Molecular Interactions in the Development of Brain Metastases
Abstract
:1. Introduction
2. Development of Brain Metastases
2.1. The BBB: Normal Structure and Function
2.2. Invasion and Manipulation of the BBB
2.3. Chemoprotection by the Brain Microenvironment
2.4. Dormancy
3. Genetic Alterations Associated with Increased Brain Metastatic Potential
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Walker, A.E.; Robins, M.; Weinfeld, F.D. Epidemiology of brain tumors: The national survey of intracranial neoplasms. Neurology 1985, 35, 219–219. [Google Scholar]
- Ewend, M.G.; Morris, D.E.; Carey, L.A.; Ladha, A.M.; Brem, S. Guidelines for the initial management of metastatic brain tumors: Role of surgery, radiosurgery, and radiation therapy. J. Natl. Compr. CancER Netw 2008, 6, 505–513. [Google Scholar]
- Barnholtz-Sloan, J.S.; Sloan, A.E.; Davis, F.G.; Vigneau, F.D.; Lai, P.; Sawaya, R.E. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan detroit cancer surveillance system. J. Clin. Oncol 2004, 22, 2865–2872. [Google Scholar]
- Fox, B.D.; Cheung, V.J.; Patel, A.J.; Suki, D.; Rao, G. Epidemiology of metastatic brain tumors. Neurosurg. Clin. N. Am 2011, 22, 1–6. [Google Scholar]
- Davis, F.G.; Dolecek, T.A.; McCarthy, B.J.; Villano, J.L. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 united states cancer incidence data. Neuro Oncol 2012, 14, 1171–1177. [Google Scholar]
- Patchell, R.A.; Tibbs, P.A.; Walsh, J.W.; Dempsey, R.J.; Maruyama, Y.; Kryscio, R.J.; Markesbery, W.R.; Macdonald, J.S.; Young, B. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med 1990, 322, 494–500. [Google Scholar]
- Patchell, R.A. The management of brain metastases. Cancer Treatment Rev 2003, 29, 533–540. [Google Scholar]
- Andrews, D.W.; Scott, C.B.; Sperduto, P.W.; Flanders, A.E.; Gaspar, L.E.; Schell, M.C.; Werner-Wasik, M.; Demas, W.; Ryu, J.; Bahary, J.P.; et al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase iii results of the rtog 9508 randomised trial. Lancet 2004, 363, 1665–1672. [Google Scholar]
- Aoyama, H.; Shirato, H.; Tago, M.; Nakagawa, K.; Toyoda, T.; Hatano, K.; Kenjyo, M.; Oya, N.; Hirota, S.; Shioura, H.; et al. Stereotactic radiosurgery plus whole-brain radiation therapy vs. stereotactic radiosurgery alone for treatment of brain metastases: A randomized controlled trial. JAMA 2006, 295, 2483–2491. [Google Scholar]
- Eichler, A.F.; Loeffler, J.S. Multidisciplinary management of brain metastases. Oncologist 2007, 12, 884–898. [Google Scholar]
- Ceresoli, G.L.; Cappuzzo, F.; Gregorc, V.; Bartolini, S.; Crino, L.; Villa, E. Gefitinib in patients with brain metastases from non-small-cell lung cancer: A prospective trial. Ann. Oncol 2004, 15, 1042–1047. [Google Scholar]
- Bartolotti, M.; Franceschi, E.; Brandes, A.A. Egf receptor tyrosine kinase inhibitors in the treatment of brain metastases from non-small-cell lung cancer. Expert Rev. Anticancer Ther 2012, 12, 1429–1435. [Google Scholar]
- Rochet, N.M.; Dronca, R.S.; Kottschade, L.A.; Chavan, R.N.; Gorman, B.; Gilbertson, J.R.; Markovic, S.N. Melanoma brain metastases and vemurafenib: Need for further investigation. Mayo Clin. Proc 2012, 87, 976–981. [Google Scholar]
- Soffietti, R.; Trevisan, E.; Ruda, R. Targeted therapy in brain metastasis. Curr. Opin. Oncol 2012, 24, 679–686. [Google Scholar]
- Mehta, M.P.; Paleologos, N.A.; Mikkelsen, T.; Robinson, P.D.; Ammirati, M.; Andrews, D.W.; Asher, A.L.; Burri, S.H.; Cobbs, C.S.; Gaspar, L.E.; et al. The role of chemotherapy in the management of newly diagnosed brain metastases: A systematic review and evidence-based clinical practice guideline. J. Neurooncol 2010, 96, 71–83. [Google Scholar]
