2, 289–300. [Google Scholar]
- Zur Muhlen, A.; Schwarz, C.; Mehnart, W. Solid lipid nanoparticles (SLN) for controlled drug delivery—Drug release and release mechanism. Eur. J. Pharm. Biopharm 1998, 45, 149–155. [Google Scholar]
- Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Ind. J. Pharm. Sci 2009, 71, 349–358. [Google Scholar]
- Kuo, Y.C.; Chen, H.H. Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles. Int. J. Pharm 2009, 365, 206–213. [Google Scholar]
- Jenning, V.; Thunemann, A.F.; Gohla, S.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm 2000, 199, 167–177. [Google Scholar]
- Pandey, R.; Sharma, S.; Khuller, G.K. Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis 2005, 85, 415–420. [Google Scholar]
- Jenning, V.; Lippacher, A.; Gohla, S.H. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J. Microencapsul 2002, 19, 1–10. [Google Scholar]
- Souto, E.B.; Doktorovora, S. Solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. Method Enzymol 2009, 464, 105–129. [Google Scholar]
- Bunjes, H.; Unruh, T. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Deliv. Rev 2007, 59, 379–402. [Google Scholar]
- Johnsson, M.; Lam, Y.; Barauskas, J.; Tiberg, F. Aqueous phase behavior and dispersed nanoparticles of diglycerol monooleate/glycerol dioleate mixtures. Langmuir 2005, 21, 5159–5165. [Google Scholar]
- Metin, S.; Hartel, R.W. Baily’s Industrial Oil and Fat Products; Shahidi, F., Ed.; John Wiley & Sons: Newfoundland, Canada, 2005; Volume 1, p. 45. [Google Scholar]
- Das, S.; Chaudhury, A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011, 12, 62–76. [Google Scholar]
- Radomska-Soukharev, A. Stability of lipid excipients in solid lipid nanoparticles. Adv. Drug Deliv. Rev 2007, 59, 411–418. [Google Scholar]
- Sanjula, B.; Shah, F.M.; Javed, A.; Alka, A. Effect of poloxamer 188 on lymphatic uptake of carvedilol-loaded solid lipid nanoparticles for bioavailability enhancement. J. Drug Target 2009, 17, 249–256. [Google Scholar]
- Estella-Hermoso de Mendoza, A.; Campanero, M.A.; Mollinedo, F.; Blanco-Prieto, M.J. Lipid nanomedicines for anticancer drug therapy. J. Biomed. Nanotechnol 2009, 5, 323–243. [Google Scholar]
- Bunjes, H.; Steiniger, F.; Richter, W. Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir 2007, 23, 4005–4011. [Google Scholar]
- Estella-Hermoso de Mendoza, A.; Rayo, M.; Mollinedo, F.; Blanco-Prieto, M.J. Lipid nanoparticles for alkyl lysophospholipid edelfosine encapsulation: Development and in vitro characterization. Eur. J. Pharm. Biopharm 2008, 68, 207–213. [Google Scholar]
- Joshi, M.D.; Muller, R.H. Lipid nanoparticles for parenteral delivery of actives. Eur. J. Pharm. Biopharm 2009, 71, 161–172. [Google Scholar]
- Acharya, A.; Samanta, K.; Rao, C.P. Conjugates of calixarenes emerging as molecular entities of nanoscience. Coord. Chem. Rev 2012, 256, 2096–2125. [Google Scholar]
- Vyas, A.; Saraf, S.; Saraf, S. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocycl. Chem 2008, 62, 23–42. [Google Scholar]
- Roux, M.; Perly, B.; Djedaïni-Pilard, F. Self-assemblies of amphiphilic cyclodextrins. Eur. Biophys. J 2007, 36, 861–867. [Google Scholar]
- Parrot-Lopez, H.; Perret, F.; Bertino-Ghera, B. Amphiphilic cyclodextrins and their applications. Preparation of nanoparticles based on amphiphilic cyclodextrins for biomedical applications. Ann. Pharm. Fr 2010, 68, 12–26. [Google Scholar]
- Shahgaldian, P.; Coleman, A.W.; Kalchenko, V.I. Synthesis and properties of novel amphiphilic calix-[4]-arene derivatives. Tetrahedron. Lett 2001, 42, 577–579. [Google Scholar]
- Coleman, A.W.; Goreloff, P.J.B. Calixarene based dispersible colloidal systems in the form of nanoparticles U.S. Patent US7943175 B2, 17 May 2011.
