NF90 in Posttranscriptional Gene Regulation and MicroRNA Biogenesis
Abstract
:1. Introduction
2. NF90 Structure
3. NF90 Function in Transcription
4. NF90 in Post-Transcriptional Gene Regulation
4.1. Control of mRNA Turnover
4.2. Control of mRNA Translation
5. NF90 in MicroRNA Biogenesis
6. NF90 Functions in Cellular Processes and Diseases
7. Conclusions and Perspective
Acknowledgments
Conflicts of Interest
References
- Moore, M.J. From birth to death: The complex lives of eukaryotic mRNAs. Science 2005, 309, 1514–1518. [Google Scholar]
- Glisovic, T.; Bachorik, J.L.; Yong, J.; Dreyfuss, G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 2008, 582, 1977–1986. [Google Scholar]
- Carballo, E.; Lai, W.S.; Blackshear, P.J. Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 1998, 281, 1001–1005. [Google Scholar]
- Chen, C.Y.; Gherzi, R.; Ong, S.E.; Chan, E.L.; Raijmakers, R.; Pruijn, G.J.; Stoecklin, G.; Moroni, C.; Mann, M.; Karin, M. Au binding proteins recruit the exosome to degrade are-containing mRNAs. Cell 2001, 107, 451–464. [Google Scholar]
- Briata, P.; Forcales, S.V.; Ponassi, M.; Corte, G.; Chen, C.Y.; Karin, M.; Puri, P.L.; Gherzi, R. P38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell 2005, 20, 891–903. [Google Scholar]
- Gorospe, M. Hur in the mammalian genotoxic response: Post-transcriptional multitasking. Cell Cycle 2003, 2, 412–414. [Google Scholar]
- Shim, J.; Lim, H.; Yates, J.R.; Karin, M. Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol. Cell 2002, 10, 1331–1344. [Google Scholar]
- Xu, Y.H.; Busald, C.; Grabowski, G.A. Reconstitution of TCP80/NF90 translation inhibition activity in insect cells. Mol. Genet. Metab 2000, 70, 106–115. [Google Scholar]
- Xu, Y.H.; Leonova, T.; Grabowski, G.A. Cell cycle dependent intracellular distribution of two spliced isoforms of TCP/ILF3 proteins. Mol. Genet. Metab 2003, 80, 426–436. [Google Scholar]
- Mitchell, P.; Tollervey, D. mRNA stability in eukaryotes. Curr. Opin. Genet. Dev 2000, 10, 193–198. [Google Scholar]
- Orphanides, G.; Reinberg, D. A unified theory of gene expression. Cell 2002, 108, 439–451. [Google Scholar]
- Masuda, K.; Abdelmohsen, K.; Gorospe, M. RNA-binding proteins implicated in the hypoxic response. J. Cell Mol. Med 2009, 13, 2759–2769. [Google Scholar]
- Fierro-Monti, I.; Mathews, M.B. Proteins binding to duplexed RNA: One motif, multiple functions. Trends Biochem. Sci 2000, 25, 241–246. [Google Scholar]
- Bycroft, M.; Grunert, S.; Murzin, A.G.; Proctor, M.; St Johnston, D. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J 1995, 14, 3563–3571. [Google Scholar]
- Kharrat, A.; Macias, M.J.; Gibson, T.J.; Nilges, M.; Pastore, A. Structure of the dsRNA binding domain of E. coli RNAse iii. EMBO J 1995, 14, 3572–3584. [Google Scholar]
- Bevilacqua, P.C.; Cech, T.R. Minor-groove recognition of double-stranded RNA by the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry 1996, 35, 9983–9994. [Google Scholar]
- Ryter, J.M.; Schultz, S.C. Molecular basis of double-stranded RNA-protein interactions: Structure of a dsRNA-binding domain complexed with dsRNA. EMBO J 1998, 17, 7505–7513. [Google Scholar]
- Cosentino, G.P.; Venkatesan, S.; Serluca, F.C.; Green, S.R.; Mathews, M.B.; Sonenberg, N. Double-stranded-RNA-dependent protein kinase and TAR RNA-binding protein form homo- and heterodimers in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 9445–9449. [Google Scholar]
