Xenobiotic Metabolism: The Effect of Acute Kidney Injury on Non-Renal Drug Clearance and Hepatic Drug Metabolism
Abstract
:1. Introduction
2. The Kidney as a Metabolic Organ
3. Importance of AKI (Acute Kidney Injury)
4. Pharmacokinetics in AKI
5. Organ Crosstalk
6. Potential Mechanisms of How AKI Affects Non-Renal Drug Clearance
7. Evidence for Kidney-Liver Crosstalk
8. Transporters
9. Human Studies
10. Role of Intestinal Metabolism
11. Conclusions
Conflicts of Interest
References
- O’Shaunessy, K. Principles of Clinical Pharmacology and Drug Therapy. In Oxford Textbook of Medicine, 5th ed.; Warrel, D., Cox, T., Firth, J., Eds.; Oxford University Press: Oxford, UK, 2010; Volume 1, pp. 1450–1476. [Google Scholar]
- Gardiner, S.J.; Begg, E.J. Pharmacogenetics, drug-metabolizing enzymes, and clinical practice. Pharmacol. Rev 2006, 58, 521–590. [Google Scholar]
- Smith, B.S.; Yogaratnam, D.; Levasseur-Franklin, K.E.; Forni, A.; Fong, J. Introduction to drug pharmacokinetics in the critically ill patient. Chest 2012, 141, 1327–1336. [Google Scholar]
- Owen, O.E.; Felig, P.; Morgan, A.P.; Wahren, J.; Cahill, G.F., Jr. Liver and kidney metabolism during prolonged starvation. J. Clin. Investig 1969, 48, 574–583. [Google Scholar]
- Dowling, T.C.; Briglia, A.E.; Fink, J.C.; Hanes, D.S.; Light, P.D.; Stackiewicz, L.; Karyekar, C.S.; Eddington, N.D.; Weir, M.R.; Henrich, W.L. Characterization of hepatic cytochrome p4503A activity in patients with end-stage renal disease. Clin. Pharmacol. Ther 2003, 73, 427–434. [Google Scholar]
- Dreisbach, A.W.; Japa, S.; Gebrekal, A.B.; Mowry, S.E.; Lertora, J.J.; Kamath, B.L.; Rettie, A.E. Cytochrome P4502C9 activity in end-stage renal disease. Clin. Pharmacol. Ther 2003, 73, 475–477. [Google Scholar]
- Naud, J.; Michaud, J.; Beauchemin, S.; Hebert, M.J.; Roger, M.; Lefrancois, S.; Leblond, F.A.; Pichette, V. Effects of chronic renal failure on kidney drug transporters and cytochrome P450 in rats. Drug Metab. Dispos 2011, 39, 1363–1369. [Google Scholar]
- Dreisbach, A.W.; Lertora, J.J. The effect of chronic renal failure on drug metabolism and transport. Expert Opin. Drug Metab. Toxicol 2008, 4, 1065–1074. [Google Scholar]
- Boucher, B.A.; Wood, G.C.; Swanson, J.M. Pharmacokinetic changes in critical illness. Crit. Care Clin 2006, 22, 255–271. [Google Scholar]
- Vilay, A.M.; Churchwell, M.D.; Mueller, B.A. Clinical review: Drug metabolism and nonrenal clearance in acute kidney injury. Crit. Care 2008. [Google Scholar] [CrossRef]
- Kirwan, C.J.; MacPhee, I.A.; Lee, T.; Holt, D.W.; Philips, B.J. Acute kidney injury reduces the hepatic metabolism of midazolam in critically ill patients. Intensiv. Care Med 2012, 38, 76–84. [Google Scholar]
- Bougle, A.; Duranteau, J. Pathophysiology of sepsis-induced acute kidney injury: The role of global renal blood flow and renal vascular resistance. Contrib. Nephrol 2011, 174, 89–97. [Google Scholar]
- Brown, D.; Wagner, C.A. Molecular mechanisms of acid-base sensing by the kidney. J. Am. Soc. Nephrol 2012, 23, 774–780. [Google Scholar]
- Ricksten, S.E.; Bragadottir, G.; Redfors, B. Renal oxygenation in clinical acute kidney injury. Crit. Care 2013. [Google Scholar] [CrossRef]
- Group, K.A.W. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl 2012, 2, 1–138. [Google Scholar]
- Tian, J.; Barrantes, F.; Amoateng-Adjepong, Y.; Manthous, C.A. Rapid reversal of acute kidney injury and hospital outcomes: A retrospective cohort study. Am. J. Kidney Dis 2009, 53, 974–981. [Google Scholar]
- Doi, K.; Yuen, P.S.; Eisner, C.; Hu, X.; Leelahavanichkul, A.; Schnermann, J.; Star, R.A. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J. Am. Soc. Nephrol 2009, 20, 1217–1221. [Google Scholar]
- Wilson, F.P.; Sheehan, J.M.; Mariani, L.H.; Berns, J.S. Creatinine generation is reduced in patients requiring continuous venovenous hemodialysis and independently predicts mortality. Nephrol. Dial. Transplant 2012, 27, 4088–4094. [Google Scholar]
- Stewart, J.; Findlay, G.; Smith, N.; Kelly, K.; Mason, M. Adding Insult to Injury: A Review of the Care of Patients Who Died in Hospital with a Primary Diagnosis of Acute Kidney Injury (Acute Renal Failure). A report by the National Confidential Enquiry into Patient Outcome and Death. 8 February. Available online: http://www.ncepod.org.uk/2009report1/Downloads/AKI_report.pdf.
