Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials
Abstract
:1. Introduction
2. Ionic Liquids and Cellulose Dissolution
2.1. Cellulose Dissolution in Ionic Liquids
2.2. Dissolution of Different Polysaccharides in Ionic Liquids
Ionic Liquid and Its Chemical Structure | Temp. (°C) | Solubility (wt %) | Type of Cellulose | Ref. | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1-allyl-3-methylimidazolium chloride ([Amim][Cl]) | 90 | 5 | MCC Avicel | [19] | |||||||
100 | 10 | MCC (DP:250) | [29] | ||||||||
100–130 | 5–14.5 | pulp cotton linter | [19] | ||||||||
1-allyl-2,3-dimethylimidazolium bromide ([ADmim][Br]) | 80 | 12 | Avicel | [30] | |||||||
80 | 4 | cotton linters | [30] | ||||||||
1-allyl-3-methylimidazolium formate ([Amim][HCOO]) | 85 | 22 | MCC (DP:250) | [29] | |||||||
1-butyl-3-methylimidazolium aminoethanoate ([C4mim][H2NCH2COO]) | 70 | 12 | MCC | [31] | |||||||
1-butyl-3-methylimidazolium benzoate ([C4mim][PhCO2]) | 70 | 12 | MCC | [31] | |||||||
1-butyl-3-methylimidazolium chloride ([C4mim][Cl]) | 90 | <5 | MCC Avicel | [20] | |||||||
100 | 10 | dissolving pulp | [16] | ||||||||
110 | 10 | MCC Avicel | [32] | ||||||||
83 | 18 | MCC Avicel | [33] | ||||||||
83 | 13 | suprice sulfite pulp | [33] | ||||||||
83 | 10 | cotton linters | [33] | ||||||||
100 | 20 | MCC (DP:250) | [29] | ||||||||
100 | 20 | MCC Avicel | [34] | ||||||||
85 | 13.6 | - | [35] | ||||||||
1-butyl-3-methylimidazolium formate ([C4mim][HCOO]) | 110 | 8 | MCC Avicel | [32] | |||||||
1-butyl-3-methylimidazolium dicyanamide ([Bmim][N(CN)2]) | 110 | 1 | MCC Avicel | [32] | |||||||
1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulphonyl]imide ([Bmim][TFSI]) | 110 | 0.5 | MCC Avicel | [32] | |||||||
1-ethyl-3-methylimidazolium chloride ([Emim][Cl]) | 90 | 5 | MCC Avicel | [20] | |||||||
1-ethyl-3-methylimidazolium acetate ([Emim][Ac]) | 90 | 16 | MCC Avicel | [20] | |||||||
85 | 13.5 | Eucalyptus pulp | [35] | ||||||||
110 | 15 | MCC Avicel | [32] | ||||||||
1-ethyl-3-methylimidazolium diethylphosphate ([Emim][DEtPO4]) | 100 | 12–14 | Avicel | [34] | |||||||
1-ethyl-3-methylimidazolium methylphosphonate [Emim][(MeO)(H)PO2] | 45 | 10 | MCC (DP:250) | [36] | |||||||
25 | 4 | MCC (DP:250) | [36] | ||||||||
N,N-dimethyl-2-methoxyethylammonium acetate ([MM(MeOEt)NH][OAc]) | 110 | 12 | MCC Avicel | [32] | |||||||
N,N-dimethylethanolammonium acetate ([MM(EtOH)NH][OAc]) | 110 | <0.5 | Avicel | [32] | |||||||
3-methyl- N-butylpyridinium chloride ([MNBuPy][Cl]) | 105 | 12 | MCC Avicel | [33] | |||||||
triethyl-2-(2-methoxyethoxy)ethanammonium acetate ([Me(OEt)3-Et3N][OAc]) | 110 | 10 | MCC Avicel | [32] | |||||||
1-octyl-3-methylimidazolium acetate ([Ocmim][OAc]) | 110 | <1 | Avicel | [32] | |||||||
1-(4,8,12-trioxatridecyl)-3-ethylimidazolium acetate ([Me(OPr)3-Et-Im][OAc]) | 110 | 0.5 | Avicel | [32] |
3. Chemical Modification of Cellulose in Ionic Liquids
4. New Cellulosic Materials
4.1. Cellulose Composites
4.2. Polymerized Ionic Liquid-Cellulose Composites
4.3. Cellulose Based Ion Gels
4.4. Electrospinning of Cellulose from Ionic Liquids
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Preston, R.D. X-ray analysis and the structure of the components of plant cell walls. Phys. Rep. 1975, 21, 183–226. [Google Scholar] [CrossRef]
- Sarko, A. Cellulose: How much do we know about its structure. In Wood and Cellulosics: Industrial Utilization, Biotechnology, Structure and Properties; Kennedy, J.F., Ed.; Ellis Horwood: Chichester, UK, 1987; pp. 55–70. [Google Scholar]