- Patel, R.C.; Stanton, P.; McMillan, N.M.; Williams, B.R.; Sen, G.C. The interferon-inducible double-stranded RNA-activated protein kinase self-associates in vitro and in vivo. Proc. Natl. Acad. Sci. USA 1995, 92, 8283–8287. [Google Scholar]
- Parker, L.M.; Fierro-Monti, I.; Mathews, M.B. Nuclear factor 90 is a substrate and regulator of the eukaryotic initiation factor 2 kinase double-stranded RNA-activated protein kinase. J. Biol. Chem 2001, 276, 32522–32530. [Google Scholar]
- Bass, B.L.; Hurst, S.R.; Singer, J.D. Binding properties of newly identified xenopus proteins containing dsRNA-binding motifs. Curr. Biol 1994, 4, 301–314. [Google Scholar]
- Corthesy, B.; Kao, P.N. Purification by DNA affinity chromatography of two polypeptides that contact the NF-AT DNA binding site in the interleukin 2 promoter. J. Biol. Chem 1994, 269, 20682–20690. [Google Scholar]
- Orford, R.L.; Robinson, C.; Haydon, J.M.; Patient, R.K.; Guille, M.J. The maternal CCAAT box transcription factor which controls GATA-2 expression is novel and developmentally regulated and contains a double-stranded-RNA-binding subunit. Mol. Cell Biol 1998, 18, 5557–5566. [Google Scholar]
- Satoh, M.; Shaheen, V.M.; Kao, P.N.; Okano, T.; Shaw, M.; Yoshida, H.; Richards, H.B.; Reeves, W.H. Autoantibodies define a family of proteins with conserved double-stranded RNA-binding domains as well as DNA binding activity. J. Biol. Chem 1999, 274, 34598–34604. [Google Scholar]
- Saunders, L.R.; Perkins, D.J.; Balachandran, S.; Michaels, R.; Ford, R.; Mayeda, A.; Barber, G.N. Characterization of two evolutionarily conserved, alternatively spliced nuclear phosphoproteins, NFAR-1 and -2, that function in mRNA processing and interact with the double-stranded RNA-dependent protein kinase, PKR. J. Biol Chem 2001, 276, 32300–32312. [Google Scholar]
- Reichman, T.W.; Muniz, L.C.; Mathews, M.B. The RNA binding protein nuclear factor 90 functions as both a positive and negative regulator of gene expression in mammalian cells. Mol. Cell Biol 2002, 22, 343–356. [Google Scholar]
- Duchange, N.; Pidoux, J.; Camus, E.; Sauvaget, D. Alternative splicing in the human interleukin enhancer binding factor 3 (ILF3) gene. Gene 2000, 261, 345–353. [Google Scholar]
- Xu, Y.H.; Grabowski, G.A. Molecular cloning and characterization of a translational inhibitory protein that binds to coding sequences of human acid beta-glucosidase and other mRNAs. Mol. Genet. Metab 1999, 68, 441–454. [Google Scholar]
- Saunders, L.R.; Jurecic, V.; Barber, G.N. The 90- and 110-kda human NFAR proteins are translated from two differentially spliced mRNAs encoded on chromosome 19p13. Genomics 2001, 71, 256–259. [Google Scholar]
- Wolkowicz, U.M.; Cook, A.G. NF45 dimerizes with NF90, zfr and spnr via a conserved domain that has a nucleotidyltransferase fold. Nucleic Acids Res 2012, 40, 9356–9368. [Google Scholar]
- Guan, D.; Altan-Bonnet, N.; Parrott, A.M.; Arrigo, C.J.; Li, Q.; Khaleduzzaman, M.; Li, H.; Lee, C.G.; Pe’ery, T.; Mathews, M.B. Nuclear factor 45 (NF45) is a regulatory subunit of complexes with NF90/110 involved in mitotic control. Mol. Cell Biol 2008, 28, 4629–4641. [Google Scholar]