- Shahgaldian, P.; Cesario, M.; Goreloff, P.; Coleman, A.W. Para-acyl calix[4]arenes: Amphiphilic self-assembly from the molecular to the mesoscopic level. Chem. Commun 2002. [Google Scholar] [CrossRef]
- Jenning, V.; Mader, K.; Gohla, S.H. Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: A 1H-NMR study. Int. J. Pharm 2000, 205, 15–21. [Google Scholar]
- Shahgaldian, P.; Quattrocchi, L.; Gualbert, J.; Coleman, A.W.; Goreloff, P. AFM imaging of calixarene based solid lipid nanoparticles in gel matrices. Eur. J. Pharm. Biopharm 2003, 55, 107–113. [Google Scholar]
- Shahgaldian, P.; Da Silva, E.; Coleman, A.W.; Rather, B.; Zaworotko, M.J. Para-acyl-calix-arene based solid lipid nanoparticles (SLNs): A detailed study of preparation and stability parameters. Int. J. Pharm 2003, 253, 23–38. [Google Scholar]
- Dubes, A.; Udachin, K.A.; Shahgaldian, P.; Lazar, A.N.; Coleman, A.W.; Ripmeester, J.A. Guest-induced chain folding in amphiphilic calixarene structures. New J. Chem 2005, 29, 1141–1146. [Google Scholar]
- Quintanar-Guerrero, D.; Fessi, H.; Allemann, E.; Doelker, E. Influence of stabilizing agents and preparative variables on the formation of poly(d,l-lactic acid) nanoparticles by an emulsification-diffusion technique. Int. J. Pharm 1996, 143, 133–141. [Google Scholar]
- Scholer, N.; Olbrich, C.; Tabatt, K.; Muller, R.H.; Hahn, H.; Liesenfeld, O. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int. J. Pharm 2001, 221, 57–67. [Google Scholar]
- Skiba, M.; Wouessidjewe, D.; Coleman, A.W.; Fessi, H.; Devissaguet, J.P.; Duchene, D.; Puisieux, F. Préparation et application de nouveaux systèmes colloïdaux nanoparticulaires dispersibles à base de cyclodextrine sous forme de nanosphères. WO 9325195, 23 December 1993. [Google Scholar]
- Zimmermann, E.; Muller, R.H. Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN™) dispersions in artificial gastrointestinal media. Eur. J. Pharm. Biopharm 2001, 52, 203–210. [Google Scholar]
- Montasser, I.; Briancon, S.; Lieto, J.; Fessi, H. Obtaining methods and formation mechanisms of polymeric nanoparticles. J. Pharm. Belg 2000, 55, 155–167. [Google Scholar]
- Zimmermann, E.; Muller, R.H.; Mader, K. Influence of different parameters on reconstitution of lyophilized. Int. J. Pharm 2000, 196, 211–213. [Google Scholar]
- Shahgalian, P.; Gualbert, J.; Aïssa, K.; Coleman, A.W. A study of the freeze-drying conditions of calixarene based solid lipid nanoparticles. Eur. J. Pharm. Biopharm 2003, 55, 181–184. [Google Scholar]
- Gualbert, J.; Shahgaldian, P.; Coleman, A.W. Interactions of amphiphilic calix[4]arene-based solid lipid nanoparticles with bovine serum albumin. Int. J. Pharm 2003, 257, 69–73. [Google Scholar]
- Da Silva, E.; Coleman, A.W. Synthesis and complexation properties towards amino acids of mono-substituted p-sulphonato-calix-[n]-arenes. Tetrahedron 2003, 59, 7357–7364. [Google Scholar]
- Moselhy, J.; Wu, X.Y.; Nicholov, R.; Kodaria, K. In vitro studies of the interaction of poly(NIPAm/MAA) nanoparticles with proteins and cells. J. Biomater. Sci. Polym. Ed 2000, 11, 123–147. [Google Scholar]
