The Constituents of Michelia compressa var. formosana and Their Bioactivities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Characterization of Compounds
2.2. Inhibitory Effects of Isolated Compounds on Nitric Oxide (NO) Production
Compound | Dose (100 ng/mL) | Cell Viability (% of Control) | NO Level | IC50 (μg/mL) |
---|---|---|---|---|
control | (−) | 94.5 ± 2.8 | 0.7 ± 0.4 | – |
LPS | (+) | 101.7 ± 0.5 | 19.7 ± 0.2 ### | – |
1 | 1.25 | 97.7 ± 5.1 | 19.1 ± 1.0 | |
2.5 | 94.7 ± 2.9 | 18.3 ± 0.5 | ||
5 | 89.8 ± 4.8 | 12.3 ± 0.2 ** | 8.5 ± 0.3 | |
10 | 86.9 ± 2.7 | 9.1 ± 0.1 *** | ||
20 | 81.3 ± 1.7 | 6.5 ± 0.3 *** | ||
2 | 1.25 | 85.3 ± 1.9 | 20.6 ± 0.1 | |
2.5 | 84.3 ± 2.5 | 20.0 ± 0.5 | ||
5 | 82.7 ± 1.7 | 17.0 ± 0.8 * | 9.6 ± 0.5 | |
10 | 80.6 ± 5.4 | 9.4 ± 0.7 *** | ||
20 | 64.5 ± 3.9 | (−) |
2.3. Anticancer Bioactivities of Isolated Compounds
Cell Lines | TW01 | H226 | Jurkat | A498 | A549 | HT1080 | |
---|---|---|---|---|---|---|---|
Compounds | IC50 (μM) | IC50 (μM) | IC50 (μM) | IC50 (μM) | IC50 (μM) | IC50 (μM) | |
3 | 8.99 | 14.71 | 15.7 | 4.52 | 8.82 | 9.75 | |
4 | 5.88 | 12.28 | 13.28 | 3.68 | 5.50 | 6.93 |
3. Experimental Section
3.1. General Procedures
3.2. Plant Materials
3.3. Extraction and Isolation
3.4. Determination of Inhibitory Effects on NO Production
3.4.1. Chemicals
3.4.2. Cell Culture
3.4.3. Cell Viability Assay
3.4.4. Measurement of Nitric Oxide/Nitrite
3.4.5. Statistical Analysis
3.5. Determination of the Anticancer Bioactivity
3.5.1. Cell Lines
3.5.2. Growth Inhibition Assay
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Keng, H. Magnoliaceae in Flora of Taiwan, 2nd ed; Editorial Committee of the Flora of Taiwan: Taipei, Taiwan, 1996; pp. 410–414. [Google Scholar]
- Hartwell, J.L. Plants used against cancer. A survey. Lloydia 1970, 33, 97–194. [Google Scholar]
- Gupta, S.; Mehla, K.; Chauhan, D.; Nair, A. Anti-inflammatory activity of leaves of Michelia champaca investigated on acute inflammation induced rats. Lat. Am. J. Pharm. 2011, 30, 819–822. [Google Scholar]
- Liu, C.Y.; Chen, Y.W.; Cheng, M.J.; Lee, S.J.; El-Razek, M.H.A.; Chang, W.H.; Chen, Y.J.; Chen, I.S. Cytotoxic constituents from the root wood of formosan Michelia compressa. J. Chin. Chem. Soc. 2008, 53, 1523–1524. [Google Scholar]
- Wang, H.M.; Lo, W.L.; Lu, Y.C.; Yeh, Y.T.; Huang, L.Y.; Huang, J.C.; Chen, C.Y. Chemical constituents from the leaves of Michelia compressa var. formosana. Chem. Nat. Compd. 2009, 45, 931–933. [Google Scholar]
- Wu, C.C.; Wu, C.L.; Huang, S.L.; Chang, H.T. Antifungal activity of liriodenine from Michelia formosana heartwood against wood-rotting fungi. Wood Sci. Technol. 2012, 46, 737–747. [Google Scholar] [CrossRef]
- Koyama, T.; Morikita, T. Isolation of ceryl alcohol from leaves of Michelia compressa. Chem. Pharm. Bull. 1955, 2, 69–70. [Google Scholar]
