Intersection of AHR and Wnt Signaling in Development, Health, and Disease
Abstract
:1. Introduction
2. AHR and Wnt Signaling in Development, Health, and Disease
3. AHR Signaling
4. Wnt Signaling
5. Assessing AHR and Wnt Signaling Pathways
6. Wnt Signaling Effects on AHR Signaling
Species | Tissue/Cell Type | Activated AHR Alters Wnt Signaling | Wnt Signaling Alters AHR Signaling | Reference |
---|---|---|---|---|
Human | Prostate cancer cell lines | - | No | [97] |
Mouse | Hepatoma cell line | - | Yes (Up) | [110] |
Mouse | Hepatoma cell lines; Primary hepatocytes; Hepatocyte-specific CTNNB1 knockout mice | No | Yes (Up) | [99] g |
Rat | Multipotent stem cell-like cell line isolated from liver | Yes (Down) | Yes (Up) | [100] g |
Mouse & Human | Intestinal tissue & tumors from Ahr −/− & Apc min/+ mice; Human colon cancer cell lines | Yes (Down) | - | [28] g |
Rat | Multipotent stem cell-like cell line isolated from liver | Yes (Down) | - | [47] g |
Rat | Brain (cortex); Primary cortical neurons; Pheochromocytoma cell line (adrenal gland) a | Yes (Down) | - | [129] g |
Human | Placental choriocarcinoma & endometrial adenocarcinoma cell lines | Yes (Down) | - | [130] g |
Human | Breast cancer cell line (mammospheres) | Yes (Down) b | - | [131] g |
Mouse | Urogenital sinus | Yes (Down) | - | [143] g |
Mouse | Urogenital sinus | Yes (Down) | - | [152] g |
Zebrafish | Fin (regeneration) | Yes (Up) | - | [44] g |
Mouse | Embryonal carcinoma cell line | Yes (Up) c | - | [116] g |
Human | Prostate cancer cell line | Yes (Up) d | - | [41] |
Mouse | Palate | Yes (Down) d | - | [124] |
Mouse | Primary lung fibroblast | Yes e | - | [132] g |
Mouse | Urogenital sinus | No d,f | - | [153] |
Zebrafish | Swim bladder | Inconclusive | - | [190] |
Direction of Altered Wnt Signaling | Upstream Regulators of Wnt Signaling | CTNNB1 Expression and Nuclear Localization | Downstream CTNNB1 Target Genes | Reference |
---|---|---|---|---|
Down | p-DVL2 (↓) a | Lef1 (↓) | [100] | |
p-DVL3 (↓) a | Expression (↓) | Axin2 (↓) | ||
p-GSK3B (nc) a,b | Nuclear Localization (↓) | Ccnd1 (↓) | ||
p-LRP6 (nc) a,b | Other target genes | |||
Down | - c,d | Expression (↓) d | CTNNB1 reporter gene (↓) | [28] |
Down | Wnt4 (↓) | - | Lef1 (↓) Axin2 (↓) Other potential target genes | [47] |
Wnt5a (↓) | ||||
Fzd1 (↓) | ||||
Fzd4 (↓) | ||||
Down | p-GSK3B (↓) a | Expression (↓) | - | [129] |
Down | - | Expression (↓) | - | [130] |
Down | - | Expression (↓) e | - | [131] |
Down | Rspo2 (↓) | - | Lef1 & LEF1 (↓) Hnf1a & HNF1A (↓) Wif1 (↓) | [143] |
Rspo3 (↓) | ||||
Lgr5 (↓) | ||||
Lgr4 (nc) | ||||
Down | Wnt10a (↑) | LEF1 (↓)
Wif1 (↓) Ror2 (↓) | [152] | |
Wnt16 (↑) | Expression (↓) | |||
Rspo2 (↓) | Nuclear Localization (↓) | |||
all other Wnts (nc) | ||||
Up | rspo1 (↑) | - | - | [44] |
lrp6 (nc) f | ||||
Up | - | Expression (↓) g | - | [116] |
Up h | Wnt5a (↓) Wnt5b (↓) Wnt9a (↓) | - | Lef1 (↑) | [132] |
Axin2 (↑) | ||||
Myc (↑) | ||||
Wisp2 (↑) | ||||
No Effect | - | - | Axin2 (nc) | [99] |
Lgr5 (nc) | ||||
CTNNB1 reporter gene (nc) |
7. Effects of Activated AHR on Wnt Signaling
7.1. Upregulation of Wnt Signaling
7.2. Downregulation of Wnt Signaling
8. AHR and Wnt Signaling in Mouse Prostate Development
9. Activated AHR Inhibits Canonical Wnt Signaling During Prostatic Budding
9.1. In Vitro
9.2. In Vivo
10. Wnt Signaling Components Upstream of CTNNB1 Altered by Activated AHR
10.1. Rspo2 and Rspo3
10.2. Wnt10a and Wnt16
10.3. Wnt5a
11. Intersection of AHR and Wnt Signaling in the UGS
12. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hahn, M.E. Aryl hydrocarbon receptors: Diversity and evolution. Chem. Biol. Interact. 2002, 141, 131–160. [Google Scholar]
- McMillan, B.J.; Bradfield, C.A. The aryl hydrocarbon receptor sans xenobiotics: Endogenous function in genetic model systems. Mol. Pharmacol. 2007, 72, 487–498. [Google Scholar]
- Nusse, R. Wnt signaling in disease and in development. Cell Res. 2005, 15, 28–32. [Google Scholar]
- Lebreton, G.; Faucher, C.; Cribbs, D.L.; Benassayag, C. Timing of wingless signalling distinguishes maxillary and antennal identities in drosophila melanogaster. Development 2008, 135, 2301–2309. [Google Scholar]
- Song, S.; Zhang, B.; Sun, H.; Li, X.; Xiang, Y.; Liu, Z.; Huang, X.; Ding, M. A Wnt-Frz/Ror-Dsh pathway regulates neurite outgrowth in Caenorhabditis elegans. PLoS Genet. 2010, 6, e1001056. [Google Scholar]
- Zhang, J.; Li, X.; Jevince, A.R.; Guan, L.; Wang, J.; Hall, D.H.; Huang, X.; Ding, M. Neuronal target identification requires aha-1-mediated fine-tuning of wnt signaling in C. Elegans. PLoS Genet. 2013, 9, e1003618. [Google Scholar]
- Van Amerongen, R.; Berns, A. Knockout mouse models to study wnt signal transduction. Trends Genet. 2006, 22, 678–689. [Google Scholar]
- Grigoryan, T.; Wend, P.; Klaus, A.; Birchmeier, W. Deciphering the function of canonical wnt signals in development and disease: Conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 2008, 22, 2308–2341. [Google Scholar]
- Rudloff, S.; Kemler, R. Differential requirements for β-catenin during mouse development. Development 2012, 139, 3711–3721. [Google Scholar]
- Goodale, B.C.; la Du, J.K.; Bisson, W.H.; Janszen, D.B.; Waters, K.M.; Tanguay, R.L. AHR2 mutant reveals functional diversity of aryl hydrocarbon receptors in zebrafish. PloS One 2012, 7, e29346. [Google Scholar]
- Harrill, J.A.; Hukkanen, R.R.; Lawson, M.; Martin, G.; Gilger, B.; Soldatow, V.; Lecluyse, E.L.; Budinsky, R.A.; Rowlands, J.C.; Thomas, R.S. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice. Toxicol. Appl. Pharmacol. 2013, 272, 503–518. [Google Scholar]
- Barouki, R.; Coumoul, X.; Fernandez-Salguero, P.M. The aryl hydrocarbon receptor, more than a xenobiotic-interacting protein. FEBS Lett. 2007, 581, 3608–3615. [Google Scholar]
