Contributions of Microdialysis to New Alternative Therapeutics for Hepatic Encephalopathy
Abstract
:1. Introduction
2. Biochemistry Alterations in HE
2.1. Etiology
2.2. Clinical Characteristics
2.3. Therapeutic Approach
2.3.1. Dealing with Precipitating Factors of Hyperammonemia and Accumulation of Toxic Metabolites
2.3.2. Lowering Blood and Cerebral Ammonia Levels
2.3.3. Pharmacological Approach
2.3.4. Novel Approaches and Strategies under Development
2.4. Prognosis
3. Microdialysis Technique
General Characteristics
4. Microdialysis in the Study of Encephalopathies
4.1. Microdialysis Contributions in Understanding Mechanisms That Induce HE
4.2. Microdialysis Applied to the Study of Hepatic Encephalopathy Therapeutic Treatments
4.2.1. l-Ornithine and l-Ornithine-l-Aspartate Study
4.2.2. Venlafaxine Studies
4.2.3. Citalopram Studies
4.2.4. Lubeluzole Study
4.2.5. Sildenafil Study
4.2.6. Ibuprofen Study
5. Effect of Natural Products in HE
6. Conclusions
Acknowledgements
Conflict of Interest
References
- Ferenci, P.; Lockwood, A.; Mullen, K.; Tarter, R.; Weissenborn, K.; Blei, A.T. Hepatic encephalopathy-definition, nomenclature, diagnosis, and quantification: Final report of the working party at the 11th World Congresses of Gastroenterology, Vienna, 1998. Hepatology 2002, 35, 716–721. [Google Scholar]
- Gines, P.; Quintero, E.; Arroyo, V.; Teres, J.; Bruguera, M.; Rimola, A.; Caballeria, J.; Rodes, J.; Rozman, C. Compensated cirrhosis: Natural history and prognostic factors. Hepatology 1987, 7, 122–128. [Google Scholar]
- Seyan, A.S.; Hughes, R.D.; Shawcross, D.L. Changing face of hepatic encephalopathy: Role of inflammation and oxidative stress. World J. Gastroenterol 2010, 16, 3347–3357. [Google Scholar]
- McPhail, M.J.; Bajaj, J.S.; Thomas, H.C.; Taylor-Robinson, S.D. Pathogenesis and diagnosis of hepatic encephalopathy. Expert. Rev. Gastroenterol. Hepatol 2010, 4, 365–378. [Google Scholar]
- Butterworth, R.F. Alterations of neurotransmitter-related gene expression in human and experimental portal-systemic encephalopathy. Metab. Brain Dis 1998, 13, 337–349. [Google Scholar]
- Cooper, A.J.; Plum, F. Biochemistry and physiology of brain ammonia. Physiol. Rev 1987, 67, 440–519. [Google Scholar]
- Wolpert, E.; Phillips, S.F.; Summerskill, W.H. Ammonia production in the human colon. Effects of cleansing, neomycin and acetohydroxamic acid. N. Engl. J. Med 1970, 283, 159–164. [Google Scholar]
- Weber, F.L., Jr; Veach, G.L. The importance of the small intestine in gut ammonium production in the fasting dog. Gastroenterology 1979, 77, 235–240. [Google Scholar]
- Blauenfeldt, R.A.; Olesen, S.S.; Hansen, J.B.; Graversen, C.; Drewes, A.M. Abnormal brain processing in hepatic encephalopathy: Evidence of cerebral reorganization? Eur. J. Gastroenterol. Hepatol 2010, 22, 1323–1330. [Google Scholar]
- Shawcross, D.L.; Davies, N.A.; Williams, R.; Jalan, R. Systemic inflammatory response exacerbates the neuropsychological effects of induced hyperammonemia in cirrhosis. J. Hepatol 2004, 40, 247–254. [Google Scholar]
- Wright, G.; Noiret, L.; Olde Damink, S.W.; Jalan, R. Interorgan ammonia metabolism in liver failure: The basis of current and future therapies. Liver Int 2011, 31, 163–175. [Google Scholar]
- Albrecht, J.; Jones, E.A. Hepatic encephalopathy: Molecular mechanisms underlying the clinical syndrome. J. Neurol. Sci 1999, 170, 138–146. [Google Scholar]
- Conn, H. Hepatic Encephalopathy: Syndromes and Therapies. In Hepatic Encephalopathies; Press, M.-E., Ed.; Medi-Ed Press: Bloomington, IL, USA, 1994; pp. 13–26. [Google Scholar]
- Eroglu, Y.; Byrne, W.J. Hepatic encephalopathy. Emerg. Med. Clin. North. Am 2009, 27, 401–414. [Google Scholar]
- Uribe, M.; Marquez, M.A.; Garcia-Ramos, G.; Escobedo, V.; Murillo, H.; Guevara, L.; Lisker, R. Treatment of chronic portal-systemic encephalopathy with lactose in lactase-deficient patients. Dig. Dis. Sci 1980, 25, 924–928. [Google Scholar]
- Chen, S.J.; Wang, L.J.; Zhu, Q.; Cai, J.T.; Chen, T.; Si, J.M. Effect of H pylori infection and its eradication on hyperammo-nemia and hepatic encephalopathy in cirrhotic patients. World J. Gastroenterol 2008, 14, 1914–1918. [Google Scholar]