- Ito, K. Alkaloids of Magnoliaceous plants. XXIV. Alkaloids of Michelia compressa. Yakugaku Zasshi 1960, 80, 705–707. [Google Scholar]
- Tomita, M.; Fukukawa, H. Alkaloids of Magnoliaceous plants. XXIII. Alkaloids of Michelia compressa, 3. Alkaloids of the heartwood. Yakugaku Zasshi 1962, 82, 925–927. [Google Scholar]
- Yang, T.H. Studies on the alkaloids of Magnoliaceous plants. XXXIII. Alkaloids of Michelia compressa Maxim var. formosana Kanehira. Yakugaku Zasshi 1962, 82, 794–798. [Google Scholar]
- Lo, W.L.; Wu, Y.C.; Hsieh, T.J.; Kuo, S.H. Chemical constituents from the stems of Michelia compressa. Chin. Pharm. J. 2004, 56, 69–75. [Google Scholar] [CrossRef]
- Lo, L.C. Studies on the Constituents of the Parasitic Plants (Aeginetia indica; Cassytha filiformis) and Chinese Medicines (Tetrapanax papyriferus; Michelia compressa) in Taiwan. Ph.D. Thesis, Department of Chemistry, National Tsing Hua University, Taiwan, July 1999. [Google Scholar]
- Chen, K.S.; Chang, F.R.; Chia, Y.C.; Wu, T.S.; Wu, Y.C. Chemical constituents of Neolitsea parvigemma and Neolitsea konishii. J. Chin. Chem. Soc. 1998, 45, 103–110. [Google Scholar]
- Kawahara, N.; Sekita, S.; Satake, M. Steroids from Calvatia cyathiformis. Phytochemistry 1994, 37, 213–215. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, F.R.; Wu, Y.C. The constituents from the stems of Annona cherimola. J. Chin. Chem. Soc. 1997, 44, 313–320. [Google Scholar]
- EI-Feraly, F.S.; Chan, Y.M.; Capiton, G.A. Isolation and characterization of peroxycostunolide (verlotorin) and peroxyparthenolide from Magnolia grandiflora. Carbon-13 nuclear magnetic resonance spectroscopy of costunolide and related compounds. J. Org. Chem. 1979, 44, 3952–3955. [Google Scholar] [CrossRef]
- Wu, P.L.; Su, G.C.; Wu, T.S. Constituents from the stems of Aristolochia manshuriensis. J. Nat. Prod. 2003, 66, 996–998. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Leu, Y.L.; Chan, Y.Y.; Wu, T.S. Sodium aristolochates from the flowers and fruits of Aristolochia zollingeriana. J. Chin. Chem. Soc. 1998, 45, 93–97. [Google Scholar]
- Wu, T.S.; Leu, Y.L.; Kuoh, C.S.; Jiang, S.D.; Chen, C.F.; Lee, K.H. Cytotoxic principles from Saussurea lappa and Corydalis turtshaninovii f. yanhusuo. J. Chin. Chem. Soc. 1997, 44, 357–359. [Google Scholar]
- Guinaudeau, P.H.; Leboeuf, M.; Debray, M.; Cave, A. Alkaloids of Colubrina faralaotra ssp. faralaotra. Planta Med. 1975, 27, 304–318. [Google Scholar] [CrossRef]
- Lin, F.W.; Damu, A.G.; Wu, T.S. Abietane diterpene alkaloids from Salvia yunnanensis. J. Nat. Prod. 2006, 69, 93–96. [Google Scholar] [CrossRef]
- Chang, H.M.; Cheng, K.P.; Choang, T.F.; Chow, H.F.; Chui, K.Y. Structure elucidation and total synthesis of new tanshinones isolated from Salvia miltiorrhiza Bunge. J. Org. Chem. 1990, 55, 3537–3543. [Google Scholar] [CrossRef]
