Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease
Abstract
:1. Introduction
2. HTT Gene Expression
2.1. HTT Gene Expression
2.2. HD Modifying Influences and Genes, and Their Expression
3. Huntingtin Protein Expression, Aggregation, Autophagy, and Proteosomal Function
4. Epigenetics
4.1. AP-1 DNA Binding Activity Downregulation
4.2. Histone H3 and H4 Acetylation Upregulation
4.3. CBP Upregulation
4.4. p53 Upregulation
4.5. HDAC Downregulation
4.6. MicroRNAs
4.6.1. MiR-222 Upregulation
4.6.2. Other MicroRNA Therapeutic Approaches
4.7. Enhancer RNA (eRNA)
5. Mitochondrial Respiration, Permeability Transition Pore, and Cytochrome C Release
6. Apoptosis
7. Neurogenesis
8. Animal Models
9. Neuroprotective Disease-Modifying Clinical Trials of Psychotropics in HD
10. Conclusions and Research Directions
Psychotropic classes | Drugs investigated | |
---|---|---|
Antipsychotics | Neuroleptics | Chlorpromazine Haloperidol Fluphenazine Thioridazine Thiothixene Trifluoperazine |
Atypical antipsychotics | Aripiprazole Asenapine Clozapine Iloperidone Lurasidone Olanzapine Paliperidone Quetiapine Risperidone Ziprasidone | |
Selective aerotonin 2A inverse agonists | Pimavanserin | |
Vesicular monoamine transporter inhibitors | Tetrabenazine | |
Mood stabilizers | Anticonvulsants | Carbamazepine Oxcarbazepine Lamotrigine Valproic Acid |
Lithium | Lithium | |
Other (pseudobulbar affect) | Dextromethorphan/quinidine | |
Antidepressants | Tricyclics | Amitriptyline Clomipramine Desipramine Doxepin Imipramine Nortriptyline Protriptyline Trimipramine |
Tetracyclics | Maprotiline | |
Selective serotonin reuptake inhibitors | Citalopram, Escitalopram Fluoxetine Fluvoxamine Paroxetine Sertraline | |
Serotonin and norepinephrine reuptake inhibitors | Duloxetine Venlafaxine, Desvenlafaxine | |
Other | Bupropion Mirtazapine Trazodone | |
Anxiolytics | Antihistamines | Cyproheptadine Diphenhydramine Hydroxyzine |
Benzodiazepines | Alprazolam Chlorazepate Chlordiazepoxide Clonazepam Diazepam Flurazepam Lorazepam Oxazepam Temazepam | |
Serotonin 1A receptor agonists | Buspirone | |
Hypnotics | Benzodiazepines | See anxiolytics above |
Non-Benzodiazepines | Zaleplon Zopiclone, Eszopiclone Zolpidem | |
Antihistamines | See anxiolytics above | |
Melatoninergics | Melatonin Ramelteon | |
Wake promoting agents | Non-sympathomimetic | Modafinil, Armodafinil |
Anti-apathy agents | Dopaminergic agonists | Amantadine Pramipexole Ropinirole |
Process | Epigenetic targets | |
---|---|---|
DNA methylation | Upregulate | DNA methylation, especially in low CpG content regions [50] Transcriptional regulator SOX2 in low CpG content regions [50] 5-hydroxymethylcytosine levels in the ADORA2A adenosine A2A receptor gene 5′UTR region [51] |
Downregulate | Transcriptional regulator FRA-2 in low CpG content regions [50] Transcriptional regulator JUND in low CpG content regions [50] Transcriptional regulator AP-1 in low CpG content regions [50] 5-methylcytosine levels in the ADORA2A adenosine A2A receptor gene 5′UTR region [51] Alpha thalassemia/mental retardation X linked (ATRX) [52] Cdx-2 (especially activation, or its occupancy at the ATRX promoter) [52] | |
Histone modification | Upregulate | Chromatin unpacking into a de-repressed unpacked configuration [53] Ubiquitylation of mono-ubiquitylated histone H2A [54] Mono-ubiquitylation of histone H2B [54] Acetylation of histone H2A [55] Acetylation of histone H2B [55] Histone H3 [56] Acetylation of histone H3, especially at lysine 9 [55,57–62] Acetylation of histone H3, especially at lysine 14 [57–62] Acetylation of histone H4 [55,57–62] Acetylation of alpha-tubulin [63] Nuclear histone acetyltransferase (HAT or KAT) [53] CREB-binding protein CBP (KAT3A) [57,58,64] Phosphorylation of CBP [57,58] CREB-regulated transcription coactivator 1 TORC1 [65] p300/CBP-associated factor (P/CAF, or KAT2B) [57,64] Phosphorylation of histone H3 [56,66] Mitogen- and stress-activated kinase-1 MSK1 [66,67] Phosphorylation of MSK1 [56,66] Peroxisome proliferator activator receptor gamma (PPARgamma) [68] PPARgamma coactivator-1alpha (PGC1alpha) [69–71] Phosphorylation of PGC1alpha promoter [67] AMP-activated protein kinase AMPK [72] TAF4 [72] TAF4/CREB complex [72] SIRT1 [65,73,74] SIRT3 [75] Transcription factor p53 [58] in nucleus (not cytoplasm) |
Downregulate | Mono-ubiquitylation of histone H2A [54] Histone methyltransferases Methylation of histone H3, especially at lysine 4 (K4) [54,76] Methylation of histone H3 lysine 9 (K9), especially trimethylation at lysine 9 [54,76–78] ERG-associated protein with SET domain (ESET/SETDB1, also known as KMT1E) [77] DNA binding of specificity proteins Sp1 and Sp3 [77] Huntingtin-interacting protein SETD2/HYPB, responsible for H3K36 trimethylation [79] Histone deacetylases (HDAC) [57,59,76] HDAC1 [80] HDAC2 [81,82] HDAC3 [83] HDAC4 [56,81,82] HDAC5 [55,84] HDAC6 [63] HDAC11 [81,82] SIRT2 [85] Transglutaminase2 [86] Transcription repressor element-1 (RE1) silencing transcription factor (REST, also known as neuron-restrictive silencing factor (NRSF)) [87] | |
Posttranscriptional RNA editing | Upregulate | Posttranscriptional RNA editing of glutamate receptor GluR-2 [88,89] Posttranscriptional RNA editing of glutamate receptor GluR-6 [88,89] |
MicroRNA | Upregulate in presymptomatic and early HD | miR-135b [90] and miR-212 [90,91] |
Downregulate in presymptomatic and early HD | miR-29a [90–92], miR-34b [93], miR-200a [94], and miR-200c [94] | |
Upregulate | miR-9 [90,91,95], miR-9* (miR-9A) [90,91,95], miR-22 [96,97], miR-29b [90], miR-29c [96], miR-100 [95], miR-124 [98], miR-124a [90], miR-125b [95,99], miR-128 [96], miR-132 [96,100], miR-135a [95], miR-135b [95], miR-137 [101], miR-138 [95,96], miR-139 [90,91], miR-146a [95,99], miR-150 [95,99], miR-181c [95], miR-190 [95], miR-196a [102], miR-218 [91,95,96], miR-221 [95], miR-222 [95,96], miR-330 [91], miR-338-3p [95], miR-344 [96], miR-485 [103], miR-674 [96], ban [104], let-7a [91], let-7c [91], let-7d [91], and let-7e [91] | |
Downregulate | miR-30a [91], miR30b [91], miR-30c [91], miR-30e [91], miR-34b [93], miR-127-3p [95], late HD cortical miR-132 [90,91], miR-145 [95], miR-148a [95], miR-199-3p [95], miR-199-5p [95], miR-200a [95], miR-205 [95], miR-214 [95], and miR-335-5p [95] |
EFFECT | HDAC1 | HDAC2 | HDAC3 | HDAC4 | HDAC5 | HDAC6 | HDAC11 |
---|---|---|---|---|---|---|---|
Downregulate | |||||||
Carbamazepine | [135] | ||||||
Valproate | [136–138] | [137,139] | [140] | ||||