- Ranpura, S.A.; Deshmukh, U.; Reddi, P.P. NF45 and NF90 in murine seminiferous epithelium: Potential role in sp-10 gene transcription. J. Androl 2008, 29, 186–197. [Google Scholar]
- Kao, P.N.; Chen, L.; Brock, G.; Ng, J.; Kenny, J.; Smith, A.J.; Corthesy, B. Cloning and expression of cyclosporin a- and fk506-sensitive nuclear factor of activated t-cells: NF45 and NF90. J. Biol. Chem 1994, 269, 20691–20699. [Google Scholar]
- Ting, N.S.; Kao, P.N.; Chan, D.W.; Lintott, L.G.; Lees-Miller, S.P. DNA-dependent protein kinase interacts with antigen receptor response element binding proteins NF90 and NF45. J. Biol. Chem 1998, 273, 2136–2145. [Google Scholar]
- Burckstummer, T.; Bennett, K.L.; Preradovic, A.; Schutze, G.; Hantschel, O.; Superti-Furga, G.; Bauch, A. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat. Methods 2006, 3, 1013–1019. [Google Scholar]
- Langland, J.O.; Kao, P.N.; Jacobs, B.L. Nuclear factor-90 of activated t-cells: A double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR. Biochemistry 1999, 38, 6361–6368. [Google Scholar]
- Coolidge, C.J.; Patton, J.G. A new double-stranded RNA-binding protein that interacts with PKR. Nucleic Acids Res 2000, 28, 1407–1417. [Google Scholar]
- Krasnoselskaya-Riz, I.; Spruill, A.; Chen, Y.W.; Schuster, D.; Teslovich, T.; Baker, C.; Kumar, A.; Stephan, D.A. Nuclear factor 90 mediates activation of the cellular antiviral expression cascade. AIDS Res. Hum. Retroviruses 2002, 18, 591–604. [Google Scholar]
- Brzostowski, J.; Robinson, C.; Orford, R.; Elgar, S.; Scarlett, G.; Peterkin, T.; Malartre, M.; Kneale, G.; Wormington, M.; Guille, M. RNA-dependent cytoplasmic anchoring of a transcription factor subunit during xenopus development. EMBO J 2000, 19, 3683–3693. [Google Scholar]
- Kuwano, Y.; Pullmann, R., Jr; Marasa, B.S.; Abdelmohsen, K.; Lee, E.K.; Yang, X.; Martindale, J.L.; Zhan, M.; Gorospe, M. NF90 selectively represses the translation of target mRNAs bearing an AU-rich signature motif. Nucleic Acids Res. 2010, 38, 225–238. [Google Scholar]
- Neplioueva, V.; Dobrikova, E.Y.; Mukherjee, N.; Keene, J.D.; Gromeier, M. Tissue type-specific expression of the dsRNA-binding protein 76 and genome-wide elucidation of its target mRNAs. PLoS One 2010, 5, e11710. [Google Scholar]
- Mitchell, P.; Tollervey, D. mRNA turnover. Curr. Opin. Cell Biol 2001, 13, 320–325. [Google Scholar]
- Wilusz, C.J.; Wormington, M.; Peltz, S.W. The cap-to-tail guide to mRNA turnover. Nat. Rev. Mol. Cell Biol 2001, 2, 237–246. [Google Scholar]
- Chen, C.Y.; Shyu, A.B. AU-rich elements: Characterization and importance in mRNA degradation. Trends Biochem. Sci 1995, 20, 465–470. [Google Scholar]
- Kuwano, Y.; Kim, H.H.; Abdelmohsen, K.; Pullmann, R., Jr; Martindale, J.L.; Yang, X.; Gorospe, M. MKP-1 mRNA stabilization and translational control by RNA-binding proteins HuR and NF90. Mol. Cell Biol. 2008, 28, 4562–4575. [Google Scholar]
- Vumbaca, F.; Phoenix, K.N.; Rodriguez-Pinto, D.; Han, D.K.; Claffey, K.P. Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol. Cell Biol 2008, 28, 772–783. [Google Scholar]
- Shi, L.; Zhao, G.; Qiu, D.; Godfrey, W.R.; Vogel, H.; Rando, T.A.; Hu, H.; Kao, P.N. NF90 regulates cell cycle exit and terminal myogenic differentiation by direct binding to the 3′-untranslated region of MyoD and p21WAF1/CIP1 mRNAs. J. Biol. Chem 2005, 280, 18981–18989. [Google Scholar]