- Yuuya, S.; Hagiwara, H.; Suzuki, T.; Ando, M.; Yamada, A. Guaianolides as immunomodulators. Synthesis and biological activities of dehydrocostus lactone, mokko lactone, eremanthin, and their derivatives. J. Nat. Prod. 1999, 62, 22–30. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, F.R.; Teng, C.M.; Wu, Y.C. Cheritamine, a new N-fatty acyl tryptamine and other constituents from the stems of Annona cherimola. J. Chin. Chem. Soc. 1999, 46, 77–86. [Google Scholar]
- Ando, M.; Yoshimura, H. Studies on the syntheses of sesquiterpene lactones. 15. Syntheses of four possible diastereoisomers of Bohlmann’s structure of isoepoxyestafiatin. The stereochemical assignment of isoepoxyestafiatin. J. Org. Chem. 1993, 58, 4127–4131. [Google Scholar] [CrossRef]
- Itokawa, H.; Qiao, Y.; Takeya, K. Anthraquinones, naphthoquinones and naphthohydroquinones from Rubia oncotricha. Phytochemistry 1991, 30, 637–640. [Google Scholar] [CrossRef]
- Wu, T.S.; Chan, Y.Y.; Leu, Y.L. The constituents of the root and stem of Aristolochia heterophylla Hemsl. Chem. Pharm. Bull. 2000, 48, 357–361. [Google Scholar] [CrossRef]
- Chang, F.R.; Chen, C.Y.; Hsieh, T.J.; Cho, C.P.; Wu, Y.C. Chemical constituents from Annona glabra III. J. Chin. Chem. Soc. 2000, 47, 913–920. [Google Scholar]
- Kikuzaki, H.; Hara, S.; Kawai, Y.; Nakatani, N. Antioxidative phenylpropanoids from berries of Pimenta dioica. Phytochemistry 1999, 52, 1307–1312. [Google Scholar]
- Seijas, J.A.; Lera, A.R.; Villaverde, C.; Castedo, L.A. Direct conversion of phenanthrenes to aporphinoids. Heterocycles 1985, 23, 3079–3084. [Google Scholar] [CrossRef]
- Kuo, P.C.; Kuo, T.H.; Su, C.R.; Liou, M.J.; Wu, T.S. Cytotoxic principles and α-pyrone ring-opening derivatives of bufadienolides from Kalanchoe hybrida. Tetrahedron 2008, 64, 3392–3396. [Google Scholar] [CrossRef]
- Menachery, M.D.; Blake, G.W.; Beiswenger, C.; Freyer, A. Alkaloids from the neutral fraction of Telitoxicum krukovii. Heterocycles 1995, 41, 1425–1430. [Google Scholar] [CrossRef]
- Jossang, A.; Leboeuf, M.; Cave, A. Synthesis of novel 7,7'-bis-6α,7-dehydronoraporphines. Heterocycles 1987, 26, 2191–2198. [Google Scholar] [CrossRef]
- Wang, C.C.; Chen, S.S.; Wu, T.S. The facile reversed-phase HPLC resolution of tetrahydrofurofuran nucleus lignans in traditional Chinese medicine: Quantitative analysis of asarinin and sesamin in Asari radix. J. Chin. Chem. Soc. 2003, 50, 261–266. [Google Scholar]
- Chou, C.J.; Lin, L.C.; Chen, K.T.; Chen, C.F. Northalifoline, a new isoquinolone alkaloid from the pedicels of Lindera megaphylla. J. Nat. Prod. 1994, 57, 689–694. [Google Scholar] [CrossRef]
- Ho, J.C.; Chen, C.M.; Row, L.C. Neolignans from the parasitic Plants. Part 2. Cassytha filiformis. J. Chin. Chem. Soc. 2004, 51, 221–224. [Google Scholar]