Amitriptyline | [141] | [141] | |||||
Upregulate | |||||||
Clozapine | [142] | [142] | |||||
Olanzapine | [142] | [142] | [142] | ||||
Lurasidone | [143] | [143] | [142,143] | ||||
Carbamazepine | [142] | [142] | [142] | ||||
Valproate | [143] | [144] | |||||
Lamotrigine | [142] | [142] | [142] | ||||
Clomipramine | [142] | [142] | |||||
Fluoxetine | [145] | ||||||
Escitalopram | [142] | [142] | [142] | ||||
Duloxetine | [142] | [142] | [142] | ||||
Mirtazapine | [142] | [142] | [142] |
Evidence type | Neuroprotective candidate attribute |
---|---|
Preclinical criteria |
|
Clinical criteria |
|
Neuroprotective action | D2 antagonist antipsychotics | Trifluoperazine | Haloperidol | Loxapine | Tetrabenazine |
---|---|---|---|---|---|
Huntingtin clearance | + | + | |||
AP-1 DNA binding | |||||
Histone acetylation | |||||
p53 | |||||
MiR-222 | |||||
Mitochondria | + | + | + | ||
Apoptosis | + | + | |||
Neurogenesis | |||||
BDNF | |||||
Striatal preservation | + | + | |||
Cognitive integrity | |||||
Motor integrity | + | ||||
Delay of disease onset | |||||
Enhanced survival |
Neuroprotective action | Lithium | Valproate | Lamotrigine |
---|---|---|---|
Huntingtin clearance by autophagy | + | ||
AP-1 DNA binding | + | ||
Histone acetylation | + | + | + |
p53 | + | ||
MiR-222 | +? (when combined with valproate) | +? (when combined with lithium) | |
Mitochondria | |||
Apoptosis | + | ||
Neurogenesis | + | ||
BDNF | + | + | |
Striatal preservation | + | ||
Cognitive integrity | |||
Motor integrity | + | + | |
Delay of disease onset | |||
Enhanced survival | + | + |
Neuroprotective action | Imipramine | Desipramine | Nortriptyline | Maprotiline |
---|---|---|---|---|
Huntingtin clearance | ||||
AP-1 DNA binding | ||||
Histone acetylation | ||||
p53 | ||||
MiR-222 | ||||
Mitochondria | + | + | + | + |
Apoptosis | + | + | + | |
Neurogenesis | ||||
BDNF | ||||
Striatal preservation | ||||
Cognitive integrity | + | |||
Motor integrity | + | + | ||
Delay of disease onset | + | |||
Enhanced survival |
Neuroprotective action | Trazodone | Fluoxetine | Sertraline | Venlafaxine |
---|---|---|---|---|
Huntingtin clearance | ||||
AP-1 DNA binding | ||||
Histone acetylation | ||||
p53 | ||||
MiR-222 | ||||
Mitochondria | + | + | + | |
Apoptosis | ||||
Neurogenesis | + | + | ||
BDNF | + | |||
Striatal preservation | + | |||
Cognitive integrity | + | + | + | + |
Motor integrity | + | + | + | |
Delay of disease onset | ||||
Enhanced survival | + |
Neuroprotective action | Cyproheptadine | Melatonin |
---|---|---|
Huntingtin clearance | ||
AP-1 DNA binding | ||
Histone acetylation | ||
p53 | ||
MiR-222 | ||
Mitochondria | + | |
Apoptosis | + | + |
Neurogenesis | ||
BDNF | ||
Striatal preservation | ||
Cognitive integrity | ||
Motor integrity | ||
Delay of disease onset | + | |
Enhanced survival | + |
Acknowledgments
Conflicts of Interest
References
- Walker, F.O. Huntington’s disease. Lancet 2007, 369, 218–228. [Google Scholar]
- Chen, C.M. Mitochondrial dysfunction, metabolic deficits, and increased oxidative stress in Huntington’s disease. Chang. Gung Med. J 2011, 34, 135–152. [Google Scholar]
- Bano, D.; Zanetti, F.; Mende, Y.; Nicotera, P. Neurodegenerative processes in Huntington’s disease. Cell Death Dis 2011, 2, e228. [Google Scholar]
- Bithell, A.; Johnson, R.; Buckley, N.J. Transcriptional dysregulation of coding and non-coding genes in cellular models of Huntington’s disease. Biochem. Soc. Trans 2009, 37, 1270–1275. [Google Scholar]
- Lauterbach, E.C.; Cummings, J.L.; Duffy, J.; Coffey, C.E.; Kaufer, D.; Lovell, M.; Malloy, P.; Reeve, A.; Royall, D.R.; Rummans, T.A.; et al. Neuropsychiatric correlates and treatment of lenticulostriatal disease: A review of the literature and overview of research opportunities in Huntington’s, Wilson’s, and Fahr’s diseases. J. Neuropsychiatry Clin. Neurosci 1998, 10, 249–266. [Google Scholar]
- Anderson, K.E.; Marder, K.S. An overview of psychiatric symptoms in Huntington’s disease. Curr. Psychiatry Rep 2001, 3, 379–388. [Google Scholar]
- Ranen, N.G. Huntington’s Disease. In Psychiatric Management in Neurological Disease; Lauterbach, E.C., Ed.; American Psychiatric Press Group: Washington, DC, USA, 2000; pp. 71–92. [Google Scholar]
- Naarding, P.; Kremer, H.P.; Zitman, F.G. Huntington’s disease: A review of the literature on prevalence and treatment of neuropsychiatric phenomena. Eur. Psychiatry 2001, 16, 439–445. [Google Scholar]
- Lauterbach, E.C. Psychotropic drug effects on gene transcriptomics relevant to Alzheimer’s disease. Alzheimer Dis. Assoc. Disord 2012, 26, 1–7. [Google Scholar]
- Lauterbach, E.C. Psychotropic drug effects on gene transcriptomics relevant to Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2012, 38, 107–115. [Google Scholar]
- Lauterbach, E.C. Psychotropics regulate Skp1a, Aldh1a1, and Hspa8 transcription—Potential to delay Parkinson’s disease. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 40, 236–239. [Google Scholar]
- Lauterbach, E.C.; Victoroff, J.; Coburn, K.L.; Shillcutt, S.D.; Doonan, S.M.; Mendez, M.F. Psychopharmacological neuroprotection in neurodegenerative disease: Assessing the preclinical data. J. Neuropsychiatry Clin. Neurosci 2010, 22, 8–18. [Google Scholar]
- Lauterbach, E.C.; Shillcutt, S.D.; Victoroff, J.; Coburn, K.L.; Mendez, M.F. Psychopharmacological neuroprotection in neurodegenerative disease: Heuristic clinical applications. J. Neuropsychiatry Clin. Neurosci 2010, 22, 130–154. [Google Scholar]
- Lauterbach, E.C.; Mendez, M.F. Psychopharmacological neuroprotection in neurodegenerative diseases, part III: Criteria-based assessment: A report of the ANPA Committee on Research. J. Neuropsychiatry Clin. Neurosci 2011, 23, 242–260. [Google Scholar]
- Lauterbach, E.C.; Fontenelle, L.F.; Teixeira, A.L. The neuroprotective disease-modifying potential of psychotropics in Parkinson’s disease. Parkinsons Dis 2012, 2012, 753548. [Google Scholar]
- Gene Omnibus Expression Profiles. Available online: http://www.ncbi.nlm.nih.gov/geoprofiles (accessed on 25 September 2013).
- Miller, B.H.; Schultz, L.E.; Gulati, A.; Cameron, M.C.; Pletcher, M.T. Genetic regulation of behavioral and neuronal responses to fluoxetine. Neuropsychopharmacology 2008, 33, 1312–1322. [Google Scholar]
- Affymetrix Website. Available online: https://www.affymetrix.com/user/login.jsp?toURL=/analysis/netaffx/xmlquery.affx?netaffx=netaffx4_annot&hightlight=true&rootCategoryId= (accessed on 24 September 2013).
- Fatemi, S.H.; Reutiman, T.J.; Folsom, T.D.; Bell, C.; Nos, L.; Fried, P.; Pearce, D.A.; Singh, S.; Siderovski, D.P.; Willard, F.S.; et al. Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacology 2006, 31, 1888–1899. [Google Scholar]
- Andresen, J.M.; Gayan, J.; Cherny, S.S.; Brocklebank, D.; Alkorta-Aranburu, G.; Addis, E.A.; Cardon, L.R.; Housman, D.E.; Wexler, N.S. The US-Venezuela Collaborative Research Group. Replication of twelve association studies for Huntington’s disease residual age of onset in large Venezuelan kindreds. J. Med. Genet 2007, 44, 44–50. [Google Scholar]
- Vuillaume, I.; Vermersch, P.; Destée, A.; Petit, H.; Sablonnière, B. Genetic polymorphisms adjacent to the CAG repeat influence clinical features at onset in Huntington’s disease. J. Neurol. Neurosurg. Psychiatry 1998, 64, 758–762. [Google Scholar]
- Chattopadhyay, B.; Ghosh, S.; Gangopadhyay, P.K.; Das, S.K.; Roy, T.; Sinha, K.K.; Jha, D.K.; Mukherjee, S.C.; Chakraborty, A.; Singhal, B.S.; et al. Modulation of age at onset in Huntington’s disease and spinocerebellar ataxia type 2 patients originated from eastern India. Neurosci. Lett 2003, 345, 93–96. [Google Scholar]
- Wilburn, B.; Rudnicki, D.D.; Zhao, J.; Weitz, T.M.; Cheng, Y.; Gu, X.; Greiner, E.; Park, C.S.; Wang, N.; Sopher, B.L.; et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron 2011, 70, 427–440. [Google Scholar]
- Kovtun, I.V.; Liu, Y.; Bjoras, M.; Klungland, A.; Wilson, S.H.; McMurray, C.T. OGG1 initiates age-dependent CAG trinucleotide expansion in somatic cells. Nature 2007, 447, 447–452. [Google Scholar]
- Gomes-Pereiram, M.; Monckton, D.G. Chemical modifiers of unstable expanded simple sequence repeats: What goes up, could come down. Mutat. Res 2006, 598, 15–34. [Google Scholar]
- Gusella, J.F.; MacDonald, M.E. Huntington’s disease: The case for genetic modifiers. Genome Med 2009, 1, 80. [Google Scholar]
- Kalathur, R.K.R.; Hernández-Prieto, M.A.; Futschik, M.E. Huntington’s disease and its therapeutic target genes: A global functional profile based on the HD Research Crossroads database. BMC Neurol 2012, 12, 47. [Google Scholar]
- Buckley, N.J.; Johnson, R.; Zuccato, C.; Bithell, A.; Cattaneo, E. The role of REST in transcriptional and epigenetic dysregulation in Huntington’s disease. Neurobiol. Dis 2010, 39, 28–39. [Google Scholar]
- Roy, M.; Leclerc, D.; Wu, Q.; Gupta, S.; Kruger, W.D.; Rozen, R. Valproic acid increases expression of methylenetetrahydrofolate reductase (MTHFR) and induces lower teratogenicity in MTHFR deficiency. J. Cell. Biochem 2008, 105, 467–476. [Google Scholar]
- Leclerc, D.; Rozen, R. Endoplasmic reticulum stress increases the expression of methylenetetrahydrofolate reductase through the IRE1 transducer. J. Biol. Chem 2008, 283, 3151–3160. [Google Scholar]
- Yang, Z.; Yin, J.Y.; Gong, Z.C.; Huang, Q.; Chen, H.; Zhang, W.; Zhou, H.H.; Liu, Z.Q. Evidence for an effect of clozapine on the regulation of fat-cell derived factors. Clin. Chim. Acta 2009, 408, 98–104. [Google Scholar]
- Kim, K.H.; Song, M.J.; Yoo, E.J.; Choe, S.S.; Park, S.D.; Kim, J.B. Regulatory role of glycogen synthase kinase 3 for transcriptional activity of ADD1/SREBP1c. J. Biol. Chem 2004, 279, 51999–52006. [Google Scholar]
- Chen, W.Y.; Weng, J.H.; Huang, C.C.; Chung, B.C. Histone deacetylase inhibitors reduce steroidogenesis through SCF-mediated ubiquitination and degradation of steroidogenic factor 1 (NR5A1). Mol. Cell. Biol 2007, 27, 7284–7290. [Google Scholar]
- Ishii, T.; Hashimoto, E.; Ukai, W.; Tateno, M.; Yoshinaga, T.; Saito, S.; Sohma, H.; Saito, T. Lithium-induced suppression of transcription repressor NRSF/REST: Effects on the dysfunction of neuronal differentiation by ethanol. Eur. J. Pharmacol 2008, 593, 36–43. [Google Scholar]
- Taylor, P.; Fangusaro, J.; Rajaram, V.; Goldman, S.; Helenowski, I.B.; MacDonald, T.; Hasselblatt, M.; Riedemann, L.; Laureano, A.; Cooper, L.; et al. REST is a novel prognostic factor and therapeutic target for medulloblastoma. Mol. Cancer Ther 2012, 11, 1713–1723. [Google Scholar]
- Kim, S.J.; Lee, B.H.; Lee, Y.S.; Kang, K.S. Defective cholesterol traffic and neuronal differentiation in neural stem cells of Niemann-Pick type C disease improved by valproic acid, a histone deacetylase inhibitor. Biochem. Biophys. Res. Commun 2007, 360, 593–599. [Google Scholar]
- Charvin, D.; Vanhoutte, P.; Pagès, C.; Borrelli, E.; Caboche, J. Unraveling a role for dopamine in Huntington’s disease: The dual role of reactive oxygen species and D2 receptor stimulation. Proc. Natl. Acad. Sci. USA 2005, 102, 12218–12223. [Google Scholar]
- Carmichael, J.; Sugars, K.L.; Bao, Y.P.; Rubinsztein, D.C. Glycogen synthase kinase-3beta inhibitors prevent cellular polyglutamine toxicity caused by the Huntington’s disease mutation. J. Biol. Chem 2002, 277, 33791–33798. [Google Scholar]
- Sarkar, S.; Floto, R.A.; Berger, Z.; Imarisio, S.; Cordenier, A.; Pasco, M.; Cook, L.J.; Rubinsztein, D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell. Biol 2005, 170, 1101–1111. [Google Scholar]
- Sarkar, S.; Krishna, G.; Imarisio, S.; Saili, S.; O’Kane, C.J.; Rubinsztein, D.C. A rational mechanism for combination treatment of Huntington’s disease using lithium and rapamycin. Hum. Mol. Genet 2008, 17, 170–178. [Google Scholar]
- Sarkar, S.; Rubinsztein, D.C. Inositol and IP3 levels regulate autophagy: Biology and therapeutic speculations. Autophagy 2006, 2, 132–134. [Google Scholar]
- Chiu, C.T.; Chuang, D.M. Neuroprotective action of lithium in disorders of the central nervous system. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2011, 36, 461–476. [Google Scholar]
- Morselli, E.; Tasdemir, E.; Maiuri, M.C.; Galluzzi, L.; Kepp, O.; Criollo, A.; Vicencio, J.M.; Soussi, T.; Kroemer, G. Mutant p53 protein localized in the cytoplasm inhibits autophagy. Cell Cycle 2008, 7, 3056–3061. [Google Scholar]
- Chiu, C.T.; Liu, G.; Leeds, P.; Chuang, D.M. Combined treatment with the mood stabilizers lithium and valproate produces multiple beneficial effects in transgenic mouse models of Huntington’s disease. Neuropsychopharmacology 2011, 36, 2406–2421. [Google Scholar]
- Xiong, N.; Jia, M.; Chen, C.; Xiong, J.; Zhang, Z.; Huang, J.; Hou, L.; Yang, H.; Cao, X.; Liang, Z.; et al. Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neuroscience 2011, 199, 292–302. [Google Scholar]
- Li, X.Z.; Chen, X.P.; Zhao, K.; Bai, L.M.; Zhang, H.; Zhou, X. Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced Parkinsonism in mice: Possible mediation through enhanced autophagy. Int. J. Neurosci 2013, 123, 73–79. [Google Scholar]
- Peng, Q.; Masuda, N.; Jiang, M.; Li, Q.; Zhao, M.; Ross, C.A.; Duan, W. The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp. Neurol 2008, 210, 154–163. [Google Scholar]
- Duan, W.; Peng, Q.; Masuda, N.; Ford, E.; Tryggestad, E.; Ladenheim, B.; Zhao, M.; Cadet, J.L.; Wong, J.; Ross, C.A. Sertraline slows disease progression and increases neurogenesis in N171-82Q mouse model of Huntington’s disease. Neurobiol. Dis 2008, 30, 312–322. [Google Scholar]
- Ehrnhoefer, D.E.; Butland, S.L.; Pouladi, M.A.; Hayden, M.R. Mouse models of Huntington disease: Variations on a theme. Dis. Models Mech 2009, 2, 123–129. [Google Scholar]
- Ng, C.W.; Yildirim, F.; Yap, Y.S.; Dalin, S.; Matthews, B.J.; Velez, P.J.; Labadorf, A.; Housman, D.E.; Fraenkel, E. Extensive changes in DNA methylation are associated with expression of mutant huntingtin. Proc. Natl. Acad. Sci. USA 2013, 110, 2354–2359. [Google Scholar]
- Villar-Menéndez, I.; Blanch, M.; Tyebji, S.; Pereira-Veiga, T.; Albasanz, J.L.; Martín, M.; Ferrer, I.; Pérez-Navarro, E.; Barrachina, M. Increased 5-methylcytosine and decreased 5-hydroxymethylcytosine levels are associated with reduced striatal A2AR levels in Huntington’s disease. Neuromol. Med 2013, 15, 295–309. [Google Scholar]
- Lee, J.; Hong, Y.K.; Jeon, G.S.; Hwang, Y.J.; Kim, K.Y.; Seong, K.H.; Jung, M.K.; Picketts, D.J.; Kowall, N.W.; Cho, K.S.; et al. ATRX induction by mutant huntingtin via Cdx2 modulates heterochromatin condensation and pathology in Huntington’s disease. Cell Death Differ 2012, 19, 1109–1116. [Google Scholar]
- Urdinguio, R.G.; Sanchez-Mut, J.V.; Esteller, M. Epigenetic mechanisms in neurological diseases: Genes, syndromes, and therapies. Lancet Neurol 2009, 8, 1056–1072. [Google Scholar]
- Kim, M.O.; Chawla, P.; Overland, R.P.; Xia, E.; Sadri-Vakili, G.; Cha, J.H. Altered histone monoubiquitylation mediated by mutant huntingtin induces transcriptional dysregulation. J. Neurosci 2008, 28, 3947–3957. [Google Scholar]
- Yeh, H.H.; Young, D.; Gelovani, J.G.; Robinson, A.; Davidson, Y.; Herholz, K.; Mann, D.M. Histone deacetylase class II and acetylated core histone immunohistochemistry in human brains with Huntington’s disease. Brain Res 2013, 1504, 16–24. [Google Scholar]
- Kleiman, R.J.; Kimmel, L.H.; Bove, S.E.; Lanz, T.A.; Harms, J.F.; Romegialli, A.; Miller, K.S.; Willis, A.; des Etages, S.; Kuhn, M.; et al. Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J. Pharmacol. Exp. Ther 2011, 336, 64–76. [Google Scholar]
- Steffan, J.S.; Bodai, L.; Pallos, J.; Poelman, M.; McCampbell, A.; Apostol, B.L.; Kazantsev, A.; Schmidt, E.; Zhu, Y.Z.; Greenwald, M.; et al. Histone deacetylase inhibitors arrest polyglutamine-dependent neurodegeneration in Drosophila. Nature 2001, 413, 739–743. [Google Scholar]
- Steffan, J.S.; Kazantsev, A.; Spasic-Boskovic, O.; Greenwald, M.; Zhu, Y.Z.; Gohler, H.; Wanker, E.E.; Bates, G.P.; Housman, D.E.; Thompson, L.M. The Huntington’s disease protein interacts with p53 and CREB-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 2000, 97, 6763–6768. [Google Scholar]
- Gardian, G.; Browne, S.E.; Choi, D.K.; Klivenyi, P.; Gregorio, J.; Kubilus, J.K.; Ryu, H.; Langley, B.; Ratan, R.R.; Ferrante, R.J.; et al. Neuroprotective effects of phenylbutyrate in the N171–82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem 2005, 280, 556–563. [Google Scholar]
- Ferrante, R.J.; Kubilus, J.K.; Lee, J.; Ryu, H.; Beesen, A.; Zucker, B.; Smith, K.; Kowall, N.W.; Ratan, R.R.; Luthi-Carter, R.; et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J. Neurosci 2003, 23, 9418–9127. [Google Scholar]
- Stack, E.C.; del Signore, S.J.; Luthi-Carter, R.; Soh, B.Y.; Goldstein, D.R.; Matson, S.; Goodrich, S.; Markey, A.L.; Cormier, K.; Hagerty, S.W.; et al. Modulation of nucleosome dynamics in Huntington’s disease. Hum. Mol. Genet 2007, 16, 1164–1175. [Google Scholar]
- Valor, L.M.; Guiretti, D.; Lopez-Atalaya, J.P.; Barco, A. Genomic landscape of transcriptional and epigenetic dysregulation in early onset polyglutamine disease. J. Neurosci 2013, 33, 10471–10482. [Google Scholar]
- Dompierre, J.P.; Godin, J.D.; Charrin, B.C.; Cordelieres, F.P.; King, S.J.; Humbert, S.; Saudou, F. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J. Neurosci 2007, 27, 3571–3583. [Google Scholar]
- Jiang, H.; Poirier, M.A.; Liang, Y.; Pei, Z.; Weiskittel, C.E.; Smith, W.W.; DeFranco, D.B.; Ross, C.A. Depletion of CBP is directly linked with cellular toxicity caused by mutant huntingtin. Neurobiol. Dis 2006, 23, 543–551. [Google Scholar]
- Jeong, H.; Cohen, D.E.; Cui, L.; Supinski, A.; Savas, J.N.; Mazzulli, J.R.; Yates, J.R., III; Bordone, L.; Guarente, L.; Krainc, D. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat. Med 2011, 18, 159–165. [Google Scholar]
- Roze, E.; Betuing, S.; Deyts, C.; Marcon, E.; Brami-Cherrier, K.; Pagès, C.; Humbert, S.; Mérienne, K.; Caboche, J. Mitogen- and stress-activated protein kinase-1 deficiency is involved in expanded-huntingtin-induced transcriptional dysregulation and striatal death. FASEB J 2008, 22, 1083–1093. [Google Scholar]
- Martin, E.; Betuing, S.; Pagès, C.; Cambon, K.; Auregan, G.; Deglon, N.; Roze, E.; Caboche, J. Mitogen- and stress-activated protein kinase 1-induced neuroprotection in Huntington’s disease: Role on chromatin remodeling at the PGC-1-alpha promoter. Hum. Mol. Genet 2011, 20, 2422–2434. [Google Scholar]
- Jin, J.; Albertz, J.; Guo, Z.; Peng, Q.; Rudow, G.; Troncoso, J.C.; Ross, C.A.; Duan, W. Neuroprotective effects of PPAR-gamma agonist rosiglitazone in N171–82Q mouse model of Huntington’s disease. J. Neurochem 2013, 125, 410–419. [Google Scholar]
- Cui, L.; Jeong, H.; Borovecki, F.; Parkhurst, C.N.; Tanese, N.; Krainc, D. Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 2006, 127, 59–69. [Google Scholar]
- Lee, S.T.; Chu, K.; Jung, K.H.; Im, W.S.; Park, J.E.; Lim, H.C.; Won, C.H.; Shin, S.H.; Lee, S.K.; Kim, M.; et al. Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann. Neurol 2009, 66, 671–681. [Google Scholar]
- Tsunemi, T.; Ashe, T.D.; Morrison, B.E.; Soriano, K.R.; Au, J.; Roque, R.A.; Lazarowski, E.R.; Damian, V.A.; Masliah, E.; La Spada, A.R. PGC-1alpha rescues Huntington’s disease proteotoxicity by preventing oxidative stress and promoting TFEB function. Sci. Transl. Med 2012, 4. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Beal, M.F. Mitochondrial diseases of the brain. Free Radic. Biol. Med 2013, 63, 1–29. [Google Scholar]
- Pallàs, M.; Pizarro, J.G.; Gutierrez-Cuesta, J.; Crespo-Biel, N.; Alvira, D.; Tajes, M.; Yeste-Velasco, M.; Folch, J.; Canudas, A.M.; Sureda, F.X.; et al. Modulation of SIRT1 expression in different neurodegenerative models and human pathologies. Neuroscience 2008, 154, 1388–1397. [Google Scholar]
- Jiang, M.; Wang, J.; Fu, J.; Du, L.; Jeong, H.; West, T.; Xiang, L.; Peng, Q.; Hou, Z.; Cai, H.; et al. Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat. Med 2011, 18, 153–158. [Google Scholar]
- Fu, J.; Jin, J.; Cichewicz, R.H.; Hageman, S.A.; Ellis, T.K.; Xiang, L.; Peng, Q.; Jiang, M.; Arbez, N.; Hotaling, K.; et al. trans-(−)-ε-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem 2012, 287, 24460–24472. [Google Scholar]
- Sadri-Vakili, G.; Bouzou, B.; Benn, C.L.; Kim, M.O.; Chawla, P.; Overland, R.P.; Glajch, K.E.; Xia, E.; Qiu, Z.; Hersch, S.M.; et al. Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum. Mol. Genet 2007, 16, 1293–1306. [Google Scholar]
- Ryu, H.; Lee, J.; Hagerty, S.W.; Soh, B.Y.; McAlpin, S.E.; Cormier, K.A.; Smith, K.M.; Ferrante, R.J. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc. Natl. Acad. Sci. USA 2006, 103, 19176–19181. [Google Scholar]
- Ferrante, R.J.; Ryu, H.; Kubilus, J.K.; D’Mello, S.; Sugars, K.L.; Lee, J.; Lu, P.; Smith, K.; Browne, S.; Beal, M.F.; et al. Chemotherapy for the brain: The antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J. Neurosci 2004, 24, 10335–10342. [Google Scholar]
- Edmunds, J.W.; Mahadevan, L.C.; Clayton, A.L. Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 2008, 27, 406–420. [Google Scholar]
- Quinti, L.; Chopra, V.; Rotili, D.; Valente, S.; Amore, A.; Franci, G.; Meade, S.; Valenza, M.; Altucci, L.; Maxwell, M.M.; et al. Evaluation of histone deacetylases as drug targets in Huntington’s disease models. Study of HDACs in brain tissues from R6/2 and CAG140 knock-in HD mouse models and human patients and in a neuronal HD cell model. PLoS Curr 2010, 2. [Google Scholar] [CrossRef]
- Hockly, E.; Richon, V.M.; Woodman, B.; Smith, D.L.; Zhou, X.; Rosa, E.; Sathasivam, K.; Ghazi-Noori, S.; Mahal, A.; Lowden, P.A.; et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc. Natl. Acad. Sci. USA 2003, 100, 2041–2046. [Google Scholar]
- Mielcarek, M.; Benn, C.L.; Franklin, S.A.; Smith, D.L.; Woodman, B.; Marks, P.A.; Bates, G.P. SAHA decreases HDAC 2 and 4 levels in vivo and improves molecular phenotypes in the R6/2 mouse model of Huntington’s disease. PLoS One 2011, 6, e27746. [Google Scholar]
- Thomas, E.A.; Coppola, G.; Desplats, P.A.; Tang, B.; Soragni, E.; Burnett, R.; Gao, F.; Fitzgerald, K.M.; Borok, J.F.; Herman, D.; et al. The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington’s disease transgenic mice. Proc. Natl. Acad. Sci. USA 2008, 105, 15564–15569. [Google Scholar]
- Hoshino, M.; Tagawa, K.; Okuda, T.; Murata, M.; Oyanagi, K.; Arai, N.; Mizutani, T.; Kanazawa, I.; Wanker, E.E.; Okazawa, H. Histone deacetylase activity is retained in primary neurons expressing mutant huntingtin protein. J. Neurochem 2003, 87, 257–267. [Google Scholar]
- Chopra, V.; Quinti, L.; Kim, J.; Vollor, L.; Narayanan, K.L.; Edgerly, C.; Cipicchio, P.M.; Lauver, M.A.; Choi, S.H.; Silverman, R.B.; et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep 2012, 2, 1492–1497. [Google Scholar]
- McConoughey, S.J.; Basso, M.; Niatsetskaya, Z.V.; Sleiman, S.F.; Smirnova, N.A.; Langley, B.C.; Mahishi, L.; Cooper, A.J.; Antonyak, M.A.; Cerione, R.A.; et al. Inhibition of transglutaminase 2 mitigates transcriptional dysregulation in models of Huntington disease. EMBO Mol. Med 2010, 2, 349–370. [Google Scholar]
- Zuccato, C.; Tartari, M.; Crotti, A.; Goffredo, D.; Valenza, M.; Conti, L.; Cataudella, T.; Leavitt, B.R.; Hayden, M.R.; Timmusk, T.; et al. Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nat. Genet 2003, 35, 76–83. [Google Scholar]
- Paschen, W.; Hedreen, J.C.; Ross, C.A. RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. J. Neurochem 1994, 63, 1596–1602. [Google Scholar]
- Akbarian, S.; Smith, M.A.; Jones, E.G. Editing for an AMPA receptor subunit RNA in prefrontal cortex and striatum in Alzheimer’s disease, Huntington’s disease and schizophrenia. Brain Res 1995, 699, 297–304. [Google Scholar]
- Packer, A.N.; Xing, Y.; Harper, S.Q.; Jones, L.; Davidson, B.L. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease. J. Neurosci 2008, 28, 14341–14346. [Google Scholar]
- Martí, E.; Pantano, L.; Bañez-Coronel, M.; Llorens, F.; Miñones-Moyano, E.; Porta, S.; Sumoy, L.; Ferrer, I.; Estivill, X. A myriad of miRNA variants in control and Huntington’s disease brain regions detected by massively parallel sequencing. Nucleic Acids Res 2010, 38, 7219–7235. [Google Scholar]
- Johnson, R.; Zuccato, C.; Belyaev, N.D.; Guest, D.J.; Cattaneo, E.; Buckley, N.J. A microRNA-based gene dysregulation pathway in Huntington’s disease. Neurobiol. Dis 2008, 29, 438–45. [Google Scholar]
- Gaughwin, P.M.; Ciesla, M.; Lahiri, N.; Tabrizi, S.J.; Brundin, P.; Björkqvist, M. Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington’s disease. Hum. Mol. Genet 2011, 20, 2225–2237. [Google Scholar]
- Jin, J.; Cheng, Y.; Zhang, Y.; Wood, W.; Peng, Q.; Hutchison, E.; Mattson, M.P.; Becker, K.G.; Duan, W. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin. J. Neurochem 2012, 123, 477–490. [Google Scholar]
- Sinha, M.; Ghose, J.; Das, E.; Bhattarcharyya, N.P. Altered microRNAs in STHdh(Q111)/Hdh(Q111) cells: MiR-146a targets TBP. Biochem. Biophys. Res. Commun 2010, 396, 742–747. [Google Scholar]
- Lee, S.T.; Chu, K.; Im, W.S.; Yoon, H.J.; Im, J.Y.; Park, J.E.; Park, K.H.; Jung, K.H.; Lee, S.K.; Kim, M.; et al. Altered microRNA regulation in Huntington’s disease models. Exp. Neurol 2011, 227, 172–179. [Google Scholar]
- Jovicic, A.; Zaldivar Jolissaint, J.F.; Moser, R.; Silva Santos, M.F.; Luthi-Carter, R. MicroRNA-22 (miR-22) overexpression is neuroprotective via general anti-apoptotic effects and may also target specific Huntington’s disease-related mechanisms. PLoS One 2013, 8, e54222. [Google Scholar]
- Das, E.; Jana, N.R.; Bhattacharyya, N.P. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdhQ111/HdhQ111 cells. Biochem. Biophys. Res. Commun 2013, 437, 217–224. [Google Scholar]
- Ghose, J.; Sinha, M.; Das, E.; Jana, N.R.; Bhattacharyya, N.P. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington’s disease. PLoS One 2011, 6, e23837. [Google Scholar]
- Soldati, C.; Bithell, A.; Johnston, C.; Wong, K.Y.; Stanton, L.W.; Buckley, N.J. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington’s disease. J. Neurochem 2013, 124, 418–430. [Google Scholar]
- Kozlowska, E.; Krzyzosiak, W.J.; Koscianska, E. Regulation of Huntingtin gene expression by miRNA-137, -214, -148a, and their respective isomiRs. Int. J. Mol. Sci 2013, 14, 16999–17016. [Google Scholar]
- Cheng, P.H.; Li, C.L.; Chang, Y.F.; Tsai, S.J.; Lai, Y.Y.; Chan, A.W.; Chen, C.M.; Yang, S.H. miR-196a ameliorates phenotypes of Huntington disease in cell, transgenic mouse, and induced pluripotent stem cell models. Am. J. Hum. Genet 2013, 93, 306–312. [Google Scholar]
- Sinha, M.; Mukhopadhyay, S.; Bhattacharyya, N.P. Mechanism(s) of alteration of micro RNA expressions in Huntington’s disease and their possible contributions to the observed cellular and molecular dysfunctions in the disease. Neuromol. Med 2012, 14, 221–243. [Google Scholar]
- Bilen, J.; Liu, N.; Burnett, B.G.; Pittman, R.N.; Bonini, N.M. MicroRNA pathways modulate polyglutamine-induced neurodegeneration. Mol. Cell 2006, 24, 157–163. [Google Scholar]
- Yazawa, I.; Hazeki, N.; Nakase, H.; Kanazawa, I.; Tanaka, M. Histone H3 is aberrantly phosphorylated in glutamine-repeat diseases. Biochem. Biophys. Res. Commun 2003, 302, 144–149. [Google Scholar]
- Chen, R.W.; Qin, Z.H.; Ren, M.; Kanai, H.; Chalecka-Franaszek, E.; Leeds, P.; Chuang, D.M. Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: Roles in glutamate excitotoxicity and lithium neuroprotection. J. Neurochem 2003, 84, 566–575. [Google Scholar]
- Acquaah-Mensah, G.K.; Kehrer, J.P.; Leslie, S.W. In utero ethanol suppresses cerebellar activator protein-1 and nuclear factor-kappa B transcriptional activation in a rat fetal alcohol syndrome model. J. Pharmacol. Exp. Ther 2002, 301, 277–283. [Google Scholar]
- Xu, J.; Culman, J.; Blume, A.; Brecht, S.; Gohlke, P. Chronic treatment with a low dose of lithium protects the brain against ischemic injury by reducing apoptotic death. Stroke 2003, 34, 1287–1292. [Google Scholar]
- Pacheco, M.A.; Jope, R.S. Modulation of carbachol-stimulated AP-1 DNA binding activity by therapeutic agents for bipolar disorder in human neuroblastoma SH-SY5Y cells. Brain Res. Mol. Brain Res 1999, 72, 138–146. [Google Scholar]
- Ozaki, N.; Chuang, D.M. Lithium increases transcription factor binding to AP-1 and cyclic AMP-responsive element in cultured neurons and rat brain. J. Neurochem 1997, 69, 2336–2344. [Google Scholar]
- Yuan, P.X.; Chen, G.; Huang, L.D.; Manji, H.K. Lithium stimulates gene expression through the AP-1 transcription factor pathway. Brain Res. Mol. Brain Res 1998, 58, 225–230. [Google Scholar]
- Manji, H.K.; Bebchuk, J.M.; Moore, G.J.; Glitz, D.; Hasanat, K.A.; Chen, G. Modulation of CNS signal transduction pathways and gene expression by mood-stabilizing agents: Therapeutic implications. J. Clin. Psychiatry 1999, 60 Suppl 2, 27–39, Discussion 40–41, 113–116.. [Google Scholar]
- Yuan, P.; Chen, G.; Manji, H.K. Lithium activates the c-Jun NH2-terminal kinases in vitro and in the CNS in vivo. J. Neurochem. 1999, 73, 2299–2309. [Google Scholar]
- Chen, G.; Masana, M.I.; Manji, H.K. Lithium regulates PKC-mediated intracellular cross-talk and gene expression in the CNS in vivo. Bipolar Disord. 2000, 2, 217–236. [Google Scholar]
- Rao, J.S.; Rapoport, S.I.; Bosetti, F. Decrease in the AP-2 DNA-binding activity and in the protein expression of AP-2 alpha and AP-2 beta in frontal cortex of rats treated with lithium for 6 weeks. Neuropsychopharmacology 2005, 30, 2006–2013. [Google Scholar]
- Miller, J.C.; Jiménez, P.; Mathé, A.A. Restraint stress influences AP-1 and CREB DNA-binding activity induced by chronic lithium treatment in the rat frontal cortex and hippocampus. Int. J. Neuropsychopharmacol 2007, 10, 609–619. [Google Scholar]
- Gao, X.M.; Fukamauchi, F.; Chuang, D.M. Long-term biphasic effects of lithium treatment on phospholipase C-coupled M3-muscarinic acetylcholine receptors in cultured cerebellar granule cells. Neurochem. Int 1993, 22, 395–403. [Google Scholar]
- Pennypacker, K.R.; Walczak, D.; Thai, L.; Fannin, R.; Mason, E.; Douglass, J.; Hong, J.S. Kainate-induced changes in opioid peptide genes and AP-1 protein expression in the rat hippocampus. J. Neurochem 1993, 60, 204–211. [Google Scholar]
- Kim, H.C.; Pennypacker, K.R.; Bing, G.; Bronstein, D.; McMillian, M.K.; Hong, J.S. The effects of dextromethorphan on kainic acid-induced seizures in the rat. Neurotoxicology 1996, 17, 375–385. [Google Scholar]
- Kim, H.C.; Bing, G.; Jhoo, W.K.; Ko, K.H.; Kim, W.K.; Lee, D.C.; Shin, E.J.; Hong, J.S. Dextromethorphan modulates the AP-1 DNA-binding activity induced by kainic acid. Brain Res 1999, 824, 125–132. [Google Scholar]
- Kim, H.C.; Bing, G.; Jhoo, W.K.; Kim, W.K.; Shin, E.J.; Im, D.H.; Kang, K.S.; Ko, K.H. Metabolism to dextrorphan is not essential for dextromethorphan’s anticonvulsant activity against kainate in mice. Life Sci 2003, 72, 769–783. [Google Scholar]
- Lee, K.H.; Ahn, J.I.; Yu, D.H.; Koh, H.C.; Kim, S.H.; Yang, B.H.; Lee, Y.S.; Lee, Y.S. Dextromethorphan alters gene expression in rat brain hippocampus and cortex. Int. J. Mol. Med 2003, 11, 559–568. [Google Scholar]
- Anderson, A.N.; Roncaroli, F.; Hodges, A.; Deprez, M.; Turkheimer, F.E. Chromosomal profiles of gene expression in Huntington’s disease. Brain 2008, 131, 381–388. [Google Scholar]
- Leng, Y.; Fessler, E.B.; Chuang, D.M. Neuroprotective effects of the mood stabilizer lamotrigine against glutamate excitotoxicity: Roles of chromatin remodelling and Bcl-2 induction. Int. J. Neuropsychopharmacol 2013, 16, 607–620. [Google Scholar]
- Onishchenko, N.; Karpova, N.; Sabri, F.; Castrén, E.; Ceccatelli, S. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. J. Neurochem 2008, 106, 1378–1387. [Google Scholar]
- Covington, H.E., 3rd; Vialou, V.F.; LaPlant, Q.; Ohnishi, Y.N.; Nestler, E.J. Hippocampal-dependent antidepressant-like activity of histone deacetylase inhibition. Neurosci. Lett 2011, 493, 122–126. [Google Scholar]
- Rouaux, C.; Panteleeva, I.; René, F.; Gonzalez de Aguilar, J.L.; Echaniz-Laguna, A.; Dupuis, L.; Menger, Y.; Boutillier, A.L.; Loeffler, J.P. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J. Neurosci 2007, 27, 5535–5545. [Google Scholar]
- Abumaria, N.; Rygula, R.; Hiemke, C.; Fuchs, E.; Havemann-Reinecke, U.; Rüther, E.; Flügge, G. Effect of chronic citalopram on serotonin-related and stress-regulated genes in the dorsal raphe nucleus of the rat. Eur. Neuropsychopharmacol 2007, 17, 417–429. [Google Scholar]
- Chen, R.-W.; Chuang, D.-M. Long-term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. J. Biol. Chem 1999, 274, 6039–6042. [Google Scholar]
- Davenport, C.M.; Sevastou, I.G.; Hooper, C.; Pocock, J.M. Inhibiting p53 pathways in microglia attenuates microglial-evoked neurotoxicity following exposure to Alzheimer peptides. J. Neurochem 2010, 112, 552–563. [Google Scholar]
- Mao, C.D.; Hoang, P.; DiCorleto, P.E. Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J. Biol. Chem 2001, 276, 26180–26188. [Google Scholar]
- Tasdemir, E.; Maiuri, M.C.; Galluzzi, L.; Vitale, I.; Djavaheri-Mergny, M.; D’Amelio, M.; Criollo, A.; Morselli, E.; Zhu, C.; Harper, F.; et al. Regulation of autophagy by cytoplasmic p53. Nat. Cell Biol 2008, 10, 676–687. [Google Scholar]
- Lu, R.; Song, L.; Jope, R.S. Lithium attenuates p53 levels in human neuroblastoma SH-SY5Y cells. Neuroreport 1999, 10, 1123–1125. [Google Scholar]
- Tsui, M.M.; Tai, W.C.; Wong, W.Y.; Hsiao, W.L. Selective G2/M arrest in a p53(Val135)-transformed cell line induced by lithium is mediated through an intricate network of MAPK and β-catenin signaling pathways. Life Sci 2012, 91, 312–321. [Google Scholar]
- Wu, Y.; Shi, X.; Liu, Y.; Zhang, X.; Wang, J.; Luo, X.; Wen, A. Histone deacetylase 1 is required for carbamazepine-induced CYP3A4 expression. J. Pharm. Biomed. Anal 2012, 58, 78–82. [Google Scholar]
- Zhu, Y.F.; Ye, B.G.; Shen, J.Z.; Lin, C.M.; Lin, F.A.; Shen, S.F.; Xu, C.B. Inhibitory effect of VPA on multiple myeloma U266 cell proliferation and regulation of histone acetylation. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010, 18, 638–641. [Google Scholar]
- Liu, S.; Klisovic, R.B.; Vukosavljevic, T.; Yu, J.; Paschka, P.; Huynh, L.; Pang, J.; Neviani, P.; Liu, Z.; Blum, W.; et al. Targeting AML1/ETO-histone deacetylase repressor complex: A novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J. Pharmacol. Exp. Ther 2007, 321, 953–960. [Google Scholar]
- Liu, P.; Tian, X.; Shi, G.R.; Jiang, F.Y.; Liu, B.Q.; Zhang, Z.H.; Zhao, L.; Yan, L.N.; Liang, Z.Q.; Hao, C.L. Inhibitory effect of valproic acid on xenografted Kasumi-1 tumor growth in nude mouse and its mechanism. Zhonghua Xue Ye Xue Za Zhi 2011, 32, 458–462. [Google Scholar]
- Hrzenjak, A.; Moinfar, F.; Kremser, M.L.; Strohmeier, B.; Staber, P.B.; Zatloukal, K.; Denk, H. Valproate inhibition of histone deacetylase 2 affects differentiation and decreases proliferation of endometrial stromal sarcoma cells. Mol. Cancer Ther 2006, 5, 2203–2210. [Google Scholar]
- Vallo, S.; Xi, W.; Hudak, L.; Juengel, E.; Tsaur, I.; Wiesner, C.; Haferkamp, A.; Blaheta, R.A. HDAC inhibition delays cell cycle progression of human bladder cancer cells in vitro. Anticancer Drugs 2011, 22, 1002–1009. [Google Scholar]
- Mao, X.; Hou, T.; Cao, B.; Wang, W.; Li, Z.; Chen, S.; Fei, M.; Hurren, R.; Gronda, M.; Wu, D.; et al. The tricyclic antidepressant amitriptyline inhibits d-cyclin transactivation and induces myeloma cell apoptosis by inhibiting histone deacetylases: In vitro and in silico evidence. Mol. Pharmacol 2011, 79, 672–680. [Google Scholar]
- Ookubo, M.; Kanai, H.; Aoki, H.; Yamada, N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: Brain region specific changes. J. Psychiatr. Res 2013, 47, 1204–1214. [Google Scholar]
- Calabrese, F.; Luoni, A.; Guidotti, G.; Racagni, G.; Fumagalli, F.; Riva, M.A. Modulation of neuronal plasticity following chronic concomitant administration of the novel antipsychotic lurasidone with the mood stabilizer valproic acid. Psychopharmacology (Berl.) 2013, 226, 101–112. [Google Scholar]
- Bradbury, C.A.; Khanim, F.L.; Hayden, R.; Bunce, C.M.; White, D.A.; Drayson, M.T.; Craddock, C.; Turner, B.M. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 2005, 19, 1751–1759. [Google Scholar]
- Cassel, S.; Carouge, D.; Gensburger, C.; Anglard, P.; Burgun, C.; Dietrich, J.B.; Aunis, D.; Zwiller, J. Fluoxetine and cocaine induce the epigenetic factors MeCP2 and MBD1 in adult rat brain. Mol. Pharmacol 2006, 70, 487–492. [Google Scholar]
- Hunsberger, J.G.; Fessler, E.B.; Chibane, F.L.; Leng, Y.; Maric, D.; Elkahloun, A.G.; Chuang, D.M. Mood stabilizer-regulated miRNAs in neuropsychiatric and neurodegenerative diseases: Identifying associations and functions. Am. J. Transl. Res 2013, 5, 450–464. [Google Scholar]
- Sinha, M.; Ghose, J.; Bhattarcharyya, N.P. Micro RNA-214, -150, -146a and -125b target Huntingtin gene. RNA Biol 2011, 8, 1005–1021. [Google Scholar]
- Melo, C.A.; Drost, J.; Wijchers, P.J.; van de Werken, H.; de Wit, E.; Oude Vrielink, J.A.F.; Elkon, R.; Melo, S.A.; Léveill, N.; Kalluri, R.; et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Mol. Cell 2012, 49, 524–535. [Google Scholar]
- Benchoua, A.; Trioulier, Y.; Diguet, E.; Malgorn, C.; Gaillard, M.C.; Dufour, N.; Elalouf, J.M.; Krajewski, S.; Hantraye, P.; Déglon, N.; et al. Dopamine determines the vulnerability of striatal neurons to the N-terminal fragment of mutant huntingtin through the regulation of mitochondrial complex II. Hum. Mol. Genet 2008, 17, 1446–1456. [Google Scholar]
- Tang, T.S.; Slow, E.; Lupu, V.; Stavrovskaya, I.G.; Sugimori, M.; Llinás, R.; Kristal, B.S.; Hayden, M.R.; Bezprozvanny, I. Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 2602–2607. [Google Scholar]
- Kumar, P.; Kumar, A. Possible role of sertraline against 3-nitropropionic acid induced behavioral, oxidative stress and mitochondrial dysfunctions in rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 100–108. [Google Scholar]
- Kumar, P.; Kalonia, H.; Kumar, A. Nitric oxide mechanism in the protective effect of antidepressants against 3-nitropropionic acid-induced cognitive deficit, glutathione and mitochondrial alterations in animal model of Huntington’s disease. Behav. Pharmacol 2010, 21, 217–230. [Google Scholar]
- Kumar, P.; Kalonia, H.; Kumar, A. Novel protective mechanisms of antidepressants against 3-nitroproprionic acid induced Huntington’s-like symptoms: A comparative study. J. Psychopharmacol 2011, 25, 1399–1411. [Google Scholar]
- Wang, X.; Sirianni, A.; Pei, Z.; Cormier, K.; Smith, K.; Jiang, J.; Zhou, S.; Wang, H.; Zhao, R.; Yano, H.; et al. The melatonin MT1 receptor axis modulates mutant Huntingtin-mediated toxicity. J. Neurosci 2011, 31, 14496–14507. [Google Scholar]
- Sarantos, M.R.; Papanikolaou, T.; Ellerby, L.M.; Hughes, R.E. Pizotifen activates ERK and provides neuroprotection in vitro and in vivo in models of Huntington’s disease. J. Huntington’s Dis 2012, 1, 195–210. [Google Scholar]
- Senatorov, V.V.; Ren, M.; Kanai, H.; Wei, H.; Chuang, D.M. Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington’s disease. Mol. Psychiatry 2004, 9, 371–385. [Google Scholar]
- Pouladi, M.A.; Brillaud, E.; Xie, Y.; Conforti, P.; Graham, R.K.; Ehrnhoefer, D.E.; Franciosi, S.; Zhang, W.; Poucheret, P.; Compte, E.; et al. NP03, a novel low-dose lithium formulation, is neuroprotective in the YAC128 mouse model of Huntington disease. Neurobiol. Dis 2012, 48, 282–289. [Google Scholar]
- Yasuda, S.; Liang, M.H.; Marinova, Z.; Yahyavi, A.; Chuang, D.M. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol. Psychiatry 2009, 14, 51–59. [Google Scholar]
- Grote, H.E.; Bull, N.D.; Howard, M.L.; van Dellen, A.; Blakemore, C.; Bartlett, P.F.; Hannan, A.J. Cognitive disorders and neurogenesis deficits in Huntington’s disease mice are rescued by fluoxetine. Eur. J. Neurosci 2005, 22, 2081–2088. [Google Scholar]
- Zuccato, C.; Marullo, M.; Vitali, B.; Tarditi, A.; Mariotti, C.; Valenza, M.; Lahiri, N.; Wild, E.J.; Sassone, J.; Ciammola, A.; et al. Brain-derived neurotrophic factor in patients with Huntington’s disease. PLoS One 2011, 6, e22966. [Google Scholar]
- Charvin, D.; Roze, E.; Perrin, V.; Deyts, C.; Betuing, S.; Pagès, C.; Régulier, E.; Luthi-Carter, R.; Brouillet, E.; Déglon, N.; et al. Haloperidol protects striatal neurons from dysfunction induced by mutated huntingtin in vivo. Neurobiol. Dis. 2008, 29, 22–29. [Google Scholar]
- Tang, T.S.; Chen, X.; Liu, J.; Bezprozvanny, I. Dopaminergic signaling and striatal neurodegeneration in Huntington’s disease. J. Neurosci 2007, 27, 7899–7910. [Google Scholar]
- Wang, H.; Chen, X.; Li, Y.; Tang, T.S.; Bezprozvanny, I. Tetrabenazine is neuroprotective in Huntington’s disease mice. Mol. Neurodegener 2010, 5, 18. [Google Scholar]
- Crespo-Biel, N.; Camins, A.; Pallas, M.; Canudas, A.M. Evidence of calpain/cdk5 pathway inhibition by lithium in 3-nitropropionic acid toxicity in vivo and in vitro. Neuropharmacology 2009, 56, 422–428. [Google Scholar]
- Wood, N.I.; Morton, A.J. Chronic lithium chloride treatment has variable effects on motor behaviour and survival of mice transgenic for the Huntington’s disease mutation. Brain Res. Bull 2003, 61, 375–383. [Google Scholar]
- Zádori, D.; Geisz, A.; Vamos, E.; Vecsei, L.; Klivenyi, P. Valproate ameliorates the survival and the motor performance in a transgenic mouse model of Huntington’s disease. Pharmacol. Biochem. Behav 2009, 94, 148–153. [Google Scholar]
- Wang, H.; Guan, Y.; Wang, X.; Smith, K.; Cormier, K.; Zhu, S.; Stavrovskaya, I.G.; Huo, C.; Ferrante, R.J.; Kristal, B.S.; et al. Nortriptyline delays disease onset in models of chronic neurodegeneration. Eur. J. Neurosci 2007, 26, 633–641. [Google Scholar]
- Cheng, Y.; Peng, Q.; Hou, Z.; Aggarwal, M.; Zhang, J.; Mori, S.; Ross, C.A.; Duan, W. Structural MRI detects progressive regional brain atrophy and neuroprotective effects in N171-92Q Huntington’s disease mouse model. Neuroimage 2011, 56, 1027–1034. [Google Scholar]
- Aggarwal, M.; Duan, W.; Hou, Z.; Rakesh, N.; Peng, Q.; Ross, C.A.; Miller, M.I.; Mori, S.; Zhang, J. Spatiotemporal mapping of brain atrophy in mouse models of Huntington’s disease using longitudinal in vivo magnetic resonance imaging. Neuroimage 2012, 60, 2086–2095. [Google Scholar]
- Danivas, V.; Moily, N.S.; Thimmaiah, R.; Muralidharan, K.; Purushotham, M.; Muthane, U.; Jain, S. Off label use of lithium in the treatment of Huntington’s disease: A case series. Indian J. Psychiatry 2013, 55, 81–83. [Google Scholar]
- Clinical Trials.gov. Available online: http://www.ClinicalTrials.gov (accessed on 25 September 2013).
- Mestre, T.; Ferreira, J.; Coelho, M.M.; Rosa, M.; Sampaio, C. Therapeutic interventions for disease progression in Huntington’s disease. Cochrane Database Syst. Rev 2009. [Google Scholar] [CrossRef]
- Kremer, B.; Clark, C.M.; Almqvist, E.W.; Raymond, L.A.; Graf, P.; Jacova, C.; Mezei, M.; Hardy, M.A.; Snow, B.; Martin, W.; et al. Influence of lamotrigine on progression of early Huntington disease: A randomized clinical trial. Neurology 1999, 53, 1000–1011. [Google Scholar]
- Huntington Study Group DOMINO Investigators. A futility study of minocycline in Huntington’s disease. Mov. Disord 2010, 25, 2219–2224.
- Shoulson, I.; Odoroff, C.; Oakes, D.; Behr, J.; Goldblatt, D.; Caine, E.; Kennedy, J.; Miller, C.; Bamford, K.; Rubin, A.; et al. A controlled clinical trial of baclofen as protective therapy in early Huntington’s disease. Ann. Neurol 1989, 25, 252–259. [Google Scholar]
- Landwehrmeyer, G.B.; Dubois, B.; de Yébenes, J.G.; Kremer, B.; Gaus, W.; Kraus, P.H.; Przuntek, H.; Dib, M.; Doble, A.; Fischer, W.; et al. Riluzole in Huntington’s disease: A 3-year, randomized controlled study. Ann. Neurol 2007, 62, 262–272. [Google Scholar]
- Puri, B.K.; Leavitt, B.R.; Hayden, M.R.; Ross, C.A.; Rosenblatt, A.; Greenamyre, J.T.; Hersch, S.; Vaddadi, K.S.; Sword, A.; Horrobin, D.F.; et al. Ethyl-EPA in Huntington disease: A double-blind, randomized, placebo-controlled trial. Neurology 2005, 65, 286–292. [Google Scholar]
- The Huntington study group. A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington’s disease. Neurology 2001, 57, 397–404.
- Ranen, N.G.; Peyser, C.E.; Coyle, J.T.; Bylsma, F.W.; Sherr, M.; Day, L.; Folstein, M.F.; Brandt, J.; Ross, C.A.; Folstein, S.E. A controlled trial of idebenone in Huntington’s disease. Mov. Disord 1996, 11, 549–554. [Google Scholar]
- Verbessem, P.; Lemiere, J.; Eijnde, B.O.; Swinnen, S.; Vanhees, L.; van Leemputte, M.; Hespel, P.; Dom, R. Creatine supplementation in Huntington’s disease: A placebo-controlled pilot trial. Neurology 2003, 61, 925–930. [Google Scholar]
- Lauterbach, E.C. Use of psychotropic medication in Alzheimer’s disease is associated with more rapid cognitive and functional decline. Evid. Based Med 2013. [Google Scholar] [CrossRef]
- Weir, D.W.; Sturrock, A.; Leavitt, B.R. Development of biomarkers for Huntington’s disease. Lancet Neurol 2011, 10, 573–590. [Google Scholar]
- Paulsen, J.S.; Langbehn, D.R.; Stout, J.C.; Aylward, E.; Ross, C.A.; Nance, M.; Guttman, M.; Johnson, S.; MacDonald, M.; Beglinger, L.J.; et al. Detection of Huntington’s disease decades before diagnosis: The predict-HD study. J. Neurol. Neurosurg. Psychiatry 2008, 79, 874–880. [Google Scholar]
- Tabrizi, S.J.; Scahill, R.I.; Durr, A.; Roos, R.A.; Leavitt, B.R.; Jones, R.; Landwehrmeyer, G.B.; Fox, N.C.; Johnson, H.; Hicks, S.L.; et al. Biological and clinical changes in premanifest and early stage Huntington’s disease in the TRACK-HD study: The 12-month longitudinal analysis. Lancet Neurol 2011, 10, 31–42. [Google Scholar]
- Hu, Y.; Chopra, V.; Chopra, R.; Locascio, J.J.; Liao, Z.; Ding, H.; Zheng, B.; Matson, W.R.; Ferrante, R.J.; Rosas, H.D.; et al. Transcriptional modulator H2A histone family, member Y (H2AFY) marks Huntington disease activity in man and mouse. Proc. Natl. Acad. Sci. USA 2011, 108, 17141–17146. [Google Scholar]
- Georgiou-Karistianis, N.; Scahill, R.; Tabrizi, S.J.; Squitieri, F.; Aylward, E. Structural MRI in Huntington’s disease and recommendations for its potential use in clinical trials. Neurosci. Biobehav. Rev 2013, 37, 480–490. [Google Scholar]
- Aylward, E.H.; Sparks, B.F.; Field, K.M.; Yallapragada, V.; Shpritz, B.D.; Rosenblatt, A.; Brandt, J.; Gourley, L.M.; Liang, K.; Zhou, H.; et al. Onset and rate of striatal atrophy in preclinical Huntington disease. Neurology 2004, 63, 66–72. [Google Scholar]
- Van Den Bogaard, S.J.A.; Dumas, E.M.; Acharya, T.P.; Johnson, H.; Langbehn, D.R.; Scahill, R.I.; Tabrizi, S.J.; van Buchem, M.A.; van Der Grond, J.; Roos, R.A.C. Early atrophy of pallidum and accumbens nucleus in Huntington’s disease. J. Neurol 2011, 258, 412–420. [Google Scholar]
- Aylward, E.H.; Nopoulos, P.C.; Ross, C.A.; Langbehn, D.R.; Pierson, R.K.; Mills, J.A.; Johnson, H.J.; Magnotta, V.A.; Juhl, A.R.; Paulsen, J.S. Longitudinal change in regional brain volumes in prodromal Huntington disease. J. Neurol. Neurosurg. Psychiatry 2011, 82, 405–410. [Google Scholar]
- Tabrizi, S.J.; Reilmann, R.; Roos, R.A.; Durr, A.; Leavitt, B.; Owen, G.; Jones, R.; Johnson, H.; Craufurd, D.; Hicks, S.L.; et al. Potential endpoints for clinical trials in premanifest and early Huntington’s disease in the TRACK-HD study: Analysis of 24 month observational data. Lancet Neurol 2012, 11, 42–53. [Google Scholar]
- Ruocco, H.H.; Bonilha, L.; Li, L.M.; Lopes-Cendes, I.; Cendes, F. Longitudinal analysis of regional grey matter loss in Huntington disease: Effects of the length of the expanded CAG repeat. J. Neurol. Neurosurg. Psychiatry 2008, 79, 130–135. [Google Scholar]
- Majid, D.S.; Aron, A.R.; Thompson, W.; Sheldon, S.; Hamza, S.; Stoffers, D.; Holland, D.; Goldstein, J.; Corey-Bloom, J.; Dale, A.M. Basal ganglia atrophy in prodromal Huntington’s disease is detectable over one year using automated segmentation. Mov. Disord 2011, 26, 2544–2551. [Google Scholar]
- Hobbs, N.Z.; Henley, S.M.; Ridgway, G.R.; Wild, E.J.; Barker, R.A.; Scahill, R.I.; Barnes, J.; Fox, N.C.; Tabrizi, S.J. The progression of regional atrophy in premanifest and early Huntington’s disease: A longitudinal voxel-based morphometry study. J. Neurol. Neurosurg. Psychiatry 2010, 81, 756–763. [Google Scholar]
- Aylward, E.H.; Li, Q.; Stine, O.C.; Ranen, N.; Sherr, M.; Barta, P.E.; Bylsma, F.W.; Pearlson, G.D.; Ross, C.A. Longitudinal change in basal ganglia volume in patients with Huntington’s disease. Neurology 1997, 48, 394–399. [Google Scholar]
- Henley, S.M.D.; Wild, E.J.; Hobbs, N.Z.; Scahill, R.I.; Ridgway, G.R.; MacManus, D.G.; Barker, R.A.; Fox, N.C.; Tabrizi, S.J. Relationship between CAG repeat length and brain volume in premanifest and early Huntington’s disease. J. Neurol 2009, 256, 203–212. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lauterbach, E.C. Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease. Int. J. Mol. Sci. 2013, 14, 22558-22603. https://doi.org/10.3390/ijms141122558
Lauterbach EC. Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease. International Journal of Molecular Sciences. 2013; 14(11):22558-22603. https://doi.org/10.3390/ijms141122558
Chicago/Turabian StyleLauterbach, Edward C. 2013. "Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease" International Journal of Molecular Sciences 14, no. 11: 22558-22603. https://doi.org/10.3390/ijms141122558
APA StyleLauterbach, E. C. (2013). Neuroprotective Effects of Psychotropic Drugs in Huntington’s Disease. International Journal of Molecular Sciences, 14(11), 22558-22603. https://doi.org/10.3390/ijms141122558