- Shahgaldian, P.; Da Silva, E.; Coleman, A.W. A first approach to the study of calixarene solid Lipid Nanoparticle (SLN) toxicity. J. Incl. Phenom. Macrocycl. Chem 2003, 46, 175–177. [Google Scholar]
- Albers, E.; Muller, B.W. Complexation of steroid hormones with cyclodextrin derivatives: Substituent effects of the guest molecule on solubility and stability in aqueous solution. J. Pharm. Sci 1992, 81, 756–761. [Google Scholar]
- Fauvelle, F.; Debouzy, J.C.; Crouzy, S.; Goschl, M.; Chapron, Y. Mechanism of α-cyclodextrin-induced hemolysis. 1. The two-step extraction of phosphatidylinositol from the membrane. J. Pharm. Sci 1997, 86, 935–943. [Google Scholar]
- Debouzy, J.C.; Fauvelle, F.; Crouzy, S.; Chapron, Y.; Goschl, M.; Gadelle, A. Mechanism of α-cyclodextrin induced hemolysis. 2. A study of the factors controlling the association with serine-, ethanolamine-, and choline-phospholipids. J. Pharm. Sci 1998, 87, 59–66. [Google Scholar]
- Moudrakovski, I.L.; Nossov, A.; Lang, S.; Breeze, S.R.; Ratcliffe, C.I.; Simard, B.; Santyr, G.; Ripmeester, J.A. Continuous flow NMR with hyperpolarized xenon for the characterization of materials and processes. Chem. Mater 2000, 12, 1181–1183. [Google Scholar]
- Terskikh, V.V.; Moudrakovski, I.L.; Breeze, S.R.; Lang, S.; Ratcliffe, C.I.; Ripmeester, J.A.; Sayari, A. A general correlation for the 129Xe NMR chemical shift-pore size relationship in porous silica-based materials. Langmuir 2002, 18, 5653–5656. [Google Scholar]
- Nossov, A.V.; Soldatov, D.V.; Ripmeester, J.A. In situ switching of sorbent functionality as monitored with hyperpolarized 129Xe NMR spectroscopy. J. Am. Chem. Soc 2001, 123, 3563–3568. [Google Scholar]
- Enright, G.D.; Udachin, K.A.; Moudrakovski, I.L.; Ripmeester, J.A. Thermally programmable gas storage and release in single crystals of an organic van der waals host. J. Am. Chem. Soc 2003, 125, 9896–9897. [Google Scholar]
- Dubes, A.; Moudrakovski, I.L.; Shahgaldian, P.; Coleman, A.W.; Ratcliffe, C.I.; Ripmeester, J.A. Distribution and modification of sorption sites in amphiphilic calixarene-based solid lipid nanoparticles from hyperpolarized 129Xe NMR spectroscopy. J. Am. Chem. Soc 2004, 126, 6236–6237. [Google Scholar]
- Brouwer, E.B.; Enright, G.D.; Ripmeester, J.A. Solid-state NMR and diffraction studies of p-tert-butylcalix[4]arene·nitrobenzene·xe non. Chem. Commun 1997. [Google Scholar] [CrossRef]
- Coleman, A.W.; Jebors, S.; Shahgaldian, P.; Ananchenko, G.S.; Ripmeester, J.A. Para-Acylcalix[n]arenes: From molecular to macroscopic assemblies. Chem. Commun 2008. [Google Scholar] [CrossRef]
- Pojarova, M.; Ananchenko, G.S.; Udachin, K.A.; Daroszewska, M.; Perret, F.; Coleman, A.W.; Ripmeester, J.A. Solid lipid nanoparticles of p-hexanoyl calix[4]arene as a controlling agent in the photochemistry of a sunscreen blocker. Chem. Mater 2006, 18, 5817–5819. [Google Scholar]