- Kircheis, G.; Wettstein, M.; Dahl, S.; Haussinger, D. Clinical efficacy of l-ornithine-l-aspartate in the management of hepatic encephalopathy. Metab. Brain Dis 2002, 17, 453–462. [Google Scholar]
- Bemeur, C.; Desjardins, P.; Butterworth, R.F. Role of nutrition in the management of hepatic encephalopathy in end-stage liver failure. J. Nutr. Metab. 2010, 2010. [Google Scholar] [CrossRef]
- Cordoba, J.; Lopez-Hellin, J.; Planas, M.; Sabin, P.; Sanpedro, F.; Castro, F.; Esteban, R.; Guardia, J. Normal protein diet for episodic hepatic encephalopathy: Results of a randomized study. J. Hepatol 2004, 41, 38–43. [Google Scholar]
- Swart, G.R.; van den Berg, J.W.; van Vuure, J.K.; Rietveld, T.; Wattimena, D.L.; Frenkel, M. Minimum protein requirements in liver cirrhosis determined by nitrogen balance measurements at three levels of protein intake. Clin. Nutr 1989, 8, 329–336. [Google Scholar]
- Bianchi, G.P.; Marchesini, G.; Fabbri, A.; Rondelli, A.; Bugianesi, E.; Zoli, M.; Pisi, E. Vegetable versus animal protein diet in cirrhotic patients with chronic encephalopathy. A randomized cross-over comparison. J. Intern. Med 1993, 233, 385–392. [Google Scholar]
- Barbaro, G.; Di Lorenzo, G.; Soldini, M.; Marziali, M.; Bellomo, G.; Belloni, G.; Grisorio, B.; Annese, M.; Bacca, D.; Barbarini, G. Flumazenil for hepatic coma in patients with liver cirrhosis: An Italian multicentre double-blind, placebo-controlled, crossover study. Eur. J. Emerg. Med 1998, 5, 213–218. [Google Scholar]
- Zeneroli, M.L. Hepatic encephalopathy. Experimental studies in a rat model of fulminant hepatic failure. J. Hepatol 1985, 1, 301–311. [Google Scholar]
- Gentile, S.; Guarino, G.; Romano, M.; Alagia, I.A.; Fierro, M.; Annunziata, S.; Magliano, P.L.; Gravina, A.G.; Torella, R. A randomized controlled trial of acarbose in hepatic encephalopathy. Clin. Gastroenterol. Hepatol 2005, 3, 184–191. [Google Scholar]
- Hiraishi, M. The effect of oral adsorbent on surgically induced hepatic failure. Jpn. J. Surg 1987, 17, 517–527. [Google Scholar]
- Erceg, S.; Monfort, P.; Hernandez-Viadel, M.; Rodrigo, R.; Montoliu, C.; Felipo, V. Oral administration of sildenafil restores learning ability in rats with hyperammonemia and with portacaval shunts. Hepatology 2005, 41, 299–306. [Google Scholar]
- Shawcross, D.; Jalan, R. The pathophysiologic basis of hepatic encephalopathy: Central role for ammonia and inflammation. Cell Mol. Life Sci 2005, 62, 2295–2304. [Google Scholar]
- Ahboucha, S.; Jiang, W.; Chatauret, N.; Mamer, O.; Baker, G.B.; Butterworth, R.F. Indomethacin improves locomotor deficit and reduces brain concentrations of neuroinhibitory steroids in rats following portacaval anastomosis. Neurogastroenterol. Motil 2008, 20, 949–957. [Google Scholar]
- Cauli, O.; Rodrigo, R.; Piedrafita, B.; Boix, J.; Felipo, V. Inflammation and hepatic encephalopathy: Ibuprofen restores learning ability in rats with portacaval shunts. Hepatology 2007, 46, 514–519. [Google Scholar]
- Weissenborn, K.; Ennen, J.C.; Schomerus, H.; Ruckert, N.; Hecker, H. Neuropsychological characterization of hepatic encephalopathy. J. Hepatol 2001, 34, 768–773. [Google Scholar]
- Shawcross, D.L.; Wright, G.; Olde Damink, S.W.; Jalan, R. Role of ammonia and inflammation in minimal hepatic encephalopathy. Metab. Brain Dis 2007, 22, 125–138. [Google Scholar]
- Hazell, A.S.; Butterworth, R.F. Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proc. Soc. Exp. Biol. Med 1999, 222, 99–112. [Google Scholar]
- Schomerus, H.; Hamster, W. Quality of life in cirrhotics with minimal hepatic encephalopathy. Metab. Brain Dis 2001, 16, 37–41. [Google Scholar]
- Pomier-Layrargues, G. TIPS and hepatic encephalopathy. Semin. Liver Dis 1996, 16, 315–320. [Google Scholar]
- Rink, C. Prognosis assessment in patients with liver cirrhosis. Hepatogastroenterology 1990, 37, A86. [Google Scholar]
- Llach, J.; Gines, P.; Arroyo, V.; Rimola, A.; Tito, L.; Badalamenti, S.; Jimenez, W.; Gaya, J.; Rivera, F.; Rodes, J. Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology 1988, 94, 482–487. [Google Scholar]
- Koffron, A.; Stein, J.A. Liver transplantation: Indications, pretransplant evaluation, surgery, and posttransplant complications. Med. Clin. N. Am 2008, 92, 861–888. [Google Scholar]
- Robinson, T.; Justice, J.J. Microdialysis in Neurosciences; ELSEVIER: Amsterdam, The Netherlands; p. 1991.