- Kolhe, N.V.; Stevens, P.E.; Crowe, A.V.; Lipkin, G.W.; Harrison, D.A. Case mix, outcome and activity for patients with severe acute kidney injury during the first 24 h after admission to an adult, general critical care unit: Application of predictive models from a secondary analysis of the ICNARC Case Mix Programme Database. Crit. Care 2008. [Google Scholar] [CrossRef]
- Abosaif, N.Y.; Tolba, Y.A.; Heap, M.; Russell, J.; El Nahas, A.M. The outcome of acute renal failure in the intensive care unit according to RIFLE: Model application, sensitivity, and predictability. Am. J. Kidney Dis 2005, 46, 1038–1048. [Google Scholar]
- Meier-Hellmann, A.; Reinhart, K.; Bredle, D.L.; Specht, M.; Spies, C.D.; Hannemann, L. Epinephrine impairs splanchnic perfusion in septic shock. Crit. Care Med 1997, 25, 399–404. [Google Scholar]
- Martyn, J.A.; Abernethy, D.R.; Greenblatt, D.J. Plasma protein binding of drugs after severe burn injury. Clin. Pharmacol. Ther 1984, 35, 535–539. [Google Scholar]
- Power, B.M.; Forbes, A.M.; van Heerden, P.V.; Ilett, K.F. Pharmacokinetics of drugs used in critically ill adults. Clin. Pharmacokinet 1998, 34, 25–56. [Google Scholar]
- Lash, L.H. Role of renal metabolism in risk to toxic chemicals. Environ. Health Perspect 1994, 102, 75–79. [Google Scholar]
- Whelton, A. Aminoglycoside renal cortical kinetics: A clue to mechanisms of nephrotoxicity. Prog. Clin. Biol. Res 1979, 35, 33–41. [Google Scholar]
- English, J.; Evan, A.; Houghton, D.C.; Bennett, W.M. Cyclosporine-induced acute renal dysfunction in the rat. Evidence of arteriolar vasoconstriction with preservation of tubular function. Transplantation 1987, 44, 135–141. [Google Scholar]
- Lane, K.; Dixon, J.J.; MacPhee, I.A.; Philips, B.J. Renohepatic crosstalk: Does acute kidney injury cause liver dysfunction? Nephrol. Dial. Transplant 2013, 28, 1634–1647. [Google Scholar]
- Kramer, A.A.; Postler, G.; Salhab, K.F.; Mendez, C.; Carey, L.C.; Rabb, H. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int 1999, 55, 2362–2367. [Google Scholar]
- Hassoun, H.T.; Grigoryev, D.N.; Lie, M.L.; Liu, M.; Cheadle, C.; Tuder, R.M.; Rabb, H. Ischemic acute kidney injury induces a distant organ functional and genomic response distinguishable from bilateral nephrectomy. Am. J. Physiol. Ren. Physiol 2007, 293, F30–F40. [Google Scholar]
- Serteser, M.; Koken, T.; Kahraman, A.; Yilmaz, K.; Akbulut, G.; Dilek, O.N. Changes in hepatic TNF-alpha levels, antioxidant status, and oxidation products after renal ischemia/reperfusion injury in mice. J. Surg. Res 2002, 107, 234–240. [Google Scholar]
- Wilkinson, G.R.; Shand, D.G. Commentary: A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther 1975, 18, 377–390. [Google Scholar]
- Nolin, T.D.; Naud, J.; Leblond, F.A.; Pichette, V. Emerging evidence of the impact of kidney disease on drug metabolism and transport. Clin. Pharmacol. Ther 2008, 83, 898–903. [Google Scholar]
- Leblanc, M.; Roy, L.F.; Villeneuve, J.P.; Malo, B.; Pomier-Layrargues, G.; Legault, L. Liver blood flow in chronic hemodialysis patients. Nephron 1996, 73, 396–402. [Google Scholar]
- Spapen, H. Liver perfusion in sepsis, septic shock, and multiorgan failure. Anat. Rec 2008, 291, 714–720. [Google Scholar]
- Soni, N. Wonderful albumin? BMJ 1995, 310, 887–888. [Google Scholar]
- Nicholson, J.P.; Wolmarans, M.R.; Park, G.R. The role of albumin in critical illness. Br. J. Anaesth 2000, 85, 599–610. [Google Scholar]