- Pei, Y.; Zhu, P.; Dang, Y.; Wu, J.; Yang, X.; Wan, B.; Liu, J.O.; Yi, Q.; Yu, L. Nuclear export of NF90 to stabilize IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to CD28 costimulation. J. Immunol 2008, 180, 222–229. [Google Scholar]
- Zhu, P.; Jiang, W.; Cao, L.; Yu, W.; Pei, Y.; Yang, X.; Wan, B.; Liu, J.O.; Yi, Q.; Yu, L. IL-2 mRNA stabilization upon PMA stimulation is dependent on NF90-Ser647 phosphorylation by protein kinase CbetaI. J. Immunol 2010, 185, 5140–5149. [Google Scholar]
- Hinman, M.N.; Lou, H. Diverse molecular functions of Hu proteins. Cell Mol. Life Sci 2008, 65, 3168–3181. [Google Scholar]
- Yang, F.; Huo, X.S.; Yuan, S.X.; Zhang, L.; Zhou, W.P.; Wang, F.; Sun, S.H. Repression of the long noncoding RNA-let by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol. Cell 2013, 49, 1083–1096. [Google Scholar]
- Tominaga-Yamanaka, K.; Abdelmohsen, K.; Martindale, J.L.; Yang, X.; Taub, D.D.; Gorospe, M. NF90 coordinately represses the senescence-associated secretory phenotype. Aging 2012, 4, 695–708. [Google Scholar]
- Hoque, M.; Shamanna, R.A.; Guan, D.; Pe’ery, T.; Mathews, M.B. HIV-1 replication and latency are regulated by translational control of cyclin T1. J. Mol. Biol 2011, 410, 917–932. [Google Scholar]
- Pfeifer, I.; Elsby, R.; Fernandez, M.; Faria, P.A.; Nussenzveig, D.R.; Lossos, I.S.; Fontoura, B.M.; Martin, W.D.; Barber, G.N. NFAR-1 and -2 modulate translation and are required for efficient host defense. Proc. Natl. Acad. Sci. USA 2008, 105, 4173–4178. [Google Scholar]
- Kim, H.H.; Kuwano, Y.; Srikantan, S.; Lee, E.K.; Martindale, J.L.; Gorospe, M. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 2009, 23, 1743–1748. [Google Scholar]
- Chendrimada, T.P.; Gregory, R.I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K.; Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436, 740–744. [Google Scholar]
- Lee, Y.; Hur, I.; Park, S.Y.; Kim, Y.K.; Suh, M.R.; Kim, V.N. The role of pact in the RNA silencing pathway. EMBO J 2006, 25, 522–532. [Google Scholar]
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar]
- Lee, Y.; Kim, M.; Han, J.; Yeom, K.H.; Lee, S.; Baek, S.H.; Kim, V.N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004, 23, 4051–4060. [Google Scholar]
- Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 2003, 17, 3011–3016. [Google Scholar]
- Krol, J.; Loedige, I.; Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet 2010, 11, 597–610. [Google Scholar]
- Gregory, R.I.; Yan, K.P.; Amuthan, G.; Chendrimada, T.; Doratotaj, B.; Cooch, N.; Shiekhattar, R. The microprocessor complex mediates the genesis of microRNAs. Nature 2004, 432, 235–240. [Google Scholar]
- Sakamoto, S.; Aoki, K.; Higuchi, T.; Todaka, H.; Morisawa, K.; Tamaki, N.; Hatano, E.; Fukushima, A.; Taniguchi, T.; Agata, Y. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol. Cell Biol 2009, 29, 3754–3769. [Google Scholar]
- Volk, N.; Shomron, N. Versatility of microRNA biogenesis. PLoS One 2011, 6, e19391. [Google Scholar]
- Hu, Q.; Lu, Y.Y.; Noh, H.; Hong, S.; Dong, Z.; Ding, H.F.; Su, S.B.; Huang, S. Interleukin enhancer-binding factor 3 promotes breast tumor progression by regulating sustained urokinase-type plasminogen activator expression. Oncogene 2012. [Google Scholar] [CrossRef]