- Abel, J.; Haarmann-Stemmann, T. An introduction to the molecular basics of aryl hydrocarbon receptor biology. Biol. Chem. 2010, 391, 1235–1248. [Google Scholar]
- Nguyen, L.P.; Bradfield, C.A. The search for endogenous activators of the aryl hydrocarbon receptor. Chem. Res. Toxicol. 2008, 21, 102–116. [Google Scholar]
- Couture, L.A.; Abbott, B.D.; Birnbaum, L.S. A critical review of the developmental toxicity and teratogenicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin: Recent advances toward understanding the mechanism. Teratology 1990, 42, 619–627. [Google Scholar]
- Dobrzyński, M.; Całkosiński, I.; Przywitowska, I.; Kobierska-Brzoza, J.; Czajczyńska-Waszkiewicz, A.; Sołtan, E.; Parulska, O. Effects of dioxins in environmental pollution on development of tooth disorders. Pol. J. Environ. Stud. 2009, 18, 319–323. [Google Scholar]
- Vezina, C.M.; Lin, T.M.; Peterson, R.E. AHR signaling in prostate growth, morphogenesis, and disease. Biochem. Pharmacolo. 2009, 77, 566–576. [Google Scholar]
- Kransler, K.M.; McGarrigle, B.P.; Swartz, D.D.; Olson, J.R. Lung development in the holtzman rat is adversely affected by gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 2009, 107, 498–511. [Google Scholar]
- Yoshioka, W.; Peterson, R.E.; Tohyama, C. Molecular targets that link dioxin exposure to toxicity phenotypes. J. Steroid Biochem. Mol. Biol. 2011, 127, 96–101. [Google Scholar]
- King-Heiden, T.C.; Mehta, V.; Xiong, K.M.; Lanham, K.A.; Antkiewicz, D.S.; Ganser, A.; Heideman, W.; Peterson, R.E. Reproductive and developmental toxicity of dioxin in fish. Mol. Cell. Endocrinol. 2012, 354, 121–138. [Google Scholar]
- Plavicki, J.; Hofsteen, P.; Peterson, R.E.; Heideman, W. Dioxin inhibits zebrafish epicardium and proepicardium development. Toxicol. Sci. 2013, 131, 558–567. [Google Scholar]
- Baker, T.R.; Peterson, R.E.; Heideman, W. Early dioxin exposure causes toxic effects in adult zebrafish. Toxicol. Sci. 2013, 135, 241–250. [Google Scholar]
- Polakis, P. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 2012, 4, a008052. [Google Scholar]
- Dietrich, C.; Kaina, B. The aryl hydrocarbon receptor (AHR) in the regulation of cell-cell contact and tumor growth. Carcinogenesis 2010, 31, 1319–1328. [Google Scholar]
- Feng, S.; Cao, Z.; Wang, X. Role of aryl hydrocarbon receptor in cancer. Biochim. Biophys. Acta 2013, 1836, 197–210. [Google Scholar]
- Safe, S.; Lee, S.O.; Jin, U.H. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicol. Sci. 2013, 135, 1–16. [Google Scholar]
- Dashwood, R.H. Indole-3-carbinol: Anticarcinogen or tumor promoter in brassica vegetables? Chem. Biol. Interact. 1998, 110, 1–5. [Google Scholar]
- Kawajiri, K.; Kobayashi, Y.; Ohtake, F.; Ikuta, T.; Matsushima, Y.; Mimura, J.; Pettersson, S.; Pollenz, R.S.; Sakaki, T.; Hirokawa, T.; et al. Aryl hydrocarbon receptor suppresses intestinal carcinogenesis in Apcmin/+ mice with natural ligands. Proc. Natl. Acad. Sci. USA 2009, 106, 13481–13486. [Google Scholar]
- Fritz, W.A.; Lin, T.M.; Cardiff, R.D.; Peterson, R.E. The aryl hydrocarbon receptor inhibits prostate carcinogenesis in tramp mice. Carcinogenesis 2007, 28, 497–505. [Google Scholar]
- Fan, Y.; Boivin, G.P.; Knudsen, E.S.; Nebert, D.W.; Xia, Y.; Puga, A. The aryl hydrocarbon receptor functions as a tumor suppressor of liver carcinogenesis. Cancer Res. 2010, 70, 212–220. [Google Scholar]
- Hall, J.M.; Barhoover, M.A.; Kazmin, D.; McDonnell, D.P.; Greenlee, W.F.; Thomas, R.S. Activation of the aryl-hydrocarbon receptor inhibits invasive and metastatic features of human breast cancer cells and promotes breast cancer cell differentiation. Mol. Endocrinol. 2010, 24, 359–369. [Google Scholar]
- O’Donnell, E.F.; Koch, D.C.; Bisson, W.H.; Jang, H.S.; Kolluri, S.K. The aryl hydrocarbon receptor mediates raloxifene-induced apoptosis in estrogen receptor-negative hepatoma and breast cancer cells. Cell Death Dis. 2014, 5, e1038. [Google Scholar]
- Yamamoto, J.; Ihara, K.; Nakayama, H.; Hikino, S.; Satoh, K.; Kubo, N.; Iida, T.; Fujii, Y.; Hara, T. Characteristic expression of aryl hydrocarbon receptor repressor gene in human tissues: Organ-specific distribution and variable induction patterns in mononuclear cells. Life Sci. 2004, 74, 1039–1049. [Google Scholar]
- Jain, S.; Maltepe, E.; Lu, M.M.; Simon, C.; Bradfield, C.A. Expression of ARNT, ARNT2, HIF1α, HIF2α and Ah receptor mRNAs in the developing mouse. Mech. Dev. 1998, 73, 117–123. [Google Scholar]
- Jiang, Y.Z.; Wang, K.; Fang, R.; Zheng, J. Expression of aryl hydrocarbon receptor in human placentas and fetal tissues. J. Histochem. Cytochem. 2010, 58, 679–685. [Google Scholar]
- Diez-Roux, G.; Banfi, S.; Sultan, M.; Geffers, L.; Anand, S.; Rozado, D.; Magen, A.; Canidio, E.; Pagani, M.; Peluso, I.; et al. A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol. 2011, 9, e1000582. [Google Scholar]
- Andreasen, E.A.; Spitsbergen, J.M.; Tanguay, R.L.; Stegeman, J.J.; Heideman, W.; Peterson, R.E. Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: Effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure. Toxicol. Sci. 2002, 68, 403–419. [Google Scholar]
- Stevens, E.A.; Mezrich, J.D.; Bradfield, C.A. The aryl hydrocarbon receptor: A perspective on potential roles in the immune system. Immunology 2009, 127, 299–311. [Google Scholar]
- Denison, M.S.; Nagy, S.R. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 309–334. [Google Scholar]
- Bjeldanes, L.F.; Kim, J.Y.; Grose, K.R.; Bartholomew, J.C.; Bradfield, C.A. Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: Comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc. Natl. Acad. Sci. USA 1991, 88, 9543–9547. [Google Scholar]