- Ananchenko, G.S.; Udachin, K.A.; Dubes, A.; Ripmeester, J.A.; Perrier, T.; Coleman, A.W. Guest exchange in single crystals of van der waals nanocapsules. Angew. Chem. Int. Ed 2006, 45, 1585–1588. [Google Scholar]
- Ananchenko, G.S.; Udachin, K.A.; Pojarova, M.; Dubes, A.; Ripmeester, J.A.; Jebors, S.; Coleman, A.W. Van der waals nanocapsular complexes of amphiphilic calixarenes. Cryst. Growth Des 2006, 6, 2141–2148. [Google Scholar]
- Ananchenko, G.S.; Udachin, K.A.; Ripmeester, J.A.; Perrier, T.; Coleman, A.W. Phototransformation of Stilbene in van der Waals Nanocapsules. Chem. Eur. J 2006, 12, 2441–2447. [Google Scholar]
- Polovyanenko, D.N.; Bagryanskaya, E.G.; Schnegg, A.; Möbius, K.; Coleman, A.W.; Ananchenko, G.S.; Udachin, K.A.; Ripmeester, J.A. Inclusion of 4-methoxy-2,2,6,6-tetramethylpiperidine-N-oxyl in a calixarene nanocapsule in the solid state. Phys. Chem. Chem. Phys 2008, 10, 5299–5307. [Google Scholar]
- Jebors, S.; Ananchenko, G.S.; Coleman, A.W.; Ripmeester, J.A. Synthesis and self-assembly properties of para-acyl-calix[8]arenes. Tetrahedron Lett 2007, 48, 5503–5506. [Google Scholar]
- Jebors, S.; Lesniewska, B.; Shkurenko, O.; Suwinska, K.; Coleman, A.W. Para-acylcalix[6]arenes: Their synthesis, per-O-functionalisation, solid-state structures and interfacial assembly properties. J. Incl. Phenom. Macrocycl. Chem 2010, 68, 207–217. [Google Scholar]
- Jebors, S.; Fache, F.; Balme, S.; Devoge, F.; Monachino, M.; Cecillon, S.; Coleman, A.W. Designer amphiphiles based on para-acyl-calix[8]arenes. Org. Biomol. Chem 2008, 6, 319–329. [Google Scholar]
- Jebors, S.; Leydier, A.; Wu, Q.; Bertino Ghera, B.; Malbouyre, M.; Coleman, A.W. Solid lipid nanoparticles (SLNs) derived from para-acyl-calix[9]-arene: Preparation and stability. J. Microencapsul 2010, 27, 561–571. [Google Scholar]
- Bertino Ghera, B.; Wu, Q.; Leydier, A.; Coleman, A.W.J. Para-acyl-calix[9]arenes: Synthesis and interfacial assembly. J. Incl. Phenom. Macrocycl. Chem 2009, 64, 367–371. [Google Scholar]
- Bouoit-Montesinos, S.; Vocanson, F.; Bassus, J.; Lamartine, R. Synthesis of new calix[9]arenes. Synth. Commun 2000, 30, 911–915. [Google Scholar]
- Franks, F. Freeze-drying of bioproducts: Putting principles into practice. Eur. J. Pharm. Biopharm 1998, 45, 221–229. [Google Scholar]
- Varshosaz, J.; Eskandari, S.; Tabbakhian, M. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr. Polym 2012, 88, 1157–1163. [Google Scholar]
- Zhang, L.; Liu, L.; Qian, Y.; Chen, Y. The effects of cryoprotectants on the freeze-drying of ibuprofen-loaded solid lipid microparticles (SLM). Eur. J. Pharm. Biopharm 2008, 69, 750–759. [Google Scholar]
- Larsen, M.; Jorgensen, M. Selective halogen-lithium exchange reaction of bromine-substituted 25, 26,27,28-tetrapropoxycalix[4]arene. J. Org. Chem 1996, 61, 6651–6655. [Google Scholar]
- Houel, E.; Lazar, A.; Da Silva, E.; Coleman, A.W.; Solovyov, A.; Cherenok, S.; Kalchenko, V.I. Interfacial interactions of cations with amphiphilic dihydroxyphosphonyl-calix-[4]-arene mesosystems. Langmuir 2002, 18, 1374–1379. [Google Scholar]