- Chanzy, H. Aspects of cellulose structure. In Cellulose Sources and Exploitation: İndustrial Utilisation Biotechnology and Physico-Chemical Properties; Kennedy, J.F., Phillips, G.O., Williams, P.A., Eds.; Ellis Horwood: Chichester, UK, 1990; pp. 3–12. [Google Scholar]
- Okamura, K. Structure of cellulose. In Wood and Cellulosic Chemistry; Hon, D.N.-S., Shiraishi, N., Eds.; Marcel Dekker: New York, NY, USA, 1991; pp. 89–111. [Google Scholar]
- O’Sullivan, A.C. Cellulose: Structure slowly unravels. Cellulose 1997, 4, 173–207. [Google Scholar]
- Schönbein, C.F. Notiz über eine Veränderung der Pflanzenfaser und einiger andern organischen Substanzen (in German). Ber. Naturforsch. Ges. Basel 1847, 7, 27. [Google Scholar]
- Hyatt, J.W. Manufacture of Celluloid. U.S. Patent No. 232037, 1880. [Google Scholar]
- Cross, C.F.; Bevan, B.T.; Beadle, C. Thiokohlensäureester der Cellulose (in German). Ber. Dtsch. Chem. Ges. 1893, 26, 1090–1097. [Google Scholar] [CrossRef]
- Cross, C.F.; Bevan, B.T.; Beadle, C. Die chemie der pflanzenfasern: Cellulosen, oxycellulosen, lignocellulosen (in German). Ber. Dtsch. Chem. Ges. 1893, 26, 2520–2533. [Google Scholar] [CrossRef]
- Borbely, E. Lyocell, the new generation of regenerated cellulose. Acta Polytech. Hung. 2008, 5, 11–18. [Google Scholar]
- Rosenau, T.; Potthast, A.; Sixta, H.; Kosma, P. The chemistry of side reactions and by product formation in the system NMMO/cellulose (Lyocell process). Prog. Polym. Sci. 2001, 26, 1763–1837. [Google Scholar] [CrossRef]
- Petersen, R.C. The chemical composition of wood. In The Chemistry of Solid Wood; American Chemical Society: New York, NY, USA, 1984; pp. 57–126. [Google Scholar]
- U.S. Congress, Office of Technology Assessment. Technologies for Reducing Dioxin in the Manufacture of Bleached Wood Pulp; Government Printing Office: Washington, DC, USA, 1989. [Google Scholar]
- Sun, N.; Rahman, M.; Qin, Y.; Maxim, M.L.; Rodriguez, H.; Rogers, R.D. Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 2009, 11, 646–655. [Google Scholar]
- Hutchins, F.E. Toxicity of Pulp and Paper Mill Effluent: A Literature Review; United States Environmental Protection Agency: Corvallis, OR, USA, 1979. [Google Scholar]
- Swatloski, R.P.; Spear, S.K.; Holbrey, J.D.; Rogers, R.D. Dissolution Cellulose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. [Google Scholar] [CrossRef]
- Gericke, M.; Fardim, P.; Heinze, T. Ionic liquids—Promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 2012, 17, 7458–7502. [Google Scholar] [CrossRef]
- Lu, B.; Xu, A.; Wang, J. Cation does matter: How cationic structure affects the dissolution of cellulose in ionic liquids. Green Chem. 2014, 16, 1326–1335. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: A new and powerful nonderivatizing solvent for cellulose. Macromolecules 2005, 38, 8272–8277. [Google Scholar]
- Zavrel, M.; Bross, D.; Funke, M.; Büchs, J.; Spiess, A.C. High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour. Technol. 2009, 100, 2580–2587. [Google Scholar] [CrossRef]
- Andanson, J-M.; Bordes, E.; Devemy, J.; Leroux, F.; Padua, A.A.H.; Gomes, M.F.C. Understanding the role of co-solvents in the dissolution of cellulose in ionic liquids. Green Chem. 2014. [Google Scholar] [CrossRef]
- Ries, M.E.; Radhi, A.; Keating, A.S.; Parker, O.; Budtova, T. Diffusion of 1-ethyl-3-ethyl-imidazolium acetate in glucose, cellobiose and cellulose solutions. Biomacromolecules 2014, 15, 609–617. [Google Scholar]