- Hrubá, E.; Vondráček, J.; Líbalová, H.; Topinka, J.; Bryja, V.; Souček, K.; Machala, M. Gene expression changes in human prostate carcinoma cells exposed to genotoxic and nongenotoxic aryl hydrocarbon receptor ligands. Toxicol. Lett. 2011, 206, 178–188. [Google Scholar]
- Li, Y.; Li, X.; Sarkar, F.H. Gene expression profiles of I3C- and DIM-treated PC3 human prostate cancer cells determined by cdna microarray analysis. J. Nutr. 2003, 133, 1011–1019. [Google Scholar]
- Adachi, J.; Mori, Y.; Matsui, S.; Matsuda, T. Comparison of gene expression patterns between 2,3,7,8-tetrachlorodibenzo-p-dioxin and a natural arylhydrocarbon receptor ligand, indirubin. Toxicol. Sci. 2004, 80, 161–169. [Google Scholar]
- Mathew, L.K.; Sengupta, S.S.; Ladu, J.; Andreasen, E.A.; Tanguay, R.L. Crosstalk between AHR and Wnt signaling through R-spondin1 impairs tissue regeneration in zebrafish. FASEB J. 2008, 22, 3087–3096. [Google Scholar]
- Arima, A.; Kato, H.; Ise, R.; Ooshima, Y.; Inoue, A.; Muneoka, A.; Kamimura, S.; Fukusato, T.; Kubota, S.; Sumida, H.; et al. In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces disruption of glands of the prostate and fibrosis in rhesus monkeys. Reprod. Toxicol. 2010, 29, 317–322. [Google Scholar]
- Hao, N.; Lee, K.L.; Furness, S.G.; Bosdotter, C.; Poellinger, L.; Whitelaw, M.L. Xenobiotics and loss of cell adhesion drive distinct transcriptional outcomes by aryl hydrocarbon receptor signaling. Mol. Pharmacol. 2012, 82, 1082–1093. [Google Scholar]
- Faust, D.; Vondráček, J.; Krčmář, P.; Šmerdová, L.; Procházková, J.; Hrubá, E.; Hulinková, P.; Kaina, B.; Dietrich, C.; Machala, M. AHR-mediated changes in global gene expression in rat liver progenitor cells. Arch. Toxicol. 2013, 87, 681–698. [Google Scholar]
- Moriguchi, T.; Motohashi, H.; Hosoya, T.; Nakajima, O.; Takahashi, S.; Ohsako, S.; Aoki, Y.; Nishimura, N.; Tohyama, C.; Fujii-Kuriyama, Y.; et al. Distinct response to dioxin in an arylhydrocarbon receptor (AHR)-humanized mouse. Proc. Natl. Acad. Sci. USA 2003, 100, 5652–5657. [Google Scholar]
- Silkworth, J.B.; Koganti, A.; Illouz, K.; Possolo, A.; Zhao, M.; Hamilton, S.B. Comparison of TCDD and PCB CYP1A induction sensitivities in fresh hepatocytes from human donors, sprague-dawley rats, and rhesus monkeys and HepG2 cells. Toxicol. Sci. 2005, 87, 508–519. [Google Scholar]
- Boutros, P.C.; Yan, R.; Moffat, I.D.; Pohjanvirta, R.; Okey, A.B. Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: Comparison of rat and mouse. BMC Genomics 2008, 9, 419. [Google Scholar]
- Budinsky, R.A.; LeCluyse, E.L.; Ferguson, S.S.; Rowlands, J.C.; Simon, T. Human and rat primary hepatocyte cyp1a1 and 1a2 induction with 2,3,7,8-tetrachlorodibenzo-p-dioxin, 2,3,7,8-tetrachlorodibenzofuran, and 2,3,4,7,8-pentachlorodibenzofuran. Toxicol. Sci. Toxicol. 2010, 118, 224–235. [Google Scholar]
- Hockley, S.L.; Arlt, V.M.; Brewer, D.; Te Poele, R.; Workman, P.; Giddings, I.; Phillips, D.H. AHR- and DNA-damage-mediated gene expression responses induced by benzo(a)pyrene in human cell lines. Chem. Res. Toxicol. 2007, 20, 1797–1810. [Google Scholar]
- Boutros, P.C.; Bielefeld, K.A.; Pohjanvirta, R.; Harper, P.A. Dioxin-dependent and dioxin-independent gene batteries: Comparison of liver and kidney in AHR-null mice. Toxicol. Sci. 2009, 112, 245–256. [Google Scholar]
- Vezina, C.M.; Walker, N.J.; Olson, J.R. Subchronic exposure to TCDD, PeCDF, PCB126, and PCB153: Effect on hepatic gene expression. Environ. Health Perspect. 2004, 112, 1636–1644. [Google Scholar]
- Moffat, I.D.; Boutros, P.C.; Chen, H.; Okey, A.B.; Pohjanvirta, R. Aryl hydrocarbon receptor (AHR)-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities. BMC Genomics 2010, 11, 263. [Google Scholar]
- Boutros, P.C.; Yao, C.Q.; Watson, J.D.; Wu, A.H.; Moffat, I.D.; Prokopec, S.D.; Smith, A.B.; Okey, A.B.; Pohjanvirta, R. Hepatic transcriptomic responses to tcdd in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity. Toxicol. Appl. Pharmacol. 2011, 251, 119–129. [Google Scholar]
- Kerley-Hamilton, J.S.; Trask, H.W.; Ridley, C.J.; Dufour, E.; Lesseur, C.; Ringelberg, C.S.; Moodie, K.L.; Shipman, S.L.; Korc, M.; Gui, J.; et al. Inherent and benzo[a]pyrene-induced differential aryl hydrocarbon receptor signaling greatly affects life span, atherosclerosis, cardiac gene expression, and body and heart growth in mice. Toxicol. Sci. 2012, 126, 391–404. [Google Scholar]
- Ohtake, F.; Baba, A.; Takada, I.; Okada, M.; Iwasaki, K.; Miki, H.; Takahashi, S.; Kouzmenko, A.; Nohara, K.; Chiba, T.; et al. Dioxin receptor is a ligand-dependent E3 ubiquitin ligase. Nature 2007, 446, 562–566. [Google Scholar]
- Niehrs, C. The complex world of wnt receptor signalling. Nat. Rev. Mol. Cell Biol. 2012, 13, 767–779. [Google Scholar]
- Ueno, K.; Hirata, H.; Hinoda, Y.; Dahiya, R. Frizzled homolog proteins, micrornas and Wnt signaling in cancer. Int. J. Cancer. J. Int. Cancer 2013, 132, 1731–1740. [Google Scholar]
- He, X.; Semenov, M.; Tamai, K.; Zeng, X. LDL receptor-related proteins 5 and 6 in Wnt/β-catenin signaling: Arrows point the way. Development 2004, 131, 1663–1677. [Google Scholar]
- Carmon, K.S.; Lin, Q.; Gong, X.; Thomas, A.; Liu, Q. LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/β-catenin signaling. Mol. Cell. Biol. 2012, 32, 2054–2064. [Google Scholar]
- Minami, Y.; Oishi, I.; Endo, M.; Nishita, M. Ror-family receptor tyrosine kinases in noncanonical Wnt signaling: Their implications in developmental morphogenesis and human diseases. Dev. Dyn. 2010, 239, 1–15. [Google Scholar]
- Kikuchi, A.; Yamamoto, H.; Sato, A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 2009, 19, 119–129. [Google Scholar]
- Grumolato, L.; Liu, G.; Mong, P.; Mudbhary, R.; Biswas, R.; Arroyave, R.; Vijayakumar, S.; Economides, A.N.; Aaronson, S.A. Canonical and noncanonical wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 2010, 24, 2517–2530. [Google Scholar]