- Bellander, B.M.; Cantais, E.; Enblad, P.; Hutchinson, P.; Nordstrom, C.H.; Robertson, C.; Sahuquillo, J.; Smith, M.; Stocchetti, N.; Ungerstedt, U. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 2004, 30, 2166–2169. [Google Scholar]
- Di Chiara, G.; Tanda, G.; Carboni, E. Estimation of in-vivo neurotransmitter release by brain microdialysis: The issue of validity. Behav. Pharmacol 1996, 7, 640–657. [Google Scholar]
- Hsiao, J.K.; Ball, B.A.; Morrison, P.F.; Mefford, I.N.; Bungay, P.M. Effects of different semipermeable membranes on in vitro and in vivo performance of microdialysis probes. J. Neurochem 1990, 54, 1449–1452. [Google Scholar]
- Kendrick, K.M.; Keverne, E.B.; Chapman, C.; Baldwin, B.A. Microdialysis measurement of oxytocin, aspartate, gamma-aminobutyric acid and glutamate release from the olfactory bulb of the sheep during vaginocervical stimulation. Brain Res 1988, 442, 171–174. [Google Scholar]
- Garrison, K.E.; Pasas, S.A.; Cooper, J.D.; Davies, M.I. A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics. Eur. J. Pharm. Sci 2002, 17, 1–12. [Google Scholar]
- Juhasz, G.; Tarcali, J.; Pungor, K.; Pungor, E. Electrochemical calibration of in vivo brain dialysis samplers. J. Neurosci. Methods 1989, 29, 131–137. [Google Scholar]
- Hocht, C.; Opezzo, J.A.; Taira, C.A. Applicability of reverse microdialysis in pharmacological and toxicological studies. J. Pharmacol. Toxicol. Methods 2007, 55, 3–15. [Google Scholar]
- Orlowska-Majdak, M. Microdialysis of the brain structures: Application in behavioral research on vasopressin and oxytocin. Acta. Neurobiol. Exp 2004, 64, 177–188. [Google Scholar]
- Verbeeck, R.K. Blood microdialysis in pharmacokinetic and drug metabolism studies. Adv. Drug Deliv. Rev 2000, 45, 217–228. [Google Scholar]
- Ungerstedt, U.; Hallstrom, A. In vivo microdialysis—A new approach to the analysis of neurotransmitters in the brain. Life Sci 1987, 41, 861–864. [Google Scholar]
- Boschi, G.; Scherrmann, J. Microdialysis in mice for drug delivery research. Adv. Drug Deliv. Rev 2000, 45, 271–281. [Google Scholar]
- Elmquist, W.F.; Sawchuk, R.J. Application of microdialysis in pharmacokinetic studies. Pharm. Res 1997, 14, 267–288. [Google Scholar]
- Plock, N.; Kloft, C. Microdialysis—Theoretical background and recent implementation in applied life-sciences. Eur. J. Pharm. Sci 2005, 25, 1–24. [Google Scholar]
- Raedt, R.; Clinckers, R.; Mollet, L.; Vonck, K.; El Tahry, R.; Wyckhuys, T.; de Herdt, V.; Carrette, E.; Wadman, W.; Michotte, Y. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem 2011, 117, 461–469. [Google Scholar]
- Liu, H.G.; Yang, A.C.; Meng, D.W.; Chen, N.; Zhang, J.G. Stimulation of the anterior nucleus of the thalamus induces changes in amino acids in the hippocampi of epileptic rats. Brain Res 2012, 1477, 37–44. [Google Scholar]
- Duszczyk, M.; Kuszczyk, M.; Guridi, M.; Lazarewicz, J.W.; Sadowski, M.J. In vivo hippocampal microdialysis reveals impairment of NMDA receptor-cGMP signaling in APP(SW) and APP(SW)/PS1(L166P) Alzheimer’s transgenic mice. Neurochem. Int 2012, 61, 976–980. [Google Scholar]
- Takeda, S.; Sato, N.; Ikimura, K.; Nishino, H.; Rakugi, H.; Morishita, R. Increased blood-brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol. Aging 2013, 34, 2064–2070. [Google Scholar]
- Zsigmond, P.; Dernroth, N.; Kullman, A.; Augustinsson, L.E.; Dizdar, N. Stereotactic microdialysis of the basal ganglia in Parkinson’s disease. J. Neurosci. Methods 2012, 207, 17–22. [Google Scholar]
- Lin, L.; Meng, T.; Liu, T.; Zheng, Z. Increased melatonin may play dual roles in the striata of a 6-hydroxydopamine model of Parkinson’s disease. Life Sci 2013, 92, 311–316. [Google Scholar]
- Yokel, R.A.; Lidums, V.; Ungerstedt, U. Aluminum mobilization by desferrioxamine assessed by microdialysis of the blood, liver and brain. Toxicology 1991, 66, 313–324. [Google Scholar]
- Bjerring, P.N.; Hauerberg, J.; Frederiksen, H.J.; Nielsen, H.B.; Clemmesen, J.O.; Larsen, F.S. The effect of fractionated plasma separation and adsorption on cerebral amino acid metabolism and oxidative metabolism during acute liver failure. J. Hepatol 2012, 57, 774–779. [Google Scholar]
- Gonzalez-Usano, A.; Cauli, O.; Agusti, A.; Felipo, V. Hyperammonemia alters the modulation by different neurosteroids of the glutamate-nitric oxide-cyclic GMP pathway through NMDA- GABAA- or sigma receptors in cerebellum in vivo. J. Neurochem 2013, 125, 133–143. [Google Scholar]
- Thoresen, M.; Hallstrom, A.; Whitelaw, A.; Puka-Sundvall, M.; Loberg, E.M.; Satas, S.; Ungerstedt, U.; Steen, P.A.; Hagberg, H. Lactate and pyruvate changes in the cerebral gray and white matter during posthypoxic seizures in newborn pigs. Pediatr. Res 1998, 44, 746–754. [Google Scholar]