- Fung, L.F.; Lo, A.K.; Yuen, P.W.; Liu, Y.; Wang, X.H.; Tsao, S.W. Differential gene expression in nasopharyngeal carcinoma cells. Life Sci 2000, 67, 923–936. [Google Scholar]
- Matsumoto-Taniura, N.; Pirollet, F.; Monroe, R.; Gerace, L.; Westendorf, J.M. Identification of novel M phase phosphoproteins by expression cloning. Mol. Biol. Cell 1996, 7, 1455–1469. [Google Scholar]
- Sakamoto, S.; Morisawa, K.; Ota, K.; Nie, J.; Taniguchi, T. A binding protein to the DNase I hypersensitive site II in HLA-DR alpha gene was identified as NF90. Biochemistry 1999, 38, 3355–3361. [Google Scholar]
- Zhao, G.; Shi, L.; Qiu, D.; Hu, H.; Kao, P.N. NF45/ILF2 tissue expression, promoter analysis, and interleukin-2 transactivating function. Exp. Cell Res 2005, 305, 312–323. [Google Scholar]
- Guo, N.L.; Wan, Y.W.; Tosun, K.; Lin, H.; Msiska, Z.; Flynn, D.C.; Remick, S.C.; Vallyathan, V.; Dowlati, A.; Shi, X.; et al. Confirmation of gene expression-based prediction of survival in non-small cell lung cancer. Clin. Cancer Res 2008, 14, 8213–8220. [Google Scholar]
- Guo, Y.; Fu, P.; Zhu, H.; Reed, E.; Remick, S.C.; Petros, W.; Mueller, M.D.; Yu, J.J. Correlations among ercc1, XPB, UBE2I, EGF, TAL2 and ILF3 revealed by gene signatures of histological subtypes of patients with epithelial ovarian cancer. Oncol. Rep 2012, 27, 286–292. [Google Scholar]
- Abdelmohsen, K.; Gorospe, M. Posttranscriptional regulation of cancer traits by HuR. Wiley Interdiscip. Rev. RNA 2010, 1, 214–229. [Google Scholar]
- Masuda, K.; Kuwano, Y.; Nishida, K.; Rokutan, K. General RBP expression in human tissues as a function of age. Ageing Res. Rev 2012, 11, 423–431. [Google Scholar]
Target mRNA | Binding sites | Consequences to mRNA | Conditions | References |
---|---|---|---|---|
β-glucosidase | 3′UTR | Translation ↓ | - | [28] |
IL-2 | 3′UTR | Stability ↑ | T-cell activation | [7] |
VEGF | 3′UTR | Stability ↑ Translation ↑ | Hypoxia | [46] |
MKP-1 | 3′UTR | Stability ↑ Translation ↓ | Hydrogen peroxide | [45] |
p21WAF1/Cip1, MyoD | 3′UTR | Stability ↑ | - | [47] |
CCNA, CCNI, CDC2, EIF4E | 3′UTR | Translation ↓ | - | [40] |
GM-CFS, MCP-1, GROa, IL-6, IL-8 | 3′UTR | Translation ↓ | Proliferating cells | [52] |
Cyclin T1 | 3′UTR | Translation ↑ | HIV-1 infection | [53] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Masuda, K.; Kuwano, Y.; Nishida, K.; Rokutan, K.; Imoto, I. NF90 in Posttranscriptional Gene Regulation and MicroRNA Biogenesis. Int. J. Mol. Sci. 2013, 14, 17111-17121. https://doi.org/10.3390/ijms140817111
Masuda K, Kuwano Y, Nishida K, Rokutan K, Imoto I. NF90 in Posttranscriptional Gene Regulation and MicroRNA Biogenesis. International Journal of Molecular Sciences. 2013; 14(8):17111-17121. https://doi.org/10.3390/ijms140817111
Chicago/Turabian StyleMasuda, Kiyoshi, Yuki Kuwano, Kensei Nishida, Kazuhito Rokutan, and Issei Imoto. 2013. "NF90 in Posttranscriptional Gene Regulation and MicroRNA Biogenesis" International Journal of Molecular Sciences 14, no. 8: 17111-17121. https://doi.org/10.3390/ijms140817111
APA StyleMasuda, K., Kuwano, Y., Nishida, K., Rokutan, K., & Imoto, I. (2013). NF90 in Posttranscriptional Gene Regulation and MicroRNA Biogenesis. International Journal of Molecular Sciences, 14(8), 17111-17121. https://doi.org/10.3390/ijms140817111