- Simons, B.W.; Hurley, P.J.; Huang, Z.; Ross, A.E.; Miller, R.; Marchionni, L.; Berman, D.M.; Schaeffer, E.M. Wnt signaling though β-catenin is required for prostate lineage specification. Dev. Biol. 2012, 371, 246–255. [Google Scholar]
- Heuberger, J.; Birchmeier, W. Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harb. Perspect. Biol. 2010, 2, a002915. [Google Scholar]
- Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J. 2012, 31, 2714–2736. [Google Scholar]
- Kimelman, D.; Xu, W. β-catenin destruction complex: Insights and questions from a structural perspective. Oncogene 2006, 25, 7482–7491. [Google Scholar]
- MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell 2009, 17, 9–26. [Google Scholar]
- Li, V.S.; Ng, S.S.; Boersema, P.J.; Low, T.Y.; Karthaus, W.R.; Gerlach, J.P.; Mohammed, S.; Heck, A.J.; Maurice, M.M.; Mahmoudi, T.; et al. Wnt signaling through inhibition of β-catenin degradation in an intact axin1 complex. Cell 2012, 149, 1245–1256. [Google Scholar]
- Stamos, J.L.; Weis, W.I. The β-catenin destruction complex. Cold Spring Harb. Perspect. Biol. 2013, 5, a007898. [Google Scholar]
- Jho, E.H.; Zhang, T.; Domon, C.; Joo, C.K.; Freund, J.N.; Costantini, F. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol. Cell. Biol. 2002, 22, 1172–1183. [Google Scholar]
- Filali, M.; Cheng, N.; Abbott, D.; Leontiev, V.; Engelhardt, J.F. Wnt-3A/β-catenin signaling induces transcription from the LEF-1 promoter. J. Biol. Chem. 2002, 277, 33398–33410. [Google Scholar]
- Driskell, R.R.; Goodheart, M.; Neff, T.; Liu, X.; Luo, M.; Moothart, C.; Sigmund, C.D.; Hosokawa, R.; Chai, Y.; Engelhardt, J.F. Wnt3a regulates Lef-1 expression during airway submucosal gland morphogenesis. Dev. Biol. 2007, 305, 90–102. [Google Scholar]
- He, T. Identification of c-MYC as a target of the apc pathway. Science 1998, 281, 1509–1512. [Google Scholar]
- Shukla, S.; MacLennan, G.T.; Flask, C.A.; Fu, P.; Mishra, A.; Resnick, M.I.; Gupta, S. Blockade of β-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Res. 2007, 67, 6925–6935. [Google Scholar]
- Reiners, J.J., Jr.; Clift, R.; Mathieu, P. Suppression of cell cycle progression by flavonoids: Dependence on the aryl hydrocarbon receptor. Carcinogenesis 1999, 20, 1561–1566. [Google Scholar]
- Pillai, M.C.; Vines, C.A.; Wikramanayake, A.H.; Cherr, G.N. Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a β-catenin dependent pathway. Toxicology 2003, 186, 93–108. [Google Scholar]
- Fairbairn, E.A.; Bonthius, J.; Cherr, G.N. Polycyclic aromatic hydrocarbons and dibutyl phthalate disrupt dorsal-ventral axis determination via the Wnt/β-catenin signaling pathway in zebrafish embryos. Aquat. Toxicol. 2012, 124–125, 188–196. [Google Scholar]
- Tarapore, R.S.; Siddiqui, I.A.; Mukhtar, H. Modulation of Wnt/β-catenin signaling pathway by bioactive food components. Carcinogenesis 2012, 33, 483–491. [Google Scholar]
- Jeong, Y.-M.; Li, H.; Kim, S.Y.; Yun, H.-Y.; Baek, K.J.; Kwon, N.S.; Myung, S.C.; Kim, D.-S. Indole-3-carbinol inhibits prostate cancer cell migration via degradation of β-catenin. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2011, 19, 237–243. [Google Scholar]
- Jellinck, P.H.; Forkert, P.G.; Riddick, D.S.; Okey, A.B.; Michnovicz, J.J.; Bradlow, H.L. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem. Pharmacol. 1993, 45, 1129–1136. [Google Scholar]
- Bradfield, C.A.; Bjeldanes, L.F. Structure-activity relationships of dietary indoles: A proposed mechanism of action as modifiers of xenobiotic metabolism. J. Toxicol. Environ. Health 1987, 21, 311–323. [Google Scholar]
- Park, J.Y.; Bjeldanes, L.F. Organ-selective induction of cytochrome p-450-dependent activities by indole-3-carbinol-derived products: Influence on covalent binding of benzo[a]pyrene to hepatic and pulmonary DNA in the rat. Chem. Biol. Interact. 1992, 83, 235–247. [Google Scholar]
- Takahashi, N.; Dashwood, R.H.; Bjeldanes, L.F.; Bailey, G.S.; Williams, D.E. Regulation of hepatic cytochrome p4501a by indole-3-carbinol: Transient induction with continuous feeding in rainbow trout. Food Chem. Toxicol. 1995, 33, 111–120. [Google Scholar]
- Chen, I.; Safe, S.; Bjeldanes, L. Indole-3-carbinol and diindolylmethane as aryl hydrocarbon (Ah) receptor agonists and antagonists in T47D human breast cancer cells. Biochem. Pharmacol. 1996, 51, 1069–1076. [Google Scholar]
- Guengerich, P.F.; Martin, M.V.; McCormick, W.A.; Nguyen, L.P.; Glover, E.; Bradfield, C.A. Aryl hydrocarbon receptor response to indigoids in vitro and in vivo. Arch. Biochem. Biophys. 2004, 423, 309–316. [Google Scholar]
- Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bibb, J.A.; Snyder, G.L.; Greengard, P.; Biernat, J.; Wu, Y.Z.; Mandelkow, E.M.; et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in alzheimer’s disease. A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem. 2001, 276, 251–260. [Google Scholar]
- Choi, O.M.; Cho, Y.H.; Choi, S.; Lee, S.H.; Seo, S.H.; Kim, H.Y.; Han, G.; Min, D.S.; Park, T.; Choi, K.Y. The small molecule indirubin-3'-oxime activates Wnt/β-catenin signaling and inhibits adipocyte differentiation and obesity. Int. J. Obes. 2014, 38, 1044–1052. [Google Scholar]
- Zahoor, M.; Cha, P.H.; Choi, K.Y. Indirubin-3'-oxime, an activator of Wnt/β-catenin signaling, enhances osteogenic commitment of ST2 cells and restores bone loss in high-fat diet-induced obese male mice. Bone 2014, 65, 60–68. [Google Scholar]
- Daugherty, R.L.; Gottardi, C.J. Phospho-regulation of β-catenin adhesion and signaling functions. Physiology 2007, 22, 303–309. [Google Scholar]
- Gao, C.; Xiao, G.; Hu, J. Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci. 2014, 4, 13:1–13:20. [Google Scholar]