- Xie, H.; Zhang, S.; Li, S. Chitin and chitosan dissolved in ionic liquids as reversible sorbents of CO2. Green Chem. 2005, 8, 630–633. [Google Scholar]
- Wu, Y.; Sasaki, T.; Irie, S.; Sakurai, K. A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer 2008, 49, 2321–2327. [Google Scholar]
- Lacroix, C.; Sultan, E.; Fleury, E.; Charlot, A. Functional galactomannan platform from convenient esterification in imidazolium-based ionic liquids. Polym. Chem. 2012, 3, 538–546. [Google Scholar] [CrossRef]
- Kadokawa, J.; Kato, T.; Setoyama, M.; Yamamoto, K. Preparation of galactomannan-based materials compatibilized with ionic liquids. J. Polym. Environ. 2013, 21, 512–519. [Google Scholar]
- Liu, W.; Budtova, T. Dissolution of unmodified waxy starch in ionic liquid and solution rheological properties. Carbohydr. Polym. 2013, 93, 199–206. [Google Scholar] [CrossRef]
- Fort, D.A.; Swatloski, R.P.; Moyna, P.; Rogers, R.D.; Moyna, G. Use of ionic liquids in the study of fruit ripening by high-resolution 13C NMR spectroscopy: “Green” solvents meet green bananas. Chem. Commun. 2006, 714–716. [Google Scholar] [CrossRef]
- Fukaya, Y.; Sugimoto, A.; Ohno, H. Superior solubility of polysaccharides in low viscosity, polar, and Halogen-free 1,3-dialkylimidazolium formates. Biomacromolecules 2006, 7, 3295–3297. [Google Scholar] [CrossRef]
- Barthell, S.; Heinze, T. Acylation and carbanilation of cellulose in ionic liquids. Green Chem. 2005, 8, 301–306. [Google Scholar] [CrossRef]
- Xu, A.R.; Wang, J.J.; Wang, H.Y. Effects of anionic structure and lithium salts addition on the dissolution of cellulose in 1-butyl-3-methylimidazolium-based ionic liquid solvent systems. Green Chem. 2010, 12, 268–275. [Google Scholar] [CrossRef]
- Zhao, H.; Baker, G.A.; Song, Z.; Olubajo, O.; Crittle, T.; Peters, D. Designing enzyme-Compatible ionic liquids that can dissolve carbohydrates. Green Chem. 2008, 10, 696–705. [Google Scholar] [CrossRef]
- Heinze, T.; Schwikal, K.; Barthel, S. Ionic liquids as reaction medium in cellulose functionalization. Macromol. Biosci. 2005, 5, 520–525. [Google Scholar]
- Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U.S. Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem. 2009, 11, 417–424. [Google Scholar]
- Kosan, B.; Michels, C.; Meister, F. Dissolution and forming of cellulose with ionic liquids. Cellulose 2008, 15, 59–66. [Google Scholar]
- Fukaya, Y.; Hayashi, K.; Wada, M.; Ohno, H. Cellulose disooslution with polar ionic liquids under mild conditions: Required factors for anions. Green Chem. 2008, 10, 44–46. [Google Scholar]
- Heinze, T.; Liebert, T. Unconventional methods in cellulose functionalization. Prog. Polym. Sci. 2001, 26, 1689–1762. [Google Scholar]
- Edgar, K.J.; Arnold, K.M.; Blount, W.W.; Lawniczak, J.E.; Lowman, D.W. Synthesis and properties of cellulose acetoacetates. Macromolecules 1995, 28, 4122–4128. [Google Scholar]
- Liebert, T.F.; Heinze, T.J. Exploitation of reactivity and selectivity in cellulose functionalization using unconventional media for the design of products showing new superstructures. Biomacromolecules 2001, 2, 1124–1132. [Google Scholar] [CrossRef]
- Heinze, T.; Schaller, J. New water soluble cellulose esters synthesized by an effective acylation procedure. Macromol. Chem. Phys. 2000, 201, 1214–1218. [Google Scholar] [CrossRef]
- Regiani, A.M.; Frollini, E.; Marson, G.A.; Arantes, G.M.; El Seoud, O.M. Some aspects of acylation of cellulose under homogeneous solution conditions. J. Polym. Sci. Part A Polym. Chem. 1998, 37, 1357–1363. [Google Scholar]