- Gupta, G.P.; Massague, J. Cancer metastasis: Building a framework. Cell 2006, 127, 679–695. [Google Scholar]
- Chambers, A.F.; Groom, A.C.; MacDonald, I.C. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2002, 2, 563–572. [Google Scholar]
- Langley, R.R.; Fidler, I.J. The seed and soil hypothesis revisited—The role of tumor-stroma interactions in metastasis to different organs. Int. J. Cancer 2011, 128, 2527–2535. [Google Scholar]
- Fidler, I.J.; Hart, I.R. Biological diversity in metastatic neoplasms: Origins and implications. Science 1982, 217, 998–1003. [Google Scholar]
- Zhang, C.; Yu, D. Microenvironment determinants of brain metastasis. Cell Biosci 2011, 1, 8. [Google Scholar]
- Fidler, I.J. The role of the organ microenvironment in brain metastasis. Semin. Cancer Biol 2011, 21, 107–112. [Google Scholar]
- Kniesel, U.; Wolburg, H. Tight junctions of the blood-brain barrier. Cell Mol. Neurobiol 2000, 20, 57–76. [Google Scholar]
- Huber, J.D.; Egleton, R.D.; Davis, T.P. Molecular physiology and pathophysiology of tight junctions in the blood-brain barrier. Trends Neurosci 2001, 24, 719–725. [Google Scholar]
- Armulik, A.; Genove, G.; Mae, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; et al. Pericytes regulate the blood-brain barrier. Nature 2010, 468, 557–561. [Google Scholar]
- Abbott, N.J.; Ronnback, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci 2006, 7, 41–53. [Google Scholar]
- Marchetti, D.L.J.; Shen, R. Astrocytes contribute to the brain-metastatic specificity of melanoma cells by producing heparanase. Cancer Res 2000, 60, 4767–4770. [Google Scholar]
- Lorger, M.; Felding-Habermann, B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am. J. Pathol 2010, 176, 2958–2971. [Google Scholar]
- Lorger, M.; Lee, H.; Forsyth, J.S.; Felding-Habermann, B. Comparison of in vitro and in vivo approaches to studying brain colonization by breast cancer cells. J. Neurooncol 2011, 104, 689–696. [Google Scholar]
- Kienast, Y.; von Baumgarten, L.; Fuhrmann, M.; Klinkert, W.E.; Goldbrunner, R.; Herms, J.; Winkler, F. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med 2010, 16, 116–122. [Google Scholar]
- Lee, B.; Lee, T.; Avraham, S.; Avraham, H. Involvement of the chemokine receptor cxcr4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res 2004, 2, 327–338. [Google Scholar]
- Carbonell, W.S.; Ansorge, O.; Sibson, N.; Muschel, R. The vascular basement membrane as “soil” in brain metastasis. PLoS One 2009, 4, e5857. [Google Scholar]
- Bos, P.D.; Zhang, X.H.; Nadal, C.; Shu, W.; Gomis, R.R.; Nguyen, D.X.; Minn, A.J.; van de Vijver, M.J.; Gerald, W.L.; Foekens, J.A.; et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009, 459, 1005–1009. [Google Scholar]
- Mendes, O.; Kim, H.T.; Stoica, G. Expression of mmp2, mmp9 and mmp3 in breast cancer brain metastasis in a rat model. Clin. Exp. Metast 2005, 22, 237–246. [Google Scholar]
- Zhang, C.; Zhang, F.; Tsan, R.; Fidler, I.J. Transforming growth factor-beta2 is a molecular determinant for site-specific melanoma metastasis in the brain. Cancer Res 2009, 69, 828–835. [Google Scholar]
- Sierra, A.; Price, J.E.; Garcia-Ramirez, M.; Mendez, O.; Lopez, L.; Fabra, A. Astrocyte-derived cytokines contribute to the metastatic brain specificity of breast cancer cells. Lab. Invest 1997, 77, 357–368. [Google Scholar]