- Li, Y.; Wang, Z.; Kong, D.; Murthy, S.; Dou, Q.P.; Sheng, S.; Reddy, G.P.; Sarkar, F.H. Regulation of FOXO3a/β-catenin/GSK-3β signaling by 3,3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. J. Biol. Chem. 2007, 282, 21542–21550. [Google Scholar]
- Chang, C.C.; Lee, P.S.; Chou, Y.; Hwang, L.L.; Juan, S.H. Mediating effects of aryl-hydrocarbon receptor and RhoA in altering brain vascular integrity: The therapeutic potential of statins. Am. J. Pathol. 2012, 181, 211–221. [Google Scholar]
- Xu, G.; Li, Y.; Yoshimoto, K.; Wu, Q.; Chen, G.; Iwata, T.; Mizusawa, N.; Wan, C.; Nie, X. 2,3,7,8-tetrachlorodibenzo-p-dioxin stimulates proliferation of HAPI microglia by affecting the Akt/GSK-3β/cyclin D1 signaling pathway. Toxicol. Lett. 2014, 224, 362–370. [Google Scholar]
- Chesire, D.R.; Dunn, T.A.; Ewing, C.M.; Luo, J.; Isaacs, W.B. Identification of aryl hydrocarbon receptor as a putative Wnt/β-catenin pathway target gene in prostate cancer cells. Cancer Res. 2004, 64, 2523–2533. [Google Scholar]
- Jackson, A.; Vayssiere, B.; Garcia, T.; Newell, W.; Baron, R.; Roman-Roman, S.; Rawadi, G. Gene array analysis of Wnt-regulated genes in C3H10T1/2 cells. Bone 2005, 36, 585–598. [Google Scholar]
- Braeuning, A.; Kohle, C.; Buchmann, A.; Schwarz, M. Coordinate regulation of cytochrome P450 1A1 expression in mouse liver by the aryl hydrocarbon receptor and the β-catenin pathway. Toxicol. Sci. 2011, 122, 16–25. [Google Scholar]
- Procházkova, J.; Kabátkova, M.; Bryja, V.; Umannová, L.; Bernatík, O.; Kozubík, A.; Machala, M.; Vondráček, J. The interplay of the aryl hydrocarbon receptor and β-catenin alters both AHR-dependent transcription and Wnt/β-catenin signaling in liver progenitors. Toxicol. Sci. 2011, 122, 349–360. [Google Scholar]
- Baljinnyam, B.; Klauzinska, M.; Saffo, S.; Callahan, R.; Rubin, J.S. Recombinant R-spondin2 and Wnt3a Up- and Down-Regulate Novel Target Genes in C57MG Mouse Mammary Epithelial Cells. PLoS One 2012, 7, e29455. [Google Scholar]
- Hailfinger, S.; Jaworski, M.; Braeuning, A.; Buchmann, A.; Schwarz, M. Zonal gene expression in murine liver: Lessons from tumors. Hepatology 2006, 43, 407–414. [Google Scholar]
- Colnot, S.; Perret, C. Liver zonation. In Molecular Pathology of Liver Diseases; Monga, S.P.S., Ed.; Springer: New York, USA, 2011; Volume 5, pp. 7–16. [Google Scholar]
- Benhamouche, S.; Decaens, T.; Godard, C.; Chambrey, R.; Rickman, D.S.; Moinard, C.; Vasseur-Cognet, M.; Kuo, C.J.; Kahn, A.; Perret, C.; et al. Apc tumor suppressor gene is the “zonation-keeper” of mouse liver. Dev. Cell 2006, 10, 759–770. [Google Scholar]
- Braeuning, A.; Sanna, R.; Huelsken, J.; Schwarz, M. Inducibility of Drug-Metabolizing Enzymes by Xenobiotics in Mice with Liver-Specific Knockout of Ctnnb1. Drug Metab. Dispos. 2009, 37, 1138–1145. [Google Scholar]
- Lindros, K.O.; Oinonen, T.; Johansson, I.; Ingelman-Sundberg, M. Selective centrilobular expression of the aryl hydrocarbon receptor in rat liver. J. Pharmacol. Exp. Ther. 1997, 280, 506–511. [Google Scholar]
- Braeuning, A.; Ittrich, C.; Kohle, C.; Hailfinger, S.; Bonin, M.; Buchmann, A.; Schwarz, M. Differential gene expression in periportal and perivenous mouse hepatocytes. FEBS J. 2006, 273, 5051–5061. [Google Scholar]
- Braeuning, A. Interplay of β-Catenin with Xenobiotic-Sensing Receptors and Its Role in Glutathione S-Transferase Expression. Curr. Drug Metab. 2012, 13, 203–214. [Google Scholar]
- Stahl, S.; Ittrich, C.; Marx-Stoelting, P.; Kohle, C.; Altug-Teber, O.; Riess, O.; Bonin, M.; Jobst, J.; Kaiser, S.; Buchmann, A.; et al. Genotype-phenotype relationships in hepatocellular tumors from mice and man. Hepatology 2005, 42, 353–361. [Google Scholar]
- Loeppen, S.; Koehle, C.; Buchmann, A.; Schwarz, M. A β-catenin-dependent pathway regulates expression of cytochrome P450 isoforms in mouse liver tumors. Carcinogenesis 2005, 26, 239–248. [Google Scholar]
- Kim, K.A.; Zhao, J.; Andarmani, S.; Kakitani, M.; Oshima, T.; Binnerts, M.E.; Abo, A.; Tomizuka, K.; Funk, W.D. R-spondin proteins: A novel link to β-catenin activation. Cell Cycle 2006, 5, 23–26. [Google Scholar]
- Nam, J.S.; Turcotte, T.J.; Smith, P.F.; Choi, S.; Yoon, J.K. Mouse Cristin/R-spondin Family Proteins Are Novel Ligands for the Frizzled 8 and LRP6 Receptors and Activate β-Catenin-dependent Gene Expression. J. Biol. Chem. 2006, 281, 13247–13257. [Google Scholar]
- Wei, Q.; Yokota, C.; Semenov, M.V.; Doble, B.; Woodgett, J.; He, X. R-spondin1 is a high affinity ligand for LRP6 and induces LRP6 phosphorylation and β-catenin signaling. J. Biol. Chem. 2007, 282, 15903–15911. [Google Scholar]
- Binnerts, M.E.; Kim, K.A.; Bright, J.M.; Patel, S.M.; Tran, K.; Zhou, M.; Leung, J.M.; Liu, Y.; Lomas, W.E., 3rd; Dixon, M.; et al. R-spondin1 regulates Wnt signaling by inhibiting internalization of LRP6. Proc. Natl. Acad. Sci. USA 2007, 104, 14700–14705. [Google Scholar]
- Stoick-Cooper, C.L.; Weidinger, G.; Riehle, K.J.; Hubbert, C.; Major, M.B.; Fausto, N.; Moon, R.T. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 2007, 134, 479–489. [Google Scholar]
- Zhu, C.; Chen, Y.L.; Wang, X.J.; Hu, X.S.; Yu, Z.B.; Han, S.P. ShRNA-mediated gene silencing of AHR promotes the differentiation of P19 mouse embryonic carcinoma cells into cardiomyocytes. Mol. Med. Rep. 2012, 6, 513–518. [Google Scholar]
- Mikels, A.J.; Nusse, R. Purified Wnt5a Protein Activates or Inhibits β-Catenin-TCF Signaling Depending on Receptor Context. PLoS Biol. 2006, 4, e115. [Google Scholar]
- Van Amerongen, R.; Fuerer, C.; Mizutani, M.; Nusse, R. Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. Dev. Biol. 2012, 369, 101–114. [Google Scholar]
- Okamoto, M.; Udagawa, N.; Uehara, S.; Maeda, K.; Yamashita, T.; Nakamichi, Y.; Kato, H.; Saito, N.; Minami, Y.; Takahashi, N.; et al. Noncanonical Wnt5a enhances Wnt/β-catenin signaling during osteoblastogenesis. Sci. Rep. 2014, 4, 4493. [Google Scholar]
- Wu, X.; Daniels, G.; Shapiro, E.; Xu, K.; Huang, H.; Li, Y.; Logan, S.; Greco, M.A.; Peng, Y.; Monaco, M.E.; et al. LEF1 Identifies Androgen-Independent Epithelium in the Developing Prostate. Mol. Endocrinol. 2011, 25, 1018–1026. [Google Scholar]
- Francis, J.C.; Thomsen, M.K.; Taketo, M.M.; Swain, A. Β-catenin is required for prostate development and cooperates with pten loss to drive invasive carcinoma. PLoS Genet. 2013, 9, e1003180. [Google Scholar]
- Wiese, C.; Rolletschek, A.; Kania, G.; Navarrete-Santos, A.; Anisimov, S.V.; Steinfarz, B.; Tarasov, K.V.; Brugh, S.A.; Zahanich, I.; Ruschenschmidt, C.; et al. Signals from embryonic fibroblasts induce adult intestinal epithelial cells to form nestin-positive cells with proliferation and multilineage differentiation capacity in vitro. Stem Cells 2006, 24, 2085–2097. [Google Scholar]
- Bellon, M.; Ko, N.L.; Lee, M.J.; Yao, Y.; Waldmann, T.A.; Trepel, J.B.; Nicot, C. Adult T-cell leukemia cells overexpress Wnt5a and promote osteoclast differentiation. Blood 2013, 121, 5045–5054. [Google Scholar]
- Hu, X.; Gao, J.H.; Liao, Y.J.; Tang, S.J.; Lu, F. 2,3,7,8-tetrachlorodibenzo-p-dioxin delays palatal shelf elevation and suppresses Wnt5a and lymphoid enhancing-binder factor 1 signaling in developing palate. Cleft Palate-Craniofacial J. 2014, in press. [Google Scholar]
- Najdi, R.; Holcombe, R.F.; Waterman, M.L. Wnt signaling and colon carcinogenesis: Beyond APC. J. Carcinog. 2011, 10. [Google Scholar] [CrossRef]
- Yamada, Y.; Mori, H. Multistep carcinogenesis of the colon in Apcmin/+ mouse. Cancer Sci. 2007, 98, 6–10. [Google Scholar]
- Foley, P.J.; Scheri, R.P.; Smolock, C.J.; Pippin, J.; Green, D.W.; Drebin, J.A. Targeted Suppression of β-Catenin Blocks Intestinal Adenoma Formation in APC Min Mice. J. Gastrointest. Surg. 2008, 12, 1452–1458. [Google Scholar]
- Nandan, M.O.; Ghaleb, A.M.; McConnell, B.B.; Patel, N.V.; Robine, S.; Yang, V.W. Krüppel-like factor 5 is a crucial mediator of intestinal tumorigenesis in mice harboring combined Apcmin and KRASV12 mutations. Mol. Cancer 2010, 9, 63. [Google Scholar]
- Xu, G.; Zhou, Q.; Wan, C.; Wang, Y.; Liu, J.; Li, Y.; Nie, X.; Cheng, C.; Chen, G. 2,3,7,8-TCDD induces neurotoxicity and neuronal apoptosis in the rat brain cortex and pc12 cell line through the down-regulation of the Wnt/β-catenin signaling pathway. Neurotoxicology 2013, 37, 63–73. [Google Scholar]
- Tsang, H.; Cheung, T.Y.; Kodithuwakku, S.P.; Chai, J.; Yeung, W.S.; Wong, C.K.; Lee, K.F. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) suppresses spheroids attachment on endometrial epithelial cells through the down-regulation of the Wnt-signaling pathway. Reprod. Toxicol. 2012, 33, 60–66. [Google Scholar]
- Zhao, S.; Kanno, Y.; Nakayama, M.; Makimura, M.; Ohara, S.; Inouye, Y. Activation of the aryl hydrocarbon receptor represses mammosphere formation in mcf-7 cells. Cancer Lett. 2012, 317, 192–198. [Google Scholar]
- Henry, E.C.; Welle, S.L.; Gasiewicz, T.A. TCDD and a Putative Endogenous AHR Ligand, ITE, Elicit the Same Immediate Changes in Gene Expression in Mouse Lung Fibroblasts. Toxicol. Sci. 2010, 114, 90–100. [Google Scholar]
- Pennica, D.; Swanson, T.A.; Welsh, J.W.; Roy, M.A.; Lawrence, D.A.; Lee, J.; Brush, J.; Taneyhill, L.A.; Deuel, B.; Lew, M.; et al. Wisp genes are members of the connective tissue growth factor family that are up-regulated in Wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc. Natl. Acad. Sci. USA 1998, 95, 14717–14722. [Google Scholar]
- Abler, L.L.; Keil, K.P.; Mehta, V.; Joshi, P.S.; Schmitz, C.T.; Vezina, C.M. A high-resolution molecular atlas of the fetal mouse lower urogenital tract. Dev. Dyn. 2011, 240, 2364–2377. [Google Scholar]
- Thomson, A.A. Role of androgens and fibroblast growth factors in prostatic development. Reproduction 2001, 121, 187–195. [Google Scholar]
- Marker, P.C.; Donjacour, A.A.; Dahiya, R.; Cunha, G.R. Hormonal, cellular, and molecular control of prostatic development. Dev. Biol. 2003, 253, 165–174. [Google Scholar]
- Meeks, J.J.; Schaeffer, E.M. Genetic regulation of prostate development. J. Androl. 2011, 32, 210–217. [Google Scholar]
- Lin, T.M.; Rasmussen, N.T.; Moore, R.W.; Albrecht, R.M.; Peterson, R.E. Region-specific inhibition of prostatic epithelial bud formation in the urogenital sinus of c57bl/6 mice exposed in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Sci. 2003, 76, 171–181. [Google Scholar]
- Timms, B.G. Prostate development: A historical perspective. Differ. Res. Biol. Divers. 2008, 76, 565–577. [Google Scholar]
- Cunha, G.R.; Ricke, W.; Thomson, A.; Marker, P.C.; Risbridger, G.; Hayward, S.W.; Wang, Y.Z.; Donjacour, A.A.; Kurita, T. Hormonal, cellular, and molecular regulation of normal and neoplastic prostatic development. J. Steroid Biochem. Mol. Biol. 2004, 92, 221–236. [Google Scholar]
- Prins, G.S.; Putz, O. Molecular signaling pathways that regulate prostate gland development. Differ. Res. Biol. Divers. 2008, 76, 641–659. [Google Scholar]
- Huang, S.M.; Mishina, Y.M.; Liu, S.; Cheung, A.; Stegmeier, F.; Michaud, G.A.; Charlat, O.; Wiellette, E.; Zhang, Y.; Wiessner, S.; et al. Tankyrase inhibition stabilizes axin and antagonizes wnt signalling. Nature 2009, 461, 614–620. [Google Scholar]
- Branam, A.M.; Davis, N.M.; Moore, R.W.; Schneider, A.J.; Vezina, C.M.; Peterson, R.E. TCDD inhibition of canonical wnt signaling disrupts prostatic bud formation in mouse urogenital sinus. Toxicol. Sci. 2013, 133, 42–53. [Google Scholar]
- Mehta, V.; Schmitz, C.T.; Keil, K.P.; Joshi, P.S.; Abler, L.L.; Lin, T.M.; Taketo, M.M.; Sun, X.; Vezina, C.M. β-catenin (CTNNB1) induces bmp expression in urogenital sinus epithelium and participates in prostatic bud initiation and patterning. Dev. Biol. 2013, 376, 125–135. [Google Scholar]
- Mulholland, D.J.; Dedhar, S.; Coetzee, G.A.; Nelson, C.C. Interaction of Nuclear Receptors with the Wnt/β-Catenin/Tcf Signaling Axis: Wnt You Like to Know? Endocr. Rev. 2005, 26, 898–915. [Google Scholar]
- Verras, M.; Sun, Z. Roles and regulation of Wnt signaling and β-catenin in prostate cancer. Cancer Lett. 2006, 237, 22–32. [Google Scholar]
- Terry, S.; Yang, X.; Chen, M.W.; Vacherot, F.; Buttyan, R. Multifaceted interaction between the androgen and Wnt signaling pathways and the implication for prostate cancer. J. Cell. Biochem. 2006, 99, 402–410. [Google Scholar]
- Schweizer, L.; Rizzo, C.A.; Spires, T.E.; Platero, J.S.; Wu, Q.; Lin, T.A.; Gottardis, M.M.; Attar, R.M. The androgen receptor can signal through Wnt/β-catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biol. 2008, 9, 4. [Google Scholar]
- Lin, T.M.; Ko, K.; Moore, R.W.; Simanainen, U.; Oberley, T.D.; Peterson, R.E. Effects of aryl hydrocarbon receptor null mutation and in utero and lactational 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure on prostate and seminal vesicle development in c57bl/6 mice. Toxicol. Sci. 2002, 68, 479–487. [Google Scholar]
- Ko, K.; Moore, R.W.; Peterson, R.E. Aryl hydrocarbon receptors in urogenital sinus mesenchyme mediate the inhibition of prostatic epithelial bud formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol. Appl. Pharmacol. 2004, 196, 149–155. [Google Scholar]
- Ko, K.; Theobald, H.M.; Moore, R.W.; Peterson, R.E. Evidence that inhibited prostatic epithelial bud formation in 2,3,7,8-tetrachlorodibenzo-p-dioxin-exposed C57BL/6J fetal mice is not due to interruption of androgen signaling in the urogenital sinus. Toxicol. Sci. 2004, 79, 360–369. [Google Scholar]
- Schneider, A.J.; Moore, R.W.; Branam, A.M.; Abler, L.L.; Keil, K.P.; Mehta, V.; Vezina, C.M.; Peterson, R.E. In utero exposure to TCDD alters Wnt signaling during mouse prostate development: Linking ventral prostate agenesis to downregulated β-catenin signaling. Toxicol. Sci. 2014, 141, 176–187. [Google Scholar]
- Allgeier, S.H.; Lin, T.M.; Vezina, C.M.; Moore, R.W.; Fritz, W.A.; Chiu, S.Y.; Zhang, C.; Peterson, R.E. Wnt5a selectively inhibits mouse ventral prostate development. Dev. Biol. 2008, 324, 10–17. [Google Scholar]
- Van der Flier, L.G.; Sabates-Bellver, J.; Oving, I.; Haegebarth, A.; De Palo, M.; Anti, M.; van Gijn, M.E.; Suijkerbuijk, S.; Van de Wetering, M.; Marra, G.; et al. The Intestinal Wnt/TCF Signature. Gastroenterology 2007, 132, 628–632. [Google Scholar]
- Chai, R.; Xia, A.; Wang, T.; Jan, T.A.; Hayashi, T.; Bermingham-McDonogh, O.; Cheng, A.G. Dynamic expression of lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J. Assoc. Res. Otolaryngol. 2011, 12, 455–469. [Google Scholar]
- Roose, J. Synergy between tumor suppressor APC and the β-catenin-Tcf4 target tcf1. Science 1999, 285, 1923–1926. [Google Scholar]
- Zirn, B.; Samans, B.; Wittmann, S.; Pietsch, T.; Leuschner, I.; Graf, N.; Gessler, M. Target genes of the Wnt/β-catenin pathway in wilms tumors. Genes Chromosom. Cancer 2006, 45, 565–574. [Google Scholar]
- Ha, A.; Perez-Iratxeta, C.; Liu, H.; Mears, A.J.; Wallace, V.A. Identification of Wnt/β-catenin modulated genes in the developing retina. Mol. Vis. 2012, 18, 645–656. [Google Scholar]
- Martinez, G.; Wijesinghe, M.; Turner, K.; Abud, H.E.; Taketo, M.M.; Noda, T.; Robinson, M.L.; de Iongh, R.U. Conditional Mutations of β-Catenin and APC Reveal Roles for Canonical Wnt Signaling in Lens Differentiation. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4794–4806. [Google Scholar]
- Vezina, C.M.; Allgeier, S.H.; Moore, R.W.; Lin, T.M.; Bemis, J.C.; Hardin, H.A.; Gasiewicz, T.A.; Peterson, R.E. Dioxin causes ventral prostate agenesis by disrupting dorsoventral patterning in developing mouse prostate. Toxicol. Sci. 2008, 106, 488–496. [Google Scholar]
- Keil, K.P.; Mehta, V.; Branam, A.M.; Abler, L.L.; Buresh-Stiemke, R.A.; Joshi, P.S.; Schmitz, C.T.; Marker, P.C.; Vezina, C.M. Wnt inhibitory factor 1 (WIF1) is regulated by androgens and enhances androgen-dependent prostate development. Endocrinology 2012, 153, 6091–6103. [Google Scholar]
- Hsieh, J.C.; Kodjabachian, L.; Rebbert, M.L.; Rattner, A.; Smallwood, P.M.; Samos, C.H.; Nusse, R.; Dawid, I.B.; Nathans, J. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 1999, 398, 431–436. [Google Scholar]
- Malinauskas, T.; Aricescu, A.R.; Lu, W.; Siebold, C.; Jones, E.Y. Modular mechanism of Wnt signaling inhibition by wnt inhibitory factor 1. Nat. Struct. Mol. Biol. 2011, 18, 886–893. [Google Scholar]
- Bányai, L.; Kerekes, K.; Patthy, L. Characterization of a Wnt-binding site of the WIF-domain of Wnt inhibitory factor-1. FEBS Lett. 2012, 586, 3122–3126. [Google Scholar]
- Yoon, J.K.; Lee, J.S. Cellular signaling and biological functions of R-spondins. Cell. Signal. 2012, 24, 369–377. [Google Scholar]
- Thomson, A.A. Mesenchymal mechanisms in prostate organogenesis. Differ. Res. Biol. Divers. 2008, 76, 587–598. [Google Scholar]
- Warner, D.R.; Smith, H.S.; Webb, C.L.; Greene, R.M.; Pisano, M.M. Expression of Wnts in the developing murine secondary palate. Int. J. Dev. Biol. 2009, 53, 1105–1112. [Google Scholar]
- Liu, F.; Millar, S.E. Wnt/β-catenin signaling in oral tissue development and disease. J. Dent. Res. 2010, 89, 318–330. [Google Scholar]
- Hayano, S.; Kurosaka, H.; Yanagita, T.; Kalus, I.; Milz, F.; Ishihara, Y.; Islam, M.N.; Kawanabe, N.; Saito, M.; Kamioka, H.; et al. Roles of heparan sulfate sulfation in dentinogenesis. J. Biol. Chem. 2012, 287, 12217–12229. [Google Scholar]