- Liu, C.F.; Sun, R.C.; Zhang, A.P.; Ren, J.L. Preparation of sugarcane bagasse cellulosic phthalate using an ionic liquid as reaction medium. Carbohydr. Polym. 2007, 68, 17–25. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Cao, Y.; Sang, S.; Zhang, J.; He, J. Synthesis of cellulose benzoates under homogeneous conditions in an ionic liquid. Cellulose 2009, 16, 299–308. [Google Scholar] [CrossRef]
- Schenzel, A.; Hufendiek, A.; Barner-Kowollik, C.; Meier, M.A.R. Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters. Green Chem. 2014, 16, 3266–3271. [Google Scholar]
- Fischer, S.; Voigt, W.; Fischer, K. The behaviour of cellulose in hydrated melts of the composition LiXċn H2O (X = I−, NO3−, CH3COO−, ClO4−). Cellulose 1999, 6, 213–219. [Google Scholar] [CrossRef]
- Fischer, S.; Thummler, K.; Pfeiffer, K.; Liebert, T.; Heinze, T. Evaluation of molten inorganic salt hydrates as reaction medium for the derivatization of cellulose. Cellulose 2002, 9, 293–300. [Google Scholar] [CrossRef]
- Cao, Y.; Meng, T.; Zhang, J.; He, J.; Li, H.; Zhang, Y. Acetone-soluble cellulose acetate prepared by one-step homogeneous acetylation of cornhusk cellulose in an ionic liquid 1-allyl-3-methylimidazolium chloride (AMIMCl). Carbohydr. Polym. 2007, 69, 665–672. [Google Scholar]
- Pabby, A.K.; Rizvi, S.S.H.; Sastre, A.M. Handbook of Membrane Seperations: Chemical, Pharmaceutical, Food and Biotechnological Applications; CRC Press, Taylor & Francis Group: New York, NY, USA, 2002. [Google Scholar]
- Heinämäki, J.T.; Iraizoz Colarte, A.; Nordström, A.J.; Yliruusi, J.K. Comparative evaluation of ammoniated aqueous and organic-solvent-based celluloseester enteric coating systems: A study on free films. Int. J. Pharm. 1994, 109, 9–16. [Google Scholar] [CrossRef]
- Lecomte, F.; Siepmann, J.; Walther, M.; MacRae, R.J.; Bodmeier, R. Blends of enteric and GIT-insoluble polymers used for film coating: physicochemical characterization and drug release patterns. J. Control. Release 2003, 89, 457–471. [Google Scholar] [CrossRef]
- Liu, J.; Williams, R.O. Long-term stability of heat-humidity cured cellulose acetate phthalate coatedbeads. Eur. J. Pharm. Biopharm. 2002, 53, 167–173. [Google Scholar] [CrossRef]
- Lehr, C.M. Lectin-mediated drug delivery: The second generation of bioadhesives. J. Control. Release 2000, 65, 19–29. [Google Scholar] [CrossRef]
- Grabovac, V.; Guggi, D.; Bernkop-Schnurch, A. Comparison of the mucoadhesive properties of various polymers. Adv. Drug Deliv. Rev. 2005, 57, 1713–1723. [Google Scholar] [CrossRef]
- Movassaghian, S.; Barzegar-Jalali, M.; Alaeddini, M.; Hamedyazdan, S.; Afzalifar, R.; Zakeri-Milani, P.; Mohammadi, G.; Adibkia, K. Development of amitriptyline buccoadhesive tablets in management of pain in dental procedures. Drug Dev. Ind. Pharm. 2011, 37, 1–12. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Erdmenger, T.; Haensch, C.; Hoogenboom, R.; Schubert, U. Homogeneous trytilation of cellulose in 1-butyl-3-methylimidazolium chloride. Macromol. Biosci. 2007, 7, 440–445. [Google Scholar] [CrossRef]
- Kohler, S.; Liebert, T.; Heinze, T. Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 4070–4080. [Google Scholar]
- Liebert, T.; Hansch, C.; Heinze, T. Click chemistry with polysaccharides. Macromol. Rapid Commun. 2006, 27, 208–213. [Google Scholar]
- Song, Y.; Sun, Y.; Zhang, X.; Zhou, J.; Zhang, L. Homogeneous quaternization of cellulose in NaOH/urea aqueous solutions as gene carriers. Biomacromolecules 2008, 9, 2259–2264. [Google Scholar]