- Ravoo, B.J.; Darcy, R. Cyclodextrin bilayer vesicles. Angew. Chem. Int. Ed 2000, 39, 4324–4326. [Google Scholar]
- Tanaka, Y.; Miyachi, M.; Kobuke, Y. Selective vesicle formation from calixarenes by self-assembly. Angew. Chem. Int. Ed 1999, 38, 504–506. [Google Scholar]
- Dubes, A.; Parrot-Lopez, H.; Shahgaldian, P.; Coleman, A.W. Interfacial interactions between amphiphilic cyclodextrins and physiologically relevant cations. J. Colloid Interf. Sci 2003, 259, 103–111. [Google Scholar]
- Mogck, O.; Parzuchowski, P.; Nissinen, M.; Bohmer, V.; Rokicki, G.; Rissanen, K. Covalently linked multi-calixarenes. Tetrahedron 1989, 54, 10053–10068. [Google Scholar]
- Dudic, M.; Colombo, A.; Sansone, F.; Casnati, A.; Donofrio, G.; Ungaro, R. A general synthesis of water soluble upper rim calix[n]arene guanidinium derivatives which bind to plasmid DNA. Tetrahedron 2004, 60, 11613–11618. [Google Scholar]
- Shahgaldian, P.; Sciotti, M.A.; Pieles, U. Amino-substituted amphiphilic calixarenes: Self-assembly and interactions with DNA. Langmuir 2008, 24, 8522–8526. [Google Scholar]
- Fuller, J.E.; Zugates, G.T.; Ferreira, L.S.; Ow, H.S.; Nguyen, N.N.; Wiesner, U.B.; Langer, R.S. Intracellular delivery of core-shell fluorescent silica nanoparticles. Biomaterials 2008, 29, 1526–1532. [Google Scholar]
- Nafee, N.; Taetz, S.; Schneider, M.; Schaefer, U.F.; Leher, C.M. Chitosan-coated PLGA nanoparticles for DNA/RNA delivery: Effect of the formulation parameters on complexation and transfection of antisense oligonucleotides. Nanomedecine 2007, 3, 173–183. [Google Scholar]
- Sansone, F.; Dudic, M.; Donofrio, G.; Rivetti, C.; Baldini, L.; Casnati, A.; Cellai, S.; Ungaro, R. DNA condensation and cell transfection properties of guanidinium calixarenes: Dependence on macrocycle lipophilicity, size, and conformation. J. Am. Chem. Soc 2006, 128, 14528–14536. [Google Scholar]
- Bagnacani, V.; Sansone, F.; Donofrio, G.; Baldini, L.; Casnati, A.; Ungaro, R. Macrocyclic nonviral vectors: High cell transfection efficiency and low toxicity in a lower rim guanidinium calix[4]arene. Org. Lett 2008, 10, 3953–3956. [Google Scholar]
- Mintzer, M.A.; Simanek, E.E. Nonviral vectors for gene delivery. Chem. Rev 2009, 109, 259–302. [Google Scholar]
- Nault, L.; Cumbo, A.; Pretôt, R.F.; Sciotti, M.A.; Shahgaldian, P. Cell transfection using layer-by-layer (LbL) coated calixarene-based solid lipid nanoparticles (SLNs). Chem. Commun 2010, 46, 5581–5583. [Google Scholar]
- Ridolfi, D.M.; Marcato, P.D.; Justo, G.Z.; Cordi, L.; Machado, D.; Duran, N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf. B Biointerfaces 2012, 93, 36–40. [Google Scholar]
- Sandri, G.; Bonferoni, M.C.; Gokce, E.H.; Ferrari, F.; Rossi, S.; Patrini, M.; Caramella, C.; Chitosan-associated, SLN. In vitro and ex vivo characterization of cyclosporine a loaded ophthalmic systems. J. Microencapsul 2010, 27, 735–746. [Google Scholar]