- Kirwan, C.; MacPhee, I.; Philips, B. Using drug probes to monitor hepatic drug metabolism in critically ill patients: Midazolam, a flawed but useful tool for clinical investigation of CYP3A activity? Expert Opin. Drug Metab. Toxicol 2010, 6, 761–771. [Google Scholar]
- Philips, B.J.; Lane, K.; Dixon, J.; Macphee, I. The effects of acute renal failure on drug metabolism. Expert Opin. Drug Metab. Toxicol 2014, 10, 11–23. [Google Scholar]
- Naud, J.; Nolin, T.D.; Leblond, F.A.; Pichette, V. Current understanding of drug disposition in kidney disease. J. Clin. Pharmacol 2012, 52, 10S–22S. [Google Scholar]
- Heinemeyer, G.; Gramm, H.J.; Roots, I.; Dennhardt, R.; Simgen, W. The kinetics of metamizol and its metabolites in critical-care patients with acute renal dysfunction. Eur. J. Clin. Pharmacol 1993, 45, 445–450. [Google Scholar]
- Heinemeyer, G.; Link, J.; Weber, W.; Meschede, V.; Roots, I. Clearance of ceftriaxone in critical care patients with acute renal failure. Intensiv. Care Med 1990, 16, 448–453. [Google Scholar]
- Michaud, J.; Naud, J.; Chouinard, J.; Desy, F.; Leblond, F.A.; Desbiens, K.; Bonnardeaux, A.; Pichette, V. Role of parathyroid hormone in the downregulation of liver cytochrome P450 in chronic renal failure. J. Am. Soc. Nephrol 2006, 17, 3041–3048. [Google Scholar]
- Michaud, J.; Dube, P.; Naud, J.; Leblond, F.A.; Desbiens, K.; Bonnardeaux, A.; Pichette, V. Effects of serum from patients with chronic renal failure on rat hepatic cytochrome P450. Br. J. Pharmacol 2005, 144, 1067–1077. [Google Scholar]
- Krueger, S.K.; Williams, D.E. Mammalian flavin-containingmon-oxygenases: Structure/function, genetic ploymorphism and role in drug metabolism. Pharmacol. Ther 2005, 106, 357–387. [Google Scholar]
- Lohr, J.W.; Willsky, G.R.; Acara, M.A. Renal drug metabolism. Pharmacol. Rev 1998, 50, 107–141. [Google Scholar]
- Kunuzova, O.R.; Bianchi, P.; Pizzinat, N.; Escourrou, G.; Sequelas, M.H.; Parini, A.; Cambon, C. Regulation of JNK/ERK activation, cell apoptosis, and tissue regeneration by monoamine oxidases after renalischemia-reperfusion. FASEB J 2002, 16, 1129–1131. [Google Scholar]
- Andres-Hernando, A.; Altmann, C.; Ahuja, N.; Lanaspa, M.A.; Nemenoff, R.; He, Z.; Ishimoto, T.; Simpson, P.A.; Weiser-Evans, M.C.; Bacalja, J.; et al. Splenectomy exacerbates lung injury after ischemic acute kidney injury in mice. Am. J. Physiol. Ren. Physiol 2011, 301, F907–F916. [Google Scholar]
- Andres-Hernando, A.; Dursun, B.; Altmann, C.; Ahuja, N.; He, Z.; Bhargava, R.; Edelstein, C.E.; Jani, A.; Hoke, T.S.; Klein, C.; et al. Cytokine production increases and cytokine clearance decreases in mice with bilateral nephrectomy. Nephrol. Dial. Transplant 2012, 27, 4339–4347. [Google Scholar]
- Park, S.W.; Chen, S.W.; Kim, M.; Brown, K.M.; Kolls, J.K.; D’Agati, V.D.; Lee, H.T. Cytokines induce small intestine and liver injury after renal ischemia or nephrectomy. Lab. Investig 2011, 91, 63–84. [Google Scholar]
- Park, S.W.; Kim, M.; Kim, J.Y.; Ham, A.; Brown, K.M.; Mori-Akiyama, Y.; Ouellette, A.J.; D’Agati, V.D.; Lee, H.T. Paneth cell-mediated multiorgan dysfunction after acute kidney injury. J. Immunol 2012, 189, 5421–5433. [Google Scholar]
- Miyazawa, S.; Watanabe, H.; Miyaji, C.; Hotta, O.; Abo, T. Leukocyte accumulation and changes in extra-renal organs during renal ischemia reperfusion in mice. J. Lab. Clin. Med 2002, 139, 269–278. [Google Scholar]