- Pearigen, P.; Gwinn, R.; Simon, R.P. The effects in vivo of hypoxia on brain injury. Brain Res 1996, 725, 184–191. [Google Scholar]
- Corbett, R.; Laptook, A.; Gee, J.; Garcia, D.; Silmon, S.; Tollefsbol, G. Age-related differences in the effect of dichloroacetate on postischemic lactate and acid clearance measured in vivo using magnetic resonance spectroscopy and microdialysis. J. Neurochem 1998, 71, 1205–1214. [Google Scholar]
- Ogasawara, M.; Nakajima, W.; Ishida, A.; Takada, G. Striatal perfusion of indomethacin attenuates dopamine increase in immature rat brain exposed to anoxia: An in vivo microdialysis study. Brain Res 1999, 842, 487–490. [Google Scholar]
- Clement, H.W.; Vazquez, J.F.; Sommer, O.; Heiser, P.; Morawietz, H.; Hopt, U.; Schulz, E.; von Dobschutz, E. Lipopolysaccharide-induced radical formation in the striatum is abolished in Nox2 gp91phox-deficient mice. J. Neural. Transm 2010, 117, 13–22. [Google Scholar]
- Todd, K.G.; Butterworth, R.F. In vivo microdialysis in an animal model of neurological disease: Thiamine deficiency (Wernicke) encephalopathy. Methods 2001, 23, 55–61. [Google Scholar]
- Todd, K.G.; Butterworth, R.F. Evaluation of the role of NMDA-mediated excitotoxicity in the selective neuronal loss in experimental Wernicke encephalopathy. Exp. Neurol 1998, 149, 130–138. [Google Scholar]
- Langlais, P.J.; Zhang, S.X.; Weilersbacher, G.; Hough, L.B.; Barke, K.E. Histamine-mediated neuronal death in a rat model of Wernicke’s encephalopathy. J. Neurosci. Res 1994, 38, 565–574. [Google Scholar]
- McRee, R.C.; Terry-Ferguson, M.; Langlais, P.J.; Chen, Y.; Nalwalk, J.W.; Blumenstock, F.A.; Hough, L.B. Increased histamine release and granulocytes within the thalamus of a rat model of Wernicke’s encephalopathy. Brain Res 2000, 858, 227–236. [Google Scholar]
- Espey, M.G.; Kustova, Y.; Sei, Y.; Basile, A.S. Extracellular glutamate levels are chronically elevated in the brains of LP-BM5-infected mice: A mechanism of retrovirus-induced encephalopathy. J. Neurochem 1998, 71, 2079–2087. [Google Scholar]
- Zwirner, K.; Thiel, C.; Thiel, K.; Morgalla, M.H.; Konigsrainer, A.; Schenk, M. Extracellular brain ammonia levels in association with arterial ammonia, intracranial pressure and the use of albumin dialysis devices in pigs with acute liver failure. Metab. Brain Dis 2010, 25, 407–412. [Google Scholar]
- Szerb, J.C.; Redondo, I.M. Astrocytes and the entry of circulating ammonia into the brain: Effect of fluoroacetate. Metab. Brain Dis 1993, 8, 217–234. [Google Scholar]
- Bergqvist, P.B.; Heyes, M.P.; Apelqvist, G.; Butterworth, R.F.; Bengtsson, F. Brain extracellular quinolinic acid in chronic experimental hepatic encephalopathy as assessed by in vivo microdialysis: Acute effects of l-tryptophan. Neuropsychopharmacology 1996, 15, 382–389. [Google Scholar]
- Zwingmann, C.; Desjardins, P.; Hazell, A.; Chatauret, N.; Michalak, A.; Butterworth, R.F. Reduced expression of astrocytic glycine transporter (Glyt-1) in acute liver failure. Metab. Brain Dis 2002, 17, 263–273. [Google Scholar]
- Cauli, O.; Rodrigo, R.; Boix, J.; Piedrafita, B.; Agusti, A.; Felipo, V. Acute liver failure-induced death of rats is delayed or prevented by blocking NMDA receptors in brain. Am. J. Physiol. Gastrointest. Liver Physiol 2008, 295, G503–G511. [Google Scholar]
- Suzuki, K.; Matsuo, N.; Moriguchi, T.; Takeyama, N.; Kitazawa, Y.; Tanaka, T. Changes in brain ECF amino acids in rats with experimentally induced hyperammonemia. Metab. Brain Dis 1992, 7, 63–75. [Google Scholar]
- McArdle, P.; Penning, D.H.; Dexter, F.; Reynolds, J.D. Flumazenil does not affect the increase in rat hippocampal extracellular glutamate concentration produced during thioacetamide-induced hepatic encephalopathy. Metab. Brain Dis 1996, 11, 329–342. [Google Scholar]
- Rose, C.; Michalak, A.; Pannunzio, M.; Chatauret, N.; Rambaldi, A.; Butterworth, R.F. Mild hypothermia delays the onset of coma and prevents brain edema and extracellular brain glutamate accumulation in rats with acute liver failure. Hepatology 2000, 31, 872–877. [Google Scholar]
- Rodrigo, R.; Erceg, S.; Rodriguez-Diaz, J.; Saez-Valero, J.; Piedrafita, B.; Suarez, I.; Felipo, V. Glutamate-induced activation of nitric oxide synthase is impaired in cerebral cortex in vivo in rats with chronic liver failure. J. Neurochem 2007, 102, 51–64. [Google Scholar]
- ElMlili, N.; Boix, J.; Ahabrach, H.; Rodrigo, R.; Errami, M.; Felipo, V. Chronic hyperammonemia induces tonic activation of NMDA receptors in cerebellum. J. Neurochem 2010, 112, 1005–1014. [Google Scholar]
- Bosman, D.K.; Deutz, N.E.; Maas, M.A.; van Eijk, H.M.; Smit, J.J.; de Haan, J.G.; Chamuleau, R.A. Amino acid release from cerebral cortex in experimental acute liver failure, studied by in vivo cerebral cortex microdialysis. J. Neurochem 1992, 59, 591–599. [Google Scholar]