- Tome, L.C.; Freire, M.G.; Rebelo, L.P.N.; Silvestre, A.J.D.; Neto, J.P.; Marrucho, I.M.; Freire, C.S.R. Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem. 2011, 13, 2464–2470. [Google Scholar]
- Semsarilar, M.; Ladmiral, V.; Perrier, S. Synthesis of a cellulose supported chain transfer agent and its application to RAFT polymerization. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 4361–4365. [Google Scholar]
- Chausan, G.S.; Mahajan, S.; Guleria, L.K. Polymers from renewable sources: Sorption of Cu2+ ions by cellulose graft copolymers. Desalination 2000, 130, 85–88. [Google Scholar]
- Wang, Z.; Zhang, Y.; Jiang, F.; Fang, H.; Wang, Z. Synthesis and characterization of designed cellulose-graft-polyisoprene copolymers. Polym. Chem. 2014, 5, 3379–3388. [Google Scholar] [CrossRef]
- Gupta, K.C.; Khandekar, K. Temperature-responsive cellulose by ceric (IV) ion-initiated graft copolymerization of N-isopropylacrylamide. Biomacromolecules 2003, 4, 758–765. [Google Scholar]
- Waly, A.; Abdel-Mohdi, F.A.; Aly, A.S.; Hebeish, A. Synthesis and characterization of cellulose ion exchanger. II. Pilot scale and utilization in dye-heavy metal removal. J. Appl. Polym. Sci. 1998, 68, 2151–2157. [Google Scholar] [CrossRef]
- El-Salmawi, K.E.; Zaid, M.M.A.; Ibraheim, S.M.; El-Naggar, A.M.; Zahran, A.H. Sorption of dye wastes by poly (vinylalcohol)/poly (carboxymethyl cellulose) blend grafted through a radiation method. J. Appl. Polym. Sci. 2001, 82, 136–142. [Google Scholar] [CrossRef]
- Hebeish, A.; El-Hilw, Z.H. Preparation of DEAE cotton-g-poly (methacrylic acid) for use as ion exchanger. J. Appl. Polym. Sci. 1998, 67, 739–745. [Google Scholar] [CrossRef]
- O-Rak, K.; Ummartyotin, S.; Sain, M.; Manuspiya, H. Covalently grafted carbon nanotubes on bacterial cellulose composite for flexible touch screen application. Mater. Lett. 2013, 107, 247–250. [Google Scholar]
- Guo, Y.; Wang, X.; Shen, Z.; Shu, X.; Sun, R. Preparation of cellulose-graft-poly (ε-caprolactone) nanomicelles by homogeneous ROP in ionic liquid. Carbohydr. Polym. 2013, 92, 77–83. [Google Scholar]
- Hufendiek, A.; Trouillet, V.; Meier, M.A.R.; Barner-Kowollik, C. Temperature responsive cellulose-graft-copolymers via cellulose functionalization in an ionic liquid and RAFT-polymerization. Biomacromolecules 2014. [Google Scholar] [CrossRef]
- Kadokawa, J.; Murakami, M.; Takegawa, A.; Kaneko, Y. Preparation of cellulose–starch composite gel and fibrous material from a mixture of the polysaccharides in ionic liquid. Carbohydr. Polym. 2009, 75, 180–183. [Google Scholar] [CrossRef]
- Turner, M.B.; Spear, S.K.; Holbrey, J.D.; Daly, D.T.; Rogers, R.D. Ionic liquid-reconstituted cellulose composites as solid support matrices for biocatalyst immobilization. Biomacromolecules 2005, 6, 2497–2502. [Google Scholar]
- Hameed, N.; Guo, Q. Blend films of natural wool and cellulose prepared from an ionic liquid. Cellulose 2010, 17, 803–813. [Google Scholar]
- Murakami, M.; Kaneko, Y.; Kadokawa, J. Preparation of cellulose-polymerized ionic liquid composite by in situ polymerization of polymerizable ionic liquid in cellulose-dissolving solution. Carbohydr. Polym. 2007, 69, 378–381. [Google Scholar]
- Kadokawa, J.; Murakami, M.; Kaneko, Y. A facile method for preparation of composites composed of cellulose and a polystyrene-type polymeric ionic liquid using a polymerizable ionic liquid. Compos. Sci. Technol. 2008, 68, 493–498. [Google Scholar] [CrossRef]