- Fadillioglu, E.; Kurcer, Z.; Parlakpinar, H.; Iraz, M.; Gursul, C. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus. Arch. Pharm. Res 2008, 31, 705–712. [Google Scholar]
- Golab, F.; Kadkhodaee, M.; Zahmatkesh, M.; Hedayati, M.; Arab, H.; Schuster, R.; Zahedi, K.; Lentsch, A.B.; Soleimani, M. Ischemic and non-ischemic acute kidney injury cause hepatic damage. Kidney Int 2009, 75, 783–792. [Google Scholar]
- Gurley, B.J.; Barone, G.W.; Yamashita, K.; Polston, S.; Estes, M.; Harden, A. Extrahepatic ischemia-reperfusion injury reduces hepatic oxidative drug metabolism as determined by serial antipyrine clearance. Pharm. Res 1997, 14, 67–72. [Google Scholar]
- Klein, C.L.; Hoke, T.S.; Fang, W.F.; Altmann, C.J.; Douglas, I.S.; Faubel, S. Interleukin-6 mediates lung injury following ischemic acute kidney injury or bilateral nephrectomy. Kidney Int 2008, 74, 901–909. [Google Scholar]
- Muntane-Relat, J.; Ourlin, J.C.; Domergue, J.; Maurel, P. Differential effects of cytokines on the inducible expression of CYP1A1, CYP1A2, and CYP3A4 in human hepatocytes in primary culture. Hepatology 1995, 22, 1143–1153. [Google Scholar]
- Chawla, L.S.; Seneff, M.G.; Nelson, D.R.; Williams, M.; Levy, H.; Kimmel, P.L.; Macias, W.L. Elevated plasma concentrations of IL-6 and elevated APACHE II score predict acute kidney injury in patients with severe sepsis. Clin. J. Am. Soc. Nephrol 2007, 2, 22–30. [Google Scholar]
- Liu, K.D.; Altmann, C.; Smits, G.; Krawczeski, C.D.; Edelstein, C.L.; Devarajan, P.; Faubel, S. Serum interleukin-6 and interleukin-8 are early biomarkers of acute kidney injury and predict prolonged mechanical ventilation in children undergoing cardiac surgery: A case-control study. Crit. Care 2009. [Google Scholar] [CrossRef]
- Liu, K.D. Impact of acute kidney injury on lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol 2009. [Google Scholar] [CrossRef]
- Mastorakos, G.; Chrousos, G.P.; Weber, J.S. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J. Clin. Endocrinol. Metab 1993, 77, 1690–1694. [Google Scholar]
- Lee, A.K.; Lee, J.H.; Kwon, J.W.; Kim, W.B.; Kim, S.G.; Kim, S.H.; Lee, M.G. Pharmacokinetics of clarithromycin in rats with acute renal failure induced by uranyl nitrate. Biopharm. Drug Dispos 2004, 25, 273–282. [Google Scholar]
- Lee, J.H.; Lee, M.G. Effects of acute renal failure on the pharmacokinetics of telithromycin in rats: Negligible effects of increase in CYP3A1 on the metabolism of telithromycin. Biopharm. Drug Dispos 2007, 28, 157–166. [Google Scholar]
- Venkatesh, P.; Harisudhan, T.; Choudhury, H.; Mullangi, R.; Srinivas, N.R. Pharmacokinetics of etoposide in rats with uranyl nitrate (UN)-induced acute renal failure (ARF): Optimization of the duration of UN dosing. Eur. J. Drug Metab. Pharmacokinet 2007, 32, 189–196. [Google Scholar]
- Yoshitani, T.; Yagi, H.; Inotsume, N.; Yasuhara, M. Effect of experimental renal failure on the pharmacokinetics of losartan in rats. Biol. Pharm. Bull 2002, 25, 1077–1083. [Google Scholar]
- Okabe, H.; Yano, I.; Hashimoto, Y.; Saito, H.; Inui, K. Evaluation of increased bioavailability of tacrolimus in rats with experimental renal dysfunction. J. Pharm. Pharmacol 2002, 54, 65–70. [Google Scholar]