- Albrecht, J.; Hilgier, W.; Zielinska, M.; Januszewski, S.; Hesselink, M.; Quack, G. Extracellular concentrations of taurine, glutamate, and aspartate in the cerebral cortex of rats at the asymptomatic stage of thioacetamide-induced hepatic failure: Modulation by ketamine anesthesia. Neurochem. Res 2000, 25, 1497–1502. [Google Scholar]
- Deshpande, G.; Adachi, N.; Liu, K.; Motoki, A.; Mitsuyo, T.; Nagaro, T.; Arai, T. Recovery of brain dopamine metabolism by branched-chain amino acids in rats with acute hepatic failure. J. Neurosurg. Anesthesiol 2007, 19, 243–248. [Google Scholar]
- Michalak, A.; Butterworth, R.F. Selective increases of extracellular brain concentrations of aromatic and branched-chain amino acids in relation to deterioration of neurological status in acute (ischemic) liver failure. Metab. Brain Dis 1997, 12, 259–269. [Google Scholar]
- Yano, M.; Adachi, N.; Liu, K.; Arai, T. Flumazenil-induced improvement of the central dopaminergic system in rats with acute hepatic failure. J. Neurosurg. Anesthesiol 2005, 17, 69–74. [Google Scholar]
- Canales, J.J.; Elayadi, A.; Errami, M.; Llansola, M.; Cauli, O.; Felipo, V. Chronic hyperammonemia alters motor and neurochemical responses to activation of group I metabotropic glutamate receptors in the nucleus accumbens in rats in vivo. Neurobiol. Dis 2003, 14, 380–390. [Google Scholar]
- Borkowska, H.D.; Oja, S.S.; Oja, O.S.; Saransaari, P.; Hilgier, W.; Albrecht, J. N-methyl-daspartate- evoked changes in the striatal extracellular levels of dopamine and its metabolites in vivo in rats with acute hepatic encephalopathy. Neurosci. Lett 1999, 268, 151–154. [Google Scholar]
- Cauli, O.; Mlili, N.; Llansola, M.; Felipo, V. Motor activity is modulated via different neuronal circuits in rats with chronic liver failure than in normal rats. Eur. J. Neurosci 2007, 25, 2112–2122. [Google Scholar]
- Bergqvist, P.B.; Hjorth, S.; Audet, R.M.; Apelqvist, G.; Bengtsson, F.; Butterworth, R.F. Ammonium acetate challenge in experimental chronic hepatic encephalopathy induces a transient increase of brain 5-HT release in vivo. Eur. Neuropsychopharmacol 1996, 6, 317–322. [Google Scholar]
- Kaneko, K.; Kurumaji, A.; Watanabe, A.; Yamada, S.; Toru, M. Changes in high K+-evoked serotonin release and serotonin 2A/2C receptor binding in the frontal cortex of rats with thioacetamide-induced hepatic encephalopathy. J. Neural. Transm 1998, 105, 13–30. [Google Scholar]
- Michalak, A.; Rose, C.; Butterworth, R.F. Loss of noradrenaline transporter sites in frontal cortex of rats with acute (ischemic) liver failure. Neurochem. Int 2001, 38, 25–30. [Google Scholar] [Green Version]
- Hilgier, W.; Wegrzynowicz, M.; Ruszkiewicz, J.; Oja, S.S.; Saransaari, P.; Albrecht, J. Direct exposure to ammonia and hyperammonemia increase the extracellular accumulation and degradation of astroglia-derived glutathione in the rat prefrontal cortex. Toxicol. Sci 2010, 117, 163–168. [Google Scholar]
- Bauer, R.; Gabl, M.; Obwegeser, A.; Galiano, K.; Barbach, J.; Mohsenipour, I. Neurochemical monitoring using intracerebral microdialysis during cardiac resuscitation. Intensive Care Med 2004, 30, 159–161. [Google Scholar]
- Vogels, B.A.; Karlsen, O.T.; Mass, M.A.; Bovee, W.M.; Chamuleau, R.A. l-ornithine vs. l-ornithine-l-aspartate as a treatment for hyperammonemia-induced encephalopathy in rats. J. Hepatol 1997, 26, 174–182. [Google Scholar]
- Wikell, C.; Bergqvist, P.B.; Hjorth, S.; Apelqvist, G.; Bjork, H.; Bengtsson, F. Brain monoamine output alterations after a single venlafaxine challenge in experimental hepatic encephalopathy. Clin. Neuropharmacol 1998, 21, 296–306. [Google Scholar]
- Wikell, C.; Apelqvist, G.; Hjorth, S.; Kullingsjo, J.; Bergqvist, P.B.; Bengtsson, F. Effects on drug disposition, brain monoamines and behavior after chronic treatment with the antidepressant venlafaxine in rats with experimental hepatic encephalopathy. Eur. Neuropsychopharmacol 2002, 12, 327–336. [Google Scholar]
- Wikell, C.; Kugelberg, F.C.; Hjorth, S.; Apelqvist, G.; Bengtsson, F. Effect of halving the dose of venlafaxine to adjust for putative pharmacokinetic and pharmacodynamic changes in an animal model of chronic hepatic encephalopathy. Clin. Neuropharmacol 2001, 24, 324–333. [Google Scholar]
- Bergqvist, P.B.; Wikell, C.; Hjorth, S.; Apelqvist, G.; Bengtsson, F. Effect of citalopram on brain serotonin release in experimental hepatic encephalopathy: Implications for thymoleptic drug safety in liver insufficiency. Clin. Neuropharmacol 1997, 20, 511–522. [Google Scholar]
- Apelqvist, G.; Wikell, C.; Carlsson, B.; Hjorth, S.; Bergqvist, P.B.; Ahlner, J.; Bengtsson, F. Dynamic and kinetic effects of chronic citalopram treatment in experimental hepatic encephalopathy. Clin. Neuropharmacol 2000, 23, 304–317. [Google Scholar]