- Denkins, Y.; Reiland, J.; Roy, M.; Sinnappah-Kang, N.D.; Galjour, J.; Murry, B.P.; Blust, J.; Aucoin, R.; Marchetti, D. Brain metastases in melanoma: Roles of neurotrophins. Neuro Oncol 2004, 6, 154–165. [Google Scholar]
- Seike, T.; Fujita, K.; Yamakawa, Y.; Kido, M.A.; Takiguchi, S.; Teramoto, N.; Iguchi, H.; Noda, M. Interaction between lung cancer cells and astrocytes via specific inflammatory cytokines in the microenvironment of brain metastasis. Clin. Exp. Metast 2011, 28, 13–25. [Google Scholar]
- Bendell, J.C.; Domchek, S.M.; Burstein, H.J.; Harris, L.; Younger, J.; Kuter, I.; Bunnell, C.; Rue, M.; Gelman, R.; Winer, E. Central nervous system metastases in women who receive trastuzumab-based therapy for metastatic breast carcinoma. Cancer 2003, 97, 2972–2977. [Google Scholar]
- Stemmler, H.J.; Kahlert, S.; Siekiera, W.; Untch, M.; Heinrich, B.; Heinemann, V. Characteristics of patients with brain metastases receiving trastuzumab for her2 overexpressing metastatic breast cancer. Breast 2006, 15, 219–225. [Google Scholar]
- Lower, E.E.; Drosick, D.R.; Blau, R.; Brennan, L.; Danneman, W.; Hawley, D.K. Increased rate of brain metastasis with trastuzumab therapy not associated with impaired survival. Clin. Breast Cancer 2003, 4, 114–119. [Google Scholar]
- Yau, T.; Swanton, C.; Chua, S.; Sue, A.; Walsh, G.; Rostom, A.; Johnston, S.R.; O’Brien, M.E.; Smith, I.E. Incidence, pattern and timing of brain metastases among patients with advanced breast cancer treated with trastuzumab. Acta Oncol 2006, 45, 196–201. [Google Scholar]
- Omuro, A.M.; Kris, M.G.; Miller, V.A.; Franceschi, E.; Shah, N.; Milton, D.T.; Abrey, L.E. High incidence of disease recurrence in the brain and leptomeninges in patients with nonsmall cell lung carcinoma after response to gefitinib. Cancer 2005, 103, 2344–2348. [Google Scholar]
- Ruppert, A.M.; Beau-Faller, M.; Neuville, A.; Guerin, E.; Voegeli, A.C.; Mennecier, B.; Legrain, M.; Molard, A.; Jeung, M.Y.; Gaub, M.P.; et al. Egfr-tki and lung adenocarcinoma with cns relapse: Interest of molecular follow-up. Eur. Respir. J. 2009, 33, 436–440. [Google Scholar]
- Palmieri, D.; Chambers, A.F.; Felding-Habermann, B.; Huang, S.; Steeg, P.S. The biology of metastasis to a sanctuary site. Clin. Cancer Res 2007, 13, 1656–1662. [Google Scholar]
- Grommes, C.; Oxnard, G.R.; Kris, M.G.; Miller, V.A.; Pao, W.; Holodny, A.I.; Clarke, J.L.; Lassman, A.B. “Pulsatile” high-dose weekly erlotinib for cns metastases from egfr mutant non-small cell lung cancer. Neuro Oncol 2011, 13, 1364–1369. [Google Scholar]
- Kim, S.; Kim, J.; Park, E.; Lin, Q.; Langley, R.R.; Maya, M.; He, J.; Kim, S.; Weihua, Z.; Balasubramanian, K.; et al. Astrocytes upregulate survival genes in tumor cells and induce protection from chemotherapy. Neoplasia 2011, 13, 286–298. [Google Scholar]
- Régina, A.; Demeule, M.; Laplante, A.; Jodoin, J.; Dagenais, C.; Berthelet, F.; Moghrabi, A.; Béliveau, R. Multidrug resistance in brain tumors: Roles of the blood-brain barrier. Cancer Metast. Rev 2001, 20, 13–25. [Google Scholar]
- Joo, K.M.; Song, S.; Park, K.; Kim, M.; Jin, J.; Bong, G.; Jang, M.; Lee, G.; Kim, M.; Nam, D. Response of brain specific microenvironment to p-glycoprotein inhibitor: An important factor determining therapeutic effect of p-glycoprotein inhibitor on brain metastatic tumors. Int. J. Oncol 1992, 33, 705–712. [Google Scholar]
- Heyn, C. In vivo mri of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med 2006, 56, 1001–1010. [Google Scholar]
- Serres, S.; Soto, M.; Hamilton, A.; McAteer, M.; Carbonell, W.; Robson, M.; Ansorge, O.; Khrapitchev, A.; Bristow, C.; Balathasan, L.; et al. Molecular mri enables early and sensitive detection of brain metastases. Proc. Natl. Acad. Sci. USA 2012, 109, 6674–6679. [Google Scholar]
- Berger, J.C.; Vander Griend, D.J.; Robinson, V.L.; Hickson, J.A.; Rinker-Schaeffer, C.W. Metastasis suppressor genes: From gene identification to protein function and regulation. Cancer Biol. Ther 2005, 4, 805–812. [Google Scholar]
- Townson, J.L.; Chambers, A.F. Dormancy of solitary metastatic cells. Cell Cycle 2006, 5, 1744–1750. [Google Scholar]
- Nash, K.T.; Phadke, P.A.; Navenot, J.M.; Hurst, D.R.; Accavitti-Loper, M.A.; Sztul, E.; Vaidya, K.S.; Frost, A.R.; Kappes, J.C.; Peiper, S.C.; et al. Requirement of kiss1 secretion for multiple organ metastasis suppression and maintenance of tumor dormancy. J. Natl. Cancer Inst 2007, 99, 309–321. [Google Scholar]
- Hedley, B.D.; Chambers, A.F. Tumor dormancy and metastasis. Adv. Cancer Res 2009, 102, 67–101. [Google Scholar]
- McGowan, P.M.; Kirstein, J.M.; Chambers, A.F. Micrometastatic disease and metastatic outgrowth: Clinical issues and experimental approaches. Future Oncol 2009, 5, 1083–1098. [Google Scholar]
- Goss, P.E.; Chambers, A.F. Does tumour dormancy offer a therapeutic target? Nat. Rev. Cancer 2010, 10, 871–877. [Google Scholar]
- Bragado, P.; Sosa, M.S.; Keely, P.; Condeelis, J.; Aguirre-Ghiso, J.A. Microenvironments dictating tumor cell dormancy. Recent Res. Cancer 2012, 195, 25–39. [Google Scholar]
- Sosa, M.S.; Avivar-Valderas, A.; Bragado, P.; Wen, H.C.; Aguirre-Ghiso, J.A. Erk1/2 and p38alpha/beta signaling in tumor cell quiescence: Opportunities to control dormant residual disease. Clin. Cancer Res 2011, 17, 5850–5857. [Google Scholar]
- Kim, M.Y.; Oskarsson, T.; Acharyya, S.; Nguyen, D.X.; Zhang, X.H.; Norton, L.; Massague, J. Tumor self-seeding by circulating cancer cells. Cell 2009, 139, 1315–1326. [Google Scholar]
- Troester, M.A.; Lee, M.H.; Carter, M.; Fan, C.; Cowan, D.W.; Perez, E.R.; Pirone, J.R.; Perou, C.M.; Jerry, D.J.; Schneider, S.S. Activation of host wound responses in breast cancer microenvironment. Clin. Cancer Res 2009, 15, 7020–7028. [Google Scholar]
- Husemann, Y.; Geigl, J.B.; Schubert, F.; Musiani, P.; Meyer, M.; Burghart, E.; Forni, G.; Eils, R.; Fehm, T.; Riethmuller, G.; et al. Systemic spread is an early step in breast cancer. Cancer Cell 2008, 13, 58–68. [Google Scholar]
- Steeg, P.S.; Bevilacqua, G.; Kopper, L.; Thorgeirsson, U.P.; Talmadge, J.E.; Liotta, L.A.; Sobel, M.E. Evidence for a novel gene associated with low tumor metastatic potential. J. Natl. Cancer Inst 1988, 80, 200–204. [Google Scholar]
- Horak, C.E.; Lee, J.H.; Marshall, J.C.; Shreeve, S.M.; Steeg, P.S. The role of metastasis suppressor genes in metastatic dormancy. APMIS 2008, 116, 586–601. [Google Scholar]
- Shoushtari, A.N.; Szmulewitz, R.Z.; Rinker-Schaeffer, C.W. Metastasis-suppressor genes in clinical practice: Lost in translation? Nat. Rev. Clin. Oncol 2011, 8, 333–342. [Google Scholar]
- Miller, K.D.; Weathers, T.; Haney, L.G.; Timmerman, R.; Dickler, M.; Shen, J.; Sledge, G.W., Jr. Occult central nervous system involvement in patients with metastatic breast cancer: Prevalence, predictive factors and impact on overall survival. Ann. Oncol. 2003, 14, 1072–1077. [Google Scholar]
- Gabos, Z.; Sinha, R.; Hanson, J.; Chauhan, N.; Hugh, J.; Mackey, J.R.; Abdulkarim, B. Prognostic significance of human epidermal growth factor receptor positivity for the development of brain metastasis after newly diagnosed breast cancer. J. Clin. Oncol 2006, 24, 5658–5663. [Google Scholar]