- Luc, P.; Stefaan, V.D.; Mei, G.; Ruoli, B.; Ernest, H.; Arnold, V.; Guy, L. Synthesis and biological evaluation of dihydrobenzofuran lignans and related compounds as potential antitumor agents that inhibit tubulin polymerization. J. Med. Chem. 1999, 42, 5475–5481. [Google Scholar] [CrossRef]
- Nabeta, K.; Hirata, M.; Ohki, Y.; Samaraweera, S.W.A.; Okuyama, H. Lignans in cell cultures of Picea glehnii. Phytochemistry 1994, 37, 409–413. [Google Scholar] [CrossRef]
- Xia, Y.M.; You, J.; Wang, Q. Total synthesis of (±)-divanillyltetrahydrofuran ferulate. J. Chem. Sci. 2010, 122, 433–436. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, Y.C.; Teng, C.M.; Ko, F.N.; Wu, T.S. Bioactive alkaloids from Illigera luzonensis. J. Nat. Prod. 1997, 60, 645–647. [Google Scholar] [CrossRef]
- Zhou, T.S.; Ye, W.C.; Wang, Z.T.; Che, C.T.; Zhou, R.H.; Xu, G.J.; Xu, L.S. β-Carboline alkaloids from Hypodematium squamuloso-pilosum. Phytochemistry 1998, 49, 1807–1809. [Google Scholar] [CrossRef]
- Del Río, J.C.; Gutiérrez, A. Chemical composition of abaca (Musa textilis) leaf fibers used for manufacturing of high quality paper pulps. J. Agric. Food Chem. 2006, 54, 4600–4610. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.H.; Lai, C.S.; Dushenkov, S.; Ho, C.T. Modulation of inflammatory genes by natural dietary bioactive compounds. J. Agric. Food Chem. 2009, 57, 4467–4477. [Google Scholar] [CrossRef]
- Chang, C.T.; Huang, S.S.; Lin, S.S.; Amagaya, S.; Ho, H.Y.; Hou, W.C.; Shie, P.H.; Wu, J.B.; Huang, G.J. Anti-inflammatory activities of tormentic acid from suspension cells of Eriobotrya japonica ex vivo and in vivo. Food Chem. 2011, 127, 1131–1137. [Google Scholar] [CrossRef]
- Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 1989, 119, 203–210. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chan, Y.-Y.; Juang, S.-H.; Huang, G.-J.; Liao, Y.-R.; Chen, Y.-F.; Wu, C.-C.; Chang, H.-T.; Wu, T.-S. The Constituents of Michelia compressa var. formosana and Their Bioactivities. Int. J. Mol. Sci. 2014, 15, 10926-10935. https://doi.org/10.3390/ijms150610926
Chan Y-Y, Juang S-H, Huang G-J, Liao Y-R, Chen Y-F, Wu C-C, Chang H-T, Wu T-S. The Constituents of Michelia compressa var. formosana and Their Bioactivities. International Journal of Molecular Sciences. 2014; 15(6):10926-10935. https://doi.org/10.3390/ijms150610926
Chicago/Turabian StyleChan, Yu-Yi, Shin-Hun Juang, Guan-Jhong Huang, Yu-Ren Liao, Yu-Fon Chen, Chia-Che Wu, Hui-Ting Chang, and Tian-Shung Wu. 2014. "The Constituents of Michelia compressa var. formosana and Their Bioactivities" International Journal of Molecular Sciences 15, no. 6: 10926-10935. https://doi.org/10.3390/ijms150610926
APA StyleChan, Y. -Y., Juang, S. -H., Huang, G. -J., Liao, Y. -R., Chen, Y. -F., Wu, C. -C., Chang, H. -T., & Wu, T. -S. (2014). The Constituents of Michelia compressa var. formosana and Their Bioactivities. International Journal of Molecular Sciences, 15(6), 10926-10935. https://doi.org/10.3390/ijms150610926