- Zielinska, M.; Hilgier, W.; Borkowska, H.D.; Oja, S.S.; Saransaari, P.; Albrecht, J. Lubeluzole attenuates K(+)-evoked extracellular accumulation of taurine in the striatum of healthy rats and rats with hepatic failure. Brain Res 2001, 904, 173–176. [Google Scholar]
- Cauli, O.; Rodrigo, R.; Piedrafita, B.; Llansola, M.; Mansouri, M.T.; Felipo, V. Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: Ibuprofen restores its motor activity. J. Neurosci. Res 2009, 87, 1369–1374. [Google Scholar]
- Subash, S.; Subramanian, P. Effect of morin on the levels of circulatory liver markers and redox status in experimental chronic hyperammonaemic rats. Singapore Med. J 2008, 49, 650–655. [Google Scholar]
- Kaziulin, A.N.; Petukhov, A.B.; Kucheriavyi Iu, A. Efficiency of includes of bioactive substances in diet of patient with hepatic encephalopathy. Vopr Pitan 2006, 75, 40–44. [Google Scholar]
- Mitra, S.K.; Venkataranganna, M.V.; Gopumadhavan, S.; Anturlikar, S.D.; Seshadri, S.J.; Venkatesha Udupa, U. The protective effect of HD-03 in CCl4-induced hepatic encephalopathy in rats. Phytother. Res 2001, 15, 493–496. [Google Scholar]
- Harputluoglu, M.M.; Demirel, U.; Ciralik, H.; Temel, I.; Firat, S.; Ara, C.; Aladag, M.; Karincaoglu, M.; Hilmioglu, F. Protective effects of Gingko biloba on thioacetamide-induced fulminant hepatic failure in rats. Hum. Exp. Toxicol 2006, 25, 705–713. [Google Scholar]
- Solga, S.F. Probiotics can treat hepatic encephalopathy. Med. Hypotheses 2003, 61, 307–313. [Google Scholar]
- Bongaerts, G.; Severijnen, R.; Timmerman, H. Effect of antibiotics, prebiotics and probiotics in treatment for hepatic encephalopathy. Med. Hypotheses 2005, 64, 64–68. [Google Scholar]
- Sharma, P.; Sharma, B.C. Lactulose for minimal hepatic encephalopathy in patients with extrahepatic portal vein obstruction. Saudi. J. Gastroenterol 2012, 18, 168–172. [Google Scholar]
- Muting, D. Treatment of patients with chronic liver diseases with lactulose and bifidum milk. Principles and problems. Fortschr. Med 1988, 106, 369–372. [Google Scholar]
- Imler, M.; Kurtz, D.; Bockel, R.; Stahl, J. Comparative study of portocaval encephalopathy treatment with lactulose, lactobacilli and antibiotics. Therapeutique 1971, 47, 237–248. [Google Scholar]
- Fenton, J.C.; Knight, E.J.; O’Grady, F.W. Treatment of hepatic encephalopathy by alteration of intestinal flora with lactobacillus acidophilus. Lancet 1965, 1, 764. [Google Scholar]
- Huchzermeyer, H.; Schumann, C. Lactulose—A multifaceted substance. Z. Gastroenterol 1997, 35, 945–955. [Google Scholar]
- Uribe, M.; Vargas, F.; Villalobos, A.; Ramos, G.C.; Briones, A.; Galvan, E.; Ramos, M.H.; Guevara, L. Vegetable protein diets with or without non-absorbable antibiotics for the treatment of chronic portal systemic encephalopathy. Rev. Invest. Clin. 1990, 42 Suppl, 120–126. [Google Scholar]
- Weber, F.L., Jr; Minco, D.; Fresard, K.M.; Banwell, J.G. Effects of vegetable diets on nitrogen metabolism in cirrhotic subjects. Gastroenterology 1985, 89, 538–544. [Google Scholar]
- Uribe, M.; Dibildox, M.; Malpica, S.; Guillermo, E.; Villallobos, A.; Nieto, L.; Vargas, F.; Garcia Ramos, G. Beneficial effect of vegetable protein diet supplemented with psyllium plantago in patients with hepatic encephalopathy and diabetes mellitus. Gastroenterology 1985, 88, 901–907. [Google Scholar]
- Shaw, S.; Worner, T.M.; Lieber, C.S. Comparison of animal and vegetable protein sources in the dietary management of hepatic encephalopathy. Am. J. Clin. Nutr 1983, 38, 59–63. [Google Scholar]
- Gumaste, V.V. Vegetable protein diet and hepatic encephalopathy. Gastroenterology 1993, 105, 1578–1579. [Google Scholar]
- Conn, H.O. Animal versus vegetable protein diet in hepatic encephalopathy. J. Intern. Med 1993, 233, 369–371. [Google Scholar]
- Greenberger, N.J.; Carley, J.; Schenker, S.; Bettinger, I.; Stamnes, C.; Beyer, P. Effect of vegetable and animal protein diets in chronic hepatic encephalopathy. Am. J. Dig. Dis 1977, 22, 845–855. [Google Scholar]
- Kirpich, I.A.; McClain, C.J. Probiotics in the treatment of the liver diseases. J. Am. Coll. Nutr 2012, 31, 14–23. [Google Scholar]
- Malaguarnera, M. Acetyl-l-carnitine in hepatic encephalopathy. Metab. Brain Dis 2013, 28, 193–199. [Google Scholar]
- Malaguarnera, M.; Gargante, M.P.; Cristaldi, E.; Vacante, M.; Risino, C.; Cammalleri, L.; Pennisi, G.; Rampello, L. Acetyl-l-carnitine treatment in minimal hepatic encephalopathy. Dig. Dis. Sci 2008, 53, 3018–3025. [Google Scholar]
- Malaguarnera, M. Carnitine derivatives: Clinical usefulness. Curr. Opin. Gastroenterol 2012, 28, 166–176. [Google Scholar]
- Malaguarnera, M.; Gargante, M.P.; Russo, C.; Antic, T.; Vacante, M.; Malaguarnera, M.; Avitabile, T.; Li Volti, G.; Galvano, F. l-carnitine supplementation to diet: A new tool in treatment of nonalcoholic steatohepatitis—A randomized and controlled clinical trial. Am. J. Gastroenterol 2010, 105, 1338–1345. [Google Scholar]
Encephalopathy | Experimental model | Evidence | Author |
---|---|---|---|
HE | Pigs | It has been shown the association between extracellular brain ammonia and intracranial pressure (ICP), suggesting that ICP could serve as marker for HE. | [71] |
HE | Rats administered locally with fluoroacetate in the hippocampus by microdialysis | Ammonia alters the function of astrocytes, facilitating its entry into the brain. This physiological fact contributes to the development of HE. | [72] |
HE | Portacaval shunt (PCS) | Quinolinic acid (QUIN) and l-tryptophan (l-TRP) are not involved in HE. Elevated l-TRP availability increased the QUIN levels to a similar degree in both sham and PCS rats. | [73] |
HE | Rats with ischemic liver failure | The significant three-fold increase of extracellular glycine measured by in vivo cerebral microdialysis suggests the participation of NMDA. | [74] |
HE | Rats administered with galactosamine | The blockage of NMDA receptors by continuous administration of MK-801 or memantine induces protection against acute liver failure. The blockage of NMDA receptors increases the survival rate from 23% to 62% in rats. | [75] |
HE | Rats with hyperammonemia induced by intracerebral ammonia infusion | The marked elevation in glutamate levels suggests that high ammonia levels may increase the excitability of the brain and this condition may serve as a key in the onset of HE. | [76] |
HE | Rats with liver failure induced by thioacetamide | Experimental data show a significant increase in extracellular hippocampal glutamate concentration. | [77] |
HE | Rats with hypothermia | Beneficial effect of hypothermia in rats with hepatic devascularization that induces ALF is mediated via mechanisms involving reduced blood-brain transfer of ammonia and/or reduction of extracellular brain glutamate concentrations. | [78] |
HE | PCS and Sham rats | Participation of glutamate-nitric oxide-cyclic guanosine monophosphate (cGMP) was shown. The basal NOS activity, nitrites and cGMP are increased in cortex of rats with hyperammonemia or liver failure. These are associated to increased inducible NOS expression. It was found; in both animal models and in neurons exposed to ammonia, an impaired NOS activation by NMDA. | [79] |
HE | Hyperammonemic rats | It was found increased tonic activation of NMDA receptors leading to reduced activity of nNOS and of the glutamate-NO-cGMP pathway. | [80] |
HE | Rats with ALF | Amino acids play a role in the pathogenesis of hepatic encephalopathy in ALF. They found that extracellular concentration of the neuroactive amino acids glutamate, taurine and glycine were increased, whereas extracellular concentration of aspartate and GABA were unaltered and that glutamine of decreased. | [81] |
HE | Rats with subclinical hepatic encephalopathy induced by intraperitoneal thioacetamide | In cerebral cortical microdialysates of rats was found that dialysate concentration of the neuroactive amino acids taurine (Tau), glutamate (Glu) and aspartate (Asp) were 30% to 50% higher than that found in control. | [82] |
HE | Rats with HE induced by ALF | The precursors of monoamines, as well as monoamines and their metabolites, altered neuronal excitability and contribute to the characteristics of HE extracellular brain concentrations of aromatic amino acids (AAAs) and of valine and leucine (precursors of monoamine neurotransmitters) were elevated 2 to 4-fold following hepatic devascularization and these increases were significantly correlated to arterial ammonia concentration. | [83,84] |
HE | Animals administered with flumazenil | Extracellular concentration of 3,4-dihydroxyphenylacetic acid, a metabolite of dopamine, decreased to 39% compared with sham-operated animals, without changes in the dopamine level. The treatment with flumazenil completely abolished the decrease in the metabolite. Although in this study the glutamate level in the injured animals decreased to 42% of that in sham-operated animals, there are not increases in the glutamate levels in animals treated with flumazenil. In conclusion, the restoration of the central dopaminergic function could be a relevant factor in the improvement of HE. | [85] |
HE | Hyperammonemics rats | The locomotion induced by injection of the mGluR agonist dihydroxyphenylglycine (DHPG) into nucleus accumbens was increased. Also in control rats DHPG increased extracellular dopamine (400%), but glutamate was unchanged. Whereas that in hyperammonemic rats DHPG increased extracellular glutamate (600%), effect prevent by blocking mGluR1 receptor. This result suggests that modulation of locomotor and neurochemical functions by mGluRs in nucleus accumbens are strongly altered in hyperammonemia. | [86] |