- Garcia-Fuentes, M.; Torres, D.; Alonso, M.J. New surface-modified lipid nanoparticles as delivery vehicles for salmon calcitonin. Int. J. Pharm 2005, 296, 122–132. [Google Scholar]
- Sarmento, B.; Mazzaglia, D.; Bonferoni, M.C.; Neto, A.P.; Monteiro, M.C.; Seabra, V. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr. Polym 2011, 84, 919–925. [Google Scholar]
- Gutsche, C.D.; Pagoria, P.F. Calixarenes. 16. Functionalized calixarenes: The direct substitution route. J. Org. Chem 1985, 50, 5795–5802. [Google Scholar]
- Elend, D.; Pieles, U.; Shahgaldian, P. Para-carboxy modified amphiphilic calixarene, self-assembly and interactions with pharmaceutically-relevant molecules. Chimica 2010, 64, 45–48. [Google Scholar]
- Strobel, M.; Kita-Tokarczyk, K.; Taubert, A.; Vebert, C.; Heiney, P.A.; Chami, M.; Meier, W. Self-assembly of amphiphilic calix[4]arenes in aqueous solution. Adv. Funct. Mater 2006, 16, 252–259. [Google Scholar]
- Helttunen, K.; Shahgaldian, P. Self-assembly of amphiphilic calixarenes and resorcinarenes in water. New J. Chem 2010, 34, 2704–2714. [Google Scholar]
- Shahgaldian, P.; Coleman, A.W.; Kuduva, S.S.; Zaworotko, M.J. Amphiphilic behavior of an apparently non-polar calixarene. Chem. Commun 2005. [Google Scholar] [CrossRef]
- Abis, L.; Dalcanale, E.; Du Vosel, A.; Spera, S. Structurally new macrocycles from the resorcinol-aldehyde condensation. ConFigureurational and conformational analyses by means of dynamic NMR, NOE, and T1 experiments. J. Org. Chem 1988, 53, 5475–5479. [Google Scholar]
- Gualbert, J.; Shahgaldian, P.; Lazar, A.; Coleman, A.W. Solid Lipid Nanoparticles (SLNs): Preparation and properties of calix[4]resorcinarene derived systems. J. Incl. Phenom. Macrocycl. Chem 2004, 48, 37–44. [Google Scholar]
- Dubes, A.; Parrot-Lopez, H.; Abdelwahed, W.; Degobert, G.; Fessi, H.; Shahgaldian, P.; Coleman, A.W. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur. J. Pharm. Biopharm 2003, 55, 279–282. [Google Scholar]
- Mora-Huertas, C.E.; Fessi, H.; Elaissari, A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification–diffusion methods: Critical comparison. Adv. Colloid Interface. Sci 2011, 163, 90–122. [Google Scholar]
- Mora-Huertas, C.E.; Garrigues, O.; Fessi, H.; Elaissari, A. Nanocapsules prepared via nanoprecipitation and emulsification-diffusion methods: Comparative study. Eur. J. Pharm. Biopharm 2012, 80, 235–239. [Google Scholar]
- Nik, A.M.; Langmaid, S.; Wright, A.J. Nonionic surfactant and interfacial structure impact crystallinity and stability of beta-carotene loaded lipid nanodispersions. J. Agric. Food Chem 2012, 60, 4126–4135. [Google Scholar]
- Siekmann, B.; Westesen, K. Submicron-sized parenteral carrier systems based on solid lipids. Pharm. Pharmacol. Lett 1992, 1, 123–126. [Google Scholar]
- Thioune, O.; Fessi, H.; Devissaguet, J.P.; Puisieux, F. Preparation of pseudolatex by nanoprecipitation: Influence of the solvent nature on intrinsic viscosity and interaction constant. Int. J. Pharm 1997, 146, 233–238. [Google Scholar]
- Stainmesse, S.; Orecchioni, A.M.; Nakache, E.; Puisieux, F.; Fessi, H. Formation and stabilization of a biodegradable polymeric colloidal suspension of nanoparticles. Colloid Polym. Sci 1995, 273, 505–551. [Google Scholar]
- Kurihara, K.; Ohto, K.; Tanaka, Y.; Aoyama, Y.; Kunitake, T. Molecular recognition of sugars by monolayers of resorcinol-dodecanal cyclotetramer. J. Am. Chem. Soc 1991, 113, 444–450. [Google Scholar]
- Rhlalou, T.; Ferhat, M.; Frouji, M.A.; Langevin, D.; Métayer, M.; Verchère, J.F. Facilitated transport of sugars by a resorcinarene through a supported liquid membrane. J. Membr. Sci 2000, 168, 63–73. [Google Scholar]
- Iwanek, W.; Urbaniak, M.; Gawdzik, B.; Schurig, V. Synthesis of enantiomerically and diastereomerically pure oxazaborolo-benzoxazaborininone derivatives of resorcinarene from l-proline. Tetrahedron Asymmetry 2003, 14, 2787–2792. [Google Scholar]
- Ehrler, S.; Pieles, U.; Wirth-Heller, A.; Shahgaldian, P. Surface modification of resorcinarene based self-assembled solid lipid nanoparticles for drug targeting. Chem. Commun 2007. [Google Scholar] [CrossRef]
- Shahgaldian, P.; Pieles, U.; Hegner, M. Enantioselective recognition of phenylalanine by a chiral amphiphilic macrocycle at the air-water interface: A copper-mediated mechanism. Langmuir 2005, 21, 6503–6507. [Google Scholar]
- Salorinne, K.; Nissinen, M. Novel tetramethoxy resorcinarene bis-crown ethers. Org. Lett 2006, 8, 5473–5476. [Google Scholar]
- McIldowie, M.J.; Mocerino, M.; Skelton, B.W.; White, A.H. Facile lewis acid catalyzed synthesis of C4 symmetric resorcinarenes. In Org. Lett; 2000; Volume 2, pp. 3869–3871. [Google Scholar]
- Helttmen, K.; Salorinne, K.; Barboza, T.; Campos Barbosa, H.; Suhonen, A.; Nissinen, M. Cation binding resorcinarene bis-crowns: The effect of lower rim alkyl chain length on crystal packing and solid lipid nanoparticles. New J. Chem 2012, 36, 789–795. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Montasser, I.; Shahgaldian, P.; Perret, F.; Coleman, A.W. Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization. Int. J. Mol. Sci. 2013, 14, 21899-21942. https://doi.org/10.3390/ijms141121899
Montasser I, Shahgaldian P, Perret F, Coleman AW. Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization. International Journal of Molecular Sciences. 2013; 14(11):21899-21942. https://doi.org/10.3390/ijms141121899
Chicago/Turabian StyleMontasser, Imed, Patrick Shahgaldian, Florent Perret, and Anthony W. Coleman. 2013. "Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization" International Journal of Molecular Sciences 14, no. 11: 21899-21942. https://doi.org/10.3390/ijms141121899
APA StyleMontasser, I., Shahgaldian, P., Perret, F., & Coleman, A. W. (2013). Solid Lipid Nanoparticle-Based Calix[n]arenes and Calix-Resorcinarenes as Building Blocks: Synthesis, Formulation and Characterization. International Journal of Molecular Sciences, 14(11), 21899-21942. https://doi.org/10.3390/ijms141121899