- Lin, N.U.; Bellon, J.R.; Winer, E.P. Cns metastases in breast cancer. J. Clin. Oncol 2004, 22, 3608–3617. [Google Scholar]
- Palmieri, D.; Bronder, J.L.; Herring, J.M.; Yoneda, T.; Weil, R.J.; Stark, A.M.; Kurek, R.; Vega-Valle, E.; Feigenbaum, L.; Halverson, D.; et al. Her-2 overexpression increases the metastatic outgrowth of breast cancer cells in the brain. Cancer Res 2007, 67, 4190–4198. [Google Scholar]
- Clevers, H.; Nusse, R. Wnt/beta-catenin signaling and disease. Cell 2012, 149, 1192–1205. [Google Scholar]
- Lin, N.U.; Dieras, V.; Paul, D.; Lossignol, D.; Christodoulou, C.; Stemmler, H.J.; Roche, H.; Liu, M.C.; Greil, R.; Ciruelos, E.; et al. Multicenter phase ii study of lapatinib in patients with brain metastases from her2-positive breast cancer. Clin. Cancer Res 2009, 15, 1452–1459. [Google Scholar]
- Kodack, D.P.; Chung, E.; Yamashita, H.; Incio, J.; Duyverman, A.M.; Song, Y.; Farrar, C.T.; Huang, Y.; Ager, E.; Kamoun, W.; et al. Combined targeting of her2 and vegfr2 for effective treatment of her2-amplified breast cancer brain metastases. Proc. Natl. Acad. Sci. USA 2012, 109, E3119–E3127. [Google Scholar]
- Kaplan, M.A.; Isikdogan, A.; Koca, D.; Kucukoner, M.; Gumusay, O.; Yildiz, R.; Dayan, A.; Demir, L.; Geredeli, C.; Kocer, M.; et al. Clinical outcomes in patients who received lapatinib plus capecitabine combination therapy for her2-positive breast cancer with brain metastasis and a comparison of survival with those who received trastuzumab-based therapy: A study by the anatolian society of medical oncology. Breast Cancer 2013. [Google Scholar] [CrossRef]
- Nguyen, D.X.; Bos, P.D.; Massague, J. Metastasis: From dissemination to organ-specific colonization. Nat. Rev. Cancer 2009, 9, 274–284. [Google Scholar]
- Nguyen, D.X.; Massague, J. Genetic determinants of cancer metastasis. Nat. Rev. Genet 2007, 8, 341–352. [Google Scholar]
Mediator | Action | Primary tumor | Reference |
---|---|---|---|
Stromal cell-derived factor 1α | Adhesion; tumor cell migration | MDA-MB231, DU4475 (breast) | Lee, 2004 [30] |
β1 integrins | Tumor cell adhesion to endothelial cell basement membrane | MDA-MB231 (breast) | Carbonell, 2009 [31] |
ST6GALNAC5 | Tumor cell adhesion to endothelial cell basement membrane | MDA-MB231 (breast) | Bos, 2009 [32] |
Heparanase | Proteolysis | 70W (melanoma) | Marchetti, 2000 [26] |
Matrix metalloproteinases | Invasion; mechanism unknown | ENU1564 (breast) | Mendes, 2005 [33] |
TGF-β2 | Growth factor | K-1735 (melanoma) | Zhang, 2009 [34] |
IL-6, IGF-1 | Growth factor | MDA-MB435 (breast) | Sierra, 1997 [35] |
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Martinez, N.; Boire, A.; DeAngelis, L.M. Molecular Interactions in the Development of Brain Metastases. Int. J. Mol. Sci. 2013, 14, 17157-17167. https://doi.org/10.3390/ijms140817157
Martinez N, Boire A, DeAngelis LM. Molecular Interactions in the Development of Brain Metastases. International Journal of Molecular Sciences. 2013; 14(8):17157-17167. https://doi.org/10.3390/ijms140817157
Chicago/Turabian StyleMartinez, Nina, Adrienne Boire, and Lisa M. DeAngelis. 2013. "Molecular Interactions in the Development of Brain Metastases" International Journal of Molecular Sciences 14, no. 8: 17157-17167. https://doi.org/10.3390/ijms140817157
APA StyleMartinez, N., Boire, A., & DeAngelis, L. M. (2013). Molecular Interactions in the Development of Brain Metastases. International Journal of Molecular Sciences, 14(8), 17157-17167. https://doi.org/10.3390/ijms140817157