- Reddy, S.; Andl, T.; Bagasra, A.; Lu, M.M.; Epstein, D.J.; Morrisey, E.E.; Millar, S.E. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of sonic hedgehog in hair follicle morphogenesis. Mech. Dev. 2001, 107, 69–82. [Google Scholar]
- Fu, J.; Hsu, W. Epidermal wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. J. Investig. Dermatol. 2013, 133, 890–898. [Google Scholar]
- Bohring, A.; Stamm, T.; Spaich, C.; Haase, C.; Spree, K.; Hehr, U.; Hoffmann, M.; Ledig, S.; Sel, S.; Wieacker, P.; et al. Wnt10a mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. Am. J. Hum. Genet. 2009, 85, 97–105. [Google Scholar]
- Alaluusua, S.; Lukinmaa, P.L. Developmental dental toxicity of dioxin and related compounds—a review. Int. Dent. J. 2006, 56, 323–331. [Google Scholar]
- Panteleyev, A.A.; Bickers, D.R. Dioxin-induced chloracne—Reconstructing the cellular and molecular mechanisms of a classic environmental disease. Exp. Dermatol. 2006, 15, 705–730. [Google Scholar]
- Loertscher, J.A.; Lin, T.M.; Peterson, R.E.; Allen-Hoffmann, B.L. In utero exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin causes accelerated terminal differentiation in fetal mouse skin. Toxicol. Sci. 2002, 68, 465–472. [Google Scholar]
- Mazieres, J.; You, L.; He, B.; Xu, Z.; Lee, A.Y.; Mikami, I.; McCormick, F.; Jablons, D.M. Inhibition of Wnt16 in human acute lymphoblastoid leukemia cells containing the t(1;19) translocation induces apoptosis. Oncogene 2005, 24, 5396–5400. [Google Scholar]
- Sun, Y.; Campisi, J.; Higano, C.; Beer, T.M.; Porter, P.; Coleman, I.; True, L.; Nelson, P.S. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through Wnt16b. Nat. Med. 2012, 18, 1359–1368. [Google Scholar]
- Jiang, Z.; von den Hoff, J.W.; Torensma, R.; Meng, L.; Bian, Z. Wnt16 is involved in intramembranous ossification and suppresses osteoblast differentiation through the Wnt/β-catenin pathway. J. Cell. Physiol. 2014, 229, 384–392. [Google Scholar]
- Binet, R.; Ythier, D.; Robles, A.I.; Collado, M.; Larrieu, D.; Fonti, C.; Brambilla, E.; Brambilla, C.; Serrano, M.; Harris, C.C.; et al. Wnt16b is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/Akt pathway. Cancer Res. 2009, 69, 9183–9191. [Google Scholar]
- Clements, W.K.; Kim, A.D.; Ong, K.G.; Moore, J.C.; Lawson, N.D.; Traver, D. A somitic Wnt16/notch pathway specifies haematopoietic stem cells. Nature 2011, 474, 220–224. [Google Scholar]
- Lu, D.; Zhao, Y.; Tawatao, R.; Cottam, H.B.; Sen, M.; Leoni, L.M.; Kipps, T.J.; Corr, M.; Carson, D.A. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 2004, 101, 3118–3123. [Google Scholar]
- Nygren, M.K.; Dosen-Dahl, G.; Stubberud, H.; Walchli, S.; Munthe, E.; Rian, E. catenin is involved in N-cadherin–dependent adhesion, but not in canonical wnt signaling in E2A-PBX1–positive B acute lymphoblastic leukemia cells. Exp. Hematol. 2009, 37, 225–233. [Google Scholar]
- Teh, M.T.; Blaydon, D.; Ghali, L.R.; Briggs, V.; Edmunds, S.; Pantazi, E.; Barnes, M.R.; Leigh, I.M.; Kelsell, D.P.; Philpott, M.P. Role for Wnt16b in human epidermal keratinocyte proliferation and differentiation. J. Cell Sci. 2007, 120, 330–339. [Google Scholar]
- Anastas, J.N.; Moon, R.T. Wnt signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 2013, 13, 11–26. [Google Scholar]
- Topol, L.; Jiang, X.; Choi, H.; Garrett-Beal, L.; Carolan, P.J.; Yang, Y. Wnt-5a inhibits the canonical wnt pathway by promoting GSK-3-independent β-catenin degradation. J. Cell Biol. 2003, 162, 899–908. [Google Scholar]
- Yuzugullu, H.; Benhaj, K.; Ozturk, N.; Senturk, S.; Celik, E.; Toylu, A.; Tasdemir, N.; Yilmaz, M.; Erdal, E.; Akcali, K.C.; et al. Canonical Wnt signaling is antagonized by noncanonical Wnt5a in hepatocellular carcinoma cells. Mol. Cancer 2009, 8, 90. [Google Scholar]
- Li, J.; Ying, J.; Fan, Y.; Wu, L.; Ying, Y.; Chan, A.T.C.; Srivastava, G.; Tao, Q. Wnt5a antagonizes Wnt/β-catenin signaling and is frequently silenced by promoter cpg methylation in esophageal squamous cell carcinoma. Cancer Biol. Ther. 2010, 10, 617–624. [Google Scholar]
- Witte, F.; Dokas, J.; Neuendorf, F.; Mundlos, S.; Stricker, S. Comprehensive expression analysis of all Wnt genes and their major secreted antagonists during mouse limb development and cartilage differentiation. Gene Expr. Patterns 2009, 9, 215–223. [Google Scholar]
- Huang, L.; Pu, Y.; Hu, W.Y.; Birch, L.; Luccio-Camelo, D.; Yamaguchi, T.; Prins, G.S. The role of Wnt5a in prostate gland development. Dev. Biol. 2009, 328, 188–199. [Google Scholar]
- Jönsson, M.E.; Kubota, A.; Timme-Laragy, A.R.; Woodin, B.; Stegeman, J.J. Ahr2-dependence of PCB126 effects on the swim bladder in relation to expression of CYP1 and cox-2 genes in developing zebrafish. Toxicol. Appl. Pharmacol. 2012, 265, 166–174. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, A.J.; Branam, A.M.; Peterson, R.E. Intersection of AHR and Wnt Signaling in Development, Health, and Disease. Int. J. Mol. Sci. 2014, 15, 17852-17885. https://doi.org/10.3390/ijms151017852
Schneider AJ, Branam AM, Peterson RE. Intersection of AHR and Wnt Signaling in Development, Health, and Disease. International Journal of Molecular Sciences. 2014; 15(10):17852-17885. https://doi.org/10.3390/ijms151017852
Chicago/Turabian StyleSchneider, Andrew J., Amanda M. Branam, and Richard E. Peterson. 2014. "Intersection of AHR and Wnt Signaling in Development, Health, and Disease" International Journal of Molecular Sciences 15, no. 10: 17852-17885. https://doi.org/10.3390/ijms151017852
APA StyleSchneider, A. J., Branam, A. M., & Peterson, R. E. (2014). Intersection of AHR and Wnt Signaling in Development, Health, and Disease. International Journal of Molecular Sciences, 15(10), 17852-17885. https://doi.org/10.3390/ijms151017852