HE | Rats with acute HE induced thioacetamide administration | The impairment of modulation of striatal DA discharge and metabolism by glutamate, acting at NMDA receptors, contributes to the motor disturbances in HE. | [87] |
HE | Rats with liver failure due to PCS | The activation of the normal neuronal circuit in VP, SNr, MDT, and VMT was determined using in vivo brain microdialysis. It is suggested that DHPG-induced increase in dopamine would activate the normal neuronal circuit, while an increase in glutamate would activate the alternative circuit. | [88] |
HE | Model of chronic HE, by acute comainducing by ammonium acetate (5.2 mmol/kg, i.p.) | The serotonergic system is also affected in the HE. The extracellular levels of 5-hydroxytryptamine (5-HT) is unaltered and that of its major metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA), is increased in the frontal neocortical of PCS rats. Results suggest that the increase brain ammonia may increase neuronal 5-HT release in HE, which in turn could be involved in the severe stages of HE. | [89] |
HE | Rats with thioacetamide (TAA)-induced HE | Serotonergic neurotransmission is altered in the frontal cortex of rats with thioacetamide (TAA)-induced HE. Where found that 5-HIAA and high K+-evoked 5-HT release were increased. | [90] |
HE | Rats with acute liver failure | Noradrenergic system is affected and the central noradrenergic mechanisms may contribute to the central nervous system manifestations of HE. They showed that the increase of extracellular brain concentrations of the noradrenaline (NA) from frontal cortex and thalamus is associated to loss of NA transporter sites and depletion of central NA stores. | [91] |
HE | Rats where the administration of ammonium chloride (ammonia) | Extracellar glutathione (GSH) is involved in the ammonia toxicity present in HE microdialysis probe to the rat prefrontal cortex increased GSH. This increase is abrogated by fluoroacetate, an inhibitor of astrocytic energy metabolism, and by buthionine sulfoximine, an inhibitor of glutathione synthesis. Their results suggest that in rats with hiperammonemia promote GSH synthesis and this may improve the availability of precursors for GSH synthesis in neurons and their resistance to ammonia toxicity present in HE. | [92] |
Fulminant hepatic encephalopathy | Intracerebral microdialysis during cardiac resuscitation in rats | They measured the chemical markers of energy metabolism glucose, lactate, pyruvate, and the marker of cell membrane damage glycerol and found that all markers with exception for subcutaneous glucose, showed a sudden and significant increase during resuscitation and a prolonged period afterwards and finally after some hours all values returned to normal. | [93] |
Portal-systemic encephalopathy | PCS rats | They evaluated the participation of serotonin system in PCS, and found an increased brain tissue and extracellular concentrations of serotonin in neocortical region of the rats with this encephalopathy. | [89] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Rivera-Espinosa, L.; Floriano-Sánchez, E.; Pedraza-Chaverrí, J.; Coballase-Urrutia, E.; Sampieri, A.I.; Ortega-Cuellar, D.; Cárdenas-Rodríguez, N.; Carmona-Aparicio, L. Contributions of Microdialysis to New Alternative Therapeutics for Hepatic Encephalopathy. Int. J. Mol. Sci. 2013, 14, 16184-16206. https://doi.org/10.3390/ijms140816184
Rivera-Espinosa L, Floriano-Sánchez E, Pedraza-Chaverrí J, Coballase-Urrutia E, Sampieri AI, Ortega-Cuellar D, Cárdenas-Rodríguez N, Carmona-Aparicio L. Contributions of Microdialysis to New Alternative Therapeutics for Hepatic Encephalopathy. International Journal of Molecular Sciences. 2013; 14(8):16184-16206. https://doi.org/10.3390/ijms140816184
Chicago/Turabian StyleRivera-Espinosa, Liliana, Esaú Floriano-Sánchez, José Pedraza-Chaverrí, Elvia Coballase-Urrutia, Aristides III Sampieri, Daniel Ortega-Cuellar, Noemí Cárdenas-Rodríguez, and Liliana Carmona-Aparicio. 2013. "Contributions of Microdialysis to New Alternative Therapeutics for Hepatic Encephalopathy" International Journal of Molecular Sciences 14, no. 8: 16184-16206. https://doi.org/10.3390/ijms140816184
APA StyleRivera-Espinosa, L., Floriano-Sánchez, E., Pedraza-Chaverrí, J., Coballase-Urrutia, E., Sampieri, A. I., Ortega-Cuellar, D., Cárdenas-Rodríguez, N., & Carmona-Aparicio, L. (2013). Contributions of Microdialysis to New Alternative Therapeutics for Hepatic Encephalopathy. International Journal of Molecular Sciences, 14(8), 16184-16206. https://doi.org/10.3390/ijms140816184