- Izuwa, Y.; Kusaba, J.; Horiuchi, M.; Aiba, T.; Kawasaki, H.; Kurosaki, Y. Comparative study of increased plasma quinidine concentration in rats with glycerol- and cisplatin-induced acute renal failure. Drug Metab. Pharmacokinet 2009, 24, 451–457. [Google Scholar]
- Shibata, N.; Inoue, Y.; Fukumoto, K.; Nishimura, A.; Fukushima, K.; Yoshikawa, Y.; Spiteller, G.; Takada, K. Evaluation of factors to decrease bioavailability of cyclosporin A in rats with gentamicin-induced acute renal failure. Biol. Pharm. Bull 2004, 27, 384–391. [Google Scholar]
- Karim, M.S.; Wood, R.F.; Dawnay, A.B.; Fulton, P.A. The effect of renal ischemia on cyclosporine clearance in rabbits. Transplantation 1990, 49, 500–502. [Google Scholar]
- Okabe, H.; Higashi, T.; Ohta, T.; Hashimoto, Y. Intestinal absorption and hepatic extraction of propranolol and metoprolol in rats with bilateral ureteral ligation. Biol. Pharm. Bull 2004, 27, 1422–1427. [Google Scholar]
- Tanabe, H.; Taira, S.; Taguchi, M.; Hashimoto, Y. Pharmacokinetics and hepatic extraction of metoprolol in rats with glycerol-induced acute renal failure. Biol. Pharm. Bull 2007, 30, 552–555. [Google Scholar]
- Okabe, H.; Hasunuma, M.; Hashimoto, Y. The hepatic and intestinal metabolic activities of P450 in rats with surgery- and drug-induced renal dysfunction. Pharm. Res 2003, 20, 1591–1594. [Google Scholar]
- Yu, S.Y.; Chung, H.C.; Kim, E.J.; Kim, S.H.; Lee, I.; Kim, S.G.; Lee, M.G. Effects of acute renal failure induced by uranyl nitrate on the pharmacokinetics of intravenous theophylline in rats: The role of CYP2E1 induction in 1,3-dimethyluric acid formation. J. Pharm. Pharmacol 2002, 54, 1687–1692. [Google Scholar]
- Srinivas, N.R. Pharmacokinetics of tolbutamide in acute renal failure induced by glycerol: Speculative thoughts and perspectives. Drug Metab. Pharmacokinet 2011, 26, 216–217. [Google Scholar]
- Wang, B.Y.; Li, Q.X.; Li, J.; Xie, X.F.; Ao, Y.; Ai, Y.X. Hepatotoxicity and gene expression down-regulation of CYP isozymes caused by renal ischemia/reperfusion in the rat. Exp. Toxicol. Pathol 2009, 61, 169–176. [Google Scholar]
- Chung, H.C.; Kim, S.H.; Lee, M.G.; Kim, S.G. Increase in urea in conjunction with l-arginine metabolism in the liver leads to induction of cytochrome P450 2E1 (CYP2E1): The role of urea in CYP2E1 induction by acute renal failure. Drug Metab. Dispos 2002, 30, 739–746. [Google Scholar]
- Kunihara, M.; Nagai, J.; Murakami, T.; Takano, M. Renal excretion of rhodamine 123, a P-glycoprotein substrate, in rats with glycerol-induced acute renal failure. J. Pharm. Pharmacol 1998, 50, 1161–1165. [Google Scholar]
- Murakami, T.; Yumoto, R.; Nagai, J.; Takano, M. Factors affecting the expression and function of P-glycoprotein in rats: Drug treatments and diseased states. Die Pharm 2002, 57, 102–107. [Google Scholar]
- Yamaguchi, H.; Yano, I.; Saito, H.; Inui, K. Effect of cisplatin-induced acute renal failure on bioavailability and intestinal secretion of quinolone antibacterial drugs in rats. Pharm. Res 2004, 21, 330–338. [Google Scholar]
- Chan, L.M.; Lowes, S.; Hirst, B.H. The ABCs of drug transport in intestine and liver: Efflux proteins limiting drug absorption and bioavailability. Eur. J. Pharm. Sci 2004, 21, 25–51. [Google Scholar]
- Schneider, R.; Sauvant, C.; Betz, B.; Otremba, M.; Fischer, D.; Holzinger, H.; Wanner, C.; Galle, J.; Gekle, M. Downregulation of organic anion transporters OAT1 and OAT3 correlates with impaired secretion of para-aminohippurate after ischemic acute renal failure in rats. Am. J. Physiol. Ren. Physiol 2007, 292, F1599–F1605. [Google Scholar]