- Takegawa, A.; Murakami, M.; Kaneko, Y.; Kadokawa, J. A facile preparation of composites composed of cellulose and polymeric ionic liquids by in situ polymerization of ionic liquids having acrylate groups. Polym. Compos. 2009, 1837–1841. [Google Scholar] [CrossRef]
- Prasad, K.; Mine, S.; Kaneko, Y.; Kadokawa, J. Preparation of cellulose-based ionic porous material compatibilized with polymeric ionic liquid. Polym. Bull. 2010, 64, 341–349. [Google Scholar]
- Isik, M.; Gracia, R.; Kollnus, L.C.; Tome, L.C.; Marrucho, I.M.; Mecerreyes, D. Cholinium-based poly(ionic liquid)s: Synthesis, characterization and application as biocompatible ion gels and cellulose coatings. ACS Macro Lett. 2013, 2, 975–979. [Google Scholar]
- Kadokowa, J.-I.; Murakami, M.; Kaneko, Y. A facile preparation of gel materials from a solution of cellulose in ionic liquid. Carbohydr. Res. 2008, 343, 769–772. [Google Scholar] [CrossRef]
- Matsumi, N.; Nakamura, Y.; Aoi, K.; Watanabe, T.; Mizumo, T.; Ohno, H. Enhanced ionic conduction in organoboron ion gels facilely designed via condensation of cellulose with boric acids in ionic liquids. Polym. J. 2009, 41, 437–441. [Google Scholar]
- Kawasaki, M.; Iwasa, Y. “Cut and stick” ion gels. Nature 2012, 489, 510–511. [Google Scholar] [CrossRef]
- Neouze, M.-A.; Bideau, J.L.; Gaveau, P.; Bellayer, S.; Vioux, A. Ionogels, new materials arrising from the confinement of ionic liquids within silica derived networks. Chem. Mater. 2006, 18, 3931–3936. [Google Scholar] [CrossRef]
- Lunstroot, K.; Driesen, K.; Nockemann, P.; van Hecke, K.; van Meervelt, L.; Görller-Walrand, C.; Binnemans, K.; Bellayer, S.; Viau, L.; Bideau, J.L.; et al. Lanthanide-doped luminescent ionogels. Dalton Trans. 2009, 298–306. [Google Scholar] [Green Version]
- Volland, S.; Gruit, M.; Regnier, T.; Viau, L.; Lavastre, O.; Viaux, A. Encapsulation of Pd(OAc)2 catalyst in an ionic liquid phase confined in silica gels. Application to Heck-Mizoroki reaction. New J. Chem. 2009, 33, 2015–2021. [Google Scholar] [CrossRef]
- Cheminet, N.; Jarrosson, T.; Lere-Porte, J.-P.; Serein-Spirau, F.; Cury, L.; Moreau, J.; Viau, L.; Vioux, A. One pot synthesis of fluorescent π-conjugated materials: Immobilization ofphenylene-ethynylene polyelectrolytes in silica confined ionogels. J. Mater. Chem. 2011, 21, 13588–13593. [Google Scholar] [CrossRef]
- Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012, 41, 3679–3698. [Google Scholar]
- Hough, W.L.; Smiglak, M.; Rodriguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; et al. The third evolution of ionic liquids: active pharmaceutical ingredients. New J. Chem. 2007, 31, 1429–1436. [Google Scholar]
- IONCELL-F-Cellulosic Fibers from Ionic Liquid Solution. Available online: https://www.youtube.com/watch?v=5bhCbGmNfTQ (accessed on 27 May 2014).
- Xu, S.; Zhang, J.; He, A.; Li, J.; Zhang, H.; Han, C.C. Electrospinning of native cellulose from a nonvolatile solvent system. Polymer 2008, 49, 2911–2917. [Google Scholar]
- Quan, S.-L.; Kang, S.-G.; Chin, I.-J. Characterization of cellulose fiber electrospun using ionic liquid. Cellulose 2010, 17, 223–230. [Google Scholar]
- Ahn, Y.; Hu, D.H.; Hong, J.H.; Lee, S.H.; Kim, H.J.; Kim, H. Effect of co-solvent on the spinnability and properties of electrospun cellulose nanofiber. Carbohydr. Polym. 2012, 89, 340–345. [Google Scholar]
- Viswanathan, G.; Murugesan, S.; Pushparaj, V.; Nalamasu, O.; Ajayan, P.M.; Linhardt, R.J. Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 2006, 7, 415–418. [Google Scholar]
- Rahatