Effect of Exogenous Factors on Bacteriocin Production from Lactobacillus paracasei J23 by Using a Resting Cell System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Establishment of the Resting Cell System
2.2. Effects of Amino Acid
2.3. Effects of Glycerol
2.4. Effects of Pyruvic Acid
2.5. Effects of Bacteriocin as Self-Inducer
3. Experimental Section
3.1. Microorganisms
3.2. Antimicrobial Activity Assay
3.3. Resting Cell System
3.4. Nucleic Acid Content
3.5. Exogenous Inducers Selection
3.6. Self-Induction of Bacteriocin
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Heunis, T.; Bshena, O.; Klumperman, B. Release of bacteriocins from nanofibers prepared with combinations of poly(d,l-lactide) (PDLLA) and poly(ethylene oxide) (PEO). Int. J. Mol. Sci 2011, 12, 2158–2173. [Google Scholar]
- Zoumpopoulou, G.; Pepelassi, E.; William, P.; Georgalaki, M.; Maragkoudakis, P.A.; Tarantilis, P.A.; Polissiou, M.; Tsakalidou, E.; Papadimitriou, K. Incidence of bacteriocins produced by food-related lactic acid bacteria active towards oral pathogens. Int. J. Mol. Sci 2013, 14, 4640–4654. [Google Scholar]
- Papagianni, M. Ribosomally synthesized peptides with antimicrobial properties: Biosynthesis, structure, function, and applications. Biotechnol. Adv 2003, 21, 465–499. [Google Scholar]
- Deegan, L.H.; Cotter, P.D.; Hill, C.; Ross, P. Bacteriocins: Biological tools for bio-preservation and shelf-life extension. Int. Dairy J 2006, 16, 1058–1071. [Google Scholar]
- Sullivan, L.O.; Ross, R.P.; Hill, C. Potential of bacteriocin-producing lactic acid bacteria for improvements in food safety and quality. Biochimie 2002, 84, 593–604. [Google Scholar]
- Macwana, S.J.; Muriana, P.M. A ‘bacteriocin PCR array’ for identification of bacteriocin-related structural genes in lactic acid bacteria. J. Microbiol. Methods 2012, 88, 197–204. [Google Scholar]
- Papagiannia, M.; Papamichael, E.M. Purification, amino acid sequence and characterization of the class IIa bacteriocin weissellin A, produced by Weissella paramesenteroides DX. Bioresour. Technol 2011, 102, 6730–6734. [Google Scholar]
- Vazquez, J.A.; Gonzalez, M.P.; Murado, M.A. Preliminary tests on nisin and pediocin production using waste protein sources: Factorial and kinetic studies. Bioresour. Technol 2006, 97, 605–613. [Google Scholar] [Green Version]
- Leroy, F.; Vuyst, L.D. Bacteriocin production by Enterococcus faecium RZS C5 is cell density limited and occurs in the very early growth phase. Int. J. Food Microbiol 2002, 72, 155–164. [Google Scholar]
- Avonts, L.; Uytven, E.V.; Vuyst, L.D. Cell growth and bacteriocin production of probiotic Lactobacillus strains in different media. Int. Dairy J 2004, 14, 947–955. [Google Scholar]
- Li, C.; Bai, J.; Cai, Z.; Ouyang, F. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J. Biotechnol 2002, 93, 27–34. [Google Scholar]
- Halami, P.M.; Chandrashekar, A. Enhanced production of pediocin C20 by a native strain of Pediococcus acidilactici C20 in an optimized food-grade medium. Process Biochem 2005, 40, 1835–1840. [Google Scholar]
- Todorov, S.D.; Dicks, L.M.T. Effect of modified MRS medium on production and purification of antimicrobial peptide ST4SA produced by Enterococcus mundtii. Anaerobe 2009, 15, 65–73. [Google Scholar]
- Rajesh, T.; Kayalvizhi, N.; Gunasekaran, P. Influence of medium components and fermentation conditions on the production of bacteriocin(s) by Bacillus licheniformis AnBa9. Bioresour. Technol 2009, 100, 872–877. [Google Scholar]
- Mataragas, M.; Metaxopoulos, J.; Galiotou, M.; Drosinos, E.H. Influence of pH and temperature on growth and bacteriocin production by Leuconostoc mesenteroides L124 and Lactobacillus curvatus L442. Meat Sci 2003, 64, 265–271. [Google Scholar]
- Guerra, N.P.; Pastrana, L. Modelling the influence of pH on the kinetics of both nisin and pediocin production and characterization of their functional properties. Process Biochem 2002, 37, 1005–1015. [Google Scholar]
- Kim, M.H.; Kong, Y.J.; Baek, H.; Hyun, H.H. Optimizationof culture conditions and medium composition for theproduction of Micrococcin GO5 by Micrococcus sp. GO5. J. Biotechnol 2006, 121, 54–61. [Google Scholar]
- Todorov, S.; Dicks, L.M.T. Influence of growth conditions on the production of a bacteriocin by Lactococcus lactis subsp. lactis ST34BR, a strain isolated from barley beer. J. Basic Microbiol 2004, 4, 305–316. [Google Scholar]
- Pattnaik, P.; Grover, S.; Batish, V. Effect of environmental factors on production of lichenin, a chromosomally encoded bacteriocin like compound produced by Bacillus licheniformis 26L-10/3RA. Microbiol. Res 2005, 160, 213–218. [Google Scholar]
- Blomqvist, T.; Steinmoen, H.; Havarstein, L.S. Pheromone-induced expression of recombinant proteins in Streptococcus thermophilus. Arch. Microbiol 2006, 186, 465–473. [Google Scholar]
- Hakim, G.; Noreddine, B.; Dalié, D.D.; Frank, D.; Philippe, T. Comparison of the performances of different fermentation strategies on cell growth and bacteriocin production by Lactobacillus curvatus CWBI-B28. J. Sci. Food Agric 2007, 87, 541–549. [Google Scholar]
- Tobajas, M.; Mohedano, A.F.; Casas, J.A. A kinetic study of reuterin production by Lactobacillus reuteri PRO 137 in resting cells. Biochem. Eng. J 2007, 35, 218–225. [Google Scholar]
- Kieronczyk, A.; Skeie, S.; Olsen, K.; Langsrud, T. Metabolism of amino acids by resting cells of non-starter lactobacilli in relation to flavour development in cheese. Int. Dairy J 2001, 11, 217–224. [Google Scholar]
- Meghrous, J.; Huot, E.; Quittelier, M.; Petitdemange, H. Regulation of nisin biosynthesis by continuous cultures and by resting cells of Lactococcus lactis subsp. lactis. Res. Microbiol 1992, 143, 879–890. [Google Scholar]
- Wang, Z.; Chen, S.; Ruan, L.; Sun, M.; Yu, Z. A fundamental regulatory role of formate on thuringiensin production by resting cell of Bacillus thuringiensis YBT-032. Bioprocess Biosyst. Eng 2007, 30, 225–229. [Google Scholar]
- Yi, H.; Zhang, L.; Han, X.; Du, M.; Zhang, Y.; Li, J.; Hou, Y. Isolation and applied potential of lactic acid bacteria from Chinese traditional fermented food in specific ecological localities. Food Sci. Biotechnol 2011, 6, 1685–1690. [Google Scholar]
- Yi, H.; Han, X.; Du, M.; Zhang, L. Effect of MRS medium components on bacteriocin Bac-J23 production from Lactobacillus J23. China Brew 2012, 5, 56–58. (in Chinese). [Google Scholar]
- Cladera-Olivera, F.; Caron, G.R.; Brandelli, A. Bacteriocin production by Bacillus licheniformis strain P40 in cheese whey using response surface methodology. Biochem. Eng. J 2004, 21, 53–58. [Google Scholar]
- Yi, H.; Zhang, L.; Han, X.; Du, M. Optimum condition of Bac-J23 production from Lactobacillus J23. Food Sci. Technol 2012, 3, 35–39. (in Chinese). [Google Scholar]
- Yi, H.; Zhang, L.; Han, X.; Yang, Y. Purification and partial charaters of Bacteriocin Lac-B23 from lactic acid bacteria. Food Sci. Technol 2013. Submitted for publication, in Chinese. [Google Scholar]
- Vázquez, J.A.; Cabo, M.L.; González, M.P.; Murado, M.A. The role of amino acids in nisin and pediocin production by two lactic acid bacteria: A factorial study. Enzyme Microbial. Technol 2004, 34, 319–325. [Google Scholar]
- Kleerebezem, M. Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. Peptides 2004, 25, 1405–1414. [Google Scholar]
- Peng, J.S.; Meng, F.M.; Ai, Y.C. Time-dependent fermentation control strategies for enhancing synthesis of marine bacteriocin 1701 using artificial neural network and genetic algorithm. Bioresour. Technol 2013, 138, 345–352. [Google Scholar]
- Straume, D.; Kjos, M.; Nes, I.F.; Diep, D.B. Quorum-sensing based bacteriocin production is down-regulated by N-terminally truncated species of gene activators. Mol. Genet. Genomics 2007, 278, 283–293. [Google Scholar]
Ingredient (g/L) | Candidate culture medium for resting cell system | ||||
---|---|---|---|---|---|
#1 | #2 | #3 | #4 | #5 | |
Peptone | 10 | - | - | - | - |
Beef extract | 10 | - | - | - | - |
Yeast extract | 5 | 5 | - | - | - |
Glucose | 20 | 20 | 20 | 20 | 20 |
NaAC | 5 | 5 | 5 | 5 | 5 |
Ammonium citrate dibasic | 2 | 2 | - | - | 1 |
MnSO4 | 0.25 | 0.25 | 0.25 | - | 0.25 |
MgSO4 | 0.58 | 0.58 | 0.5 | - | 0.5 |
KH2PO4 | 2 | 2 | - | - | 1 |
Activity (U) | 960 | 160 | 80 | 0 | 160 |
ΔNucleic acid (g/L) | 2.14 | 1.89 | −0.11 | −0.20 | 0.05 |
Medium | Before resting culture | After resting culture | ||||
---|---|---|---|---|---|---|
DCW (g/L) | NAC (g/L) | Antimicrobial activity (U) | DCW (g/L) | NAC (g/L) | Antimicrobial activity (U) | |
#5 | 2.82 | 0.85 | 0 | 2.86 | 0.87 | 160 |
Control | 2.79 | 0.76 | 0 | 2.71 | 0.69 | 0 |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yi, H.; Han, X.; Yang, Y.; Liu, W.; Liu, H.; Zhang, Y.; Sun, K.; Zhang, L.; Ma, F. Effect of Exogenous Factors on Bacteriocin Production from Lactobacillus paracasei J23 by Using a Resting Cell System. Int. J. Mol. Sci. 2013, 14, 24355-24365. https://doi.org/10.3390/ijms141224355
Yi H, Han X, Yang Y, Liu W, Liu H, Zhang Y, Sun K, Zhang L, Ma F. Effect of Exogenous Factors on Bacteriocin Production from Lactobacillus paracasei J23 by Using a Resting Cell System. International Journal of Molecular Sciences. 2013; 14(12):24355-24365. https://doi.org/10.3390/ijms141224355
Chicago/Turabian StyleYi, Huaxi, Xue Han, Yanyan Yang, Wenli Liu, Hui Liu, Yingchun Zhang, Kai Sun, Lanwei Zhang, and Fang Ma. 2013. "Effect of Exogenous Factors on Bacteriocin Production from Lactobacillus paracasei J23 by Using a Resting Cell System" International Journal of Molecular Sciences 14, no. 12: 24355-24365. https://doi.org/10.3390/ijms141224355
APA StyleYi, H., Han, X., Yang, Y., Liu, W., Liu, H., Zhang, Y., Sun, K., Zhang, L., & Ma, F. (2013). Effect of Exogenous Factors on Bacteriocin Production from Lactobacillus paracasei J23 by Using a Resting Cell System. International Journal of Molecular Sciences, 14(12), 24355-24365. https://doi.org/10.3390/ijms141224355