- Sun, H.; Frassetto, L.; Benet, L.Z. Effects of renal failure on drug transport and metabolism. Pharmacol. Ther 2006, 109, 1–11. [Google Scholar]
- Shi, J.; Montay, G.; Chapel, S.; Hardy, P.; Barrett, J.S.; Sack, M.; Marbury, T.; Swan, S.K.; Vargas, R.; Leclerc, V.; et al. Pharmacokinetics and safety of the ketolide telithromycin in patients with renal impairment. J. Clin. Pharmacol 2004, 44, 234–244. [Google Scholar]
- Nolin, T.D.; Appiah, K.; Kendrick, S.A.; Le, P.; McMonagle, E.; Himmelfarb, J. Hemodialysis acutely improves hepatic CYP3A4 metabolic activity. J. Am. Soc. Nephrol 2006, 17, 2363–2367. [Google Scholar]
- Gertz, M.; Harrison, A.; Houston, J.B.; Galetin, A. Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data. Drug Metab. Dispos 2010, 38, 1147–1158. [Google Scholar]
Category of AKI | Mechanism | Causes |
---|---|---|
Pre-renal failure Renal hypoperfusion | Hypovolaemia/Hypotension | Haemorrhage, dehydration (diarrhoea and vomiting, heat), Osmotic diuresis (hyperglycaemia, iatrogenic), excessive diuretic use |
Redistributive shock | Sepsis, anaphylaxis, reduced plasma oncotic pressure in nephrotic syndrome, pancreatitis | |
Poor cardiac function | Cardiogenic shock, severe sepsis, | |
Renal vascular changes | Afferent arteriolar vasoconstriction (NSAIDs, ACE inhibitors, vasoconstrictors) | |
Intrinsic-renal failure Damage to the renal parenchyma | Glomerular damage | Primary or secondary glomerulonephritis (infective, autoimmune, inflammatory) |
Tubular damage | Ischaemia or nephrotoxins, sepsis | |
Damage to the renal blood vessels | Haemolytic uraemic syndrome | |
Interstitial damage | Nephrotoxins or infection, sepsis | |
Post-renal failure Damage to the renal outflow of urine | Obstruction within the upper renal tract | Stones or malignancy |
External obstruction of the upper renal tract | External compression due to a mass, constriction due to retroperitoneal fibrosis, Intra-abdominal compartment syndrome | |
Obstruction to the lower renal tract | Bladder neck dysfunction, prostatic enlargement, uterine disease, obstructed catheters |
© 2014 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dixon, J.; Lane, K.; MacPhee, I.; Philips, B. Xenobiotic Metabolism: The Effect of Acute Kidney Injury on Non-Renal Drug Clearance and Hepatic Drug Metabolism. Int. J. Mol. Sci. 2014, 15, 2538-2553. https://doi.org/10.3390/ijms15022538
Dixon J, Lane K, MacPhee I, Philips B. Xenobiotic Metabolism: The Effect of Acute Kidney Injury on Non-Renal Drug Clearance and Hepatic Drug Metabolism. International Journal of Molecular Sciences. 2014; 15(2):2538-2553. https://doi.org/10.3390/ijms15022538
Chicago/Turabian StyleDixon, John, Katie Lane, Iain MacPhee, and Barbara Philips. 2014. "Xenobiotic Metabolism: The Effect of Acute Kidney Injury on Non-Renal Drug Clearance and Hepatic Drug Metabolism" International Journal of Molecular Sciences 15, no. 2: 2538-2553. https://doi.org/10.3390/ijms15022538
APA StyleDixon, J., Lane, K., MacPhee, I., & Philips, B. (2014). Xenobiotic Metabolism: The Effect of Acute Kidney Injury on Non-Renal Drug Clearance and Hepatic Drug Metabolism. International Journal of Molecular Sciences, 15(2), 2538-2553. https://doi.org/10.3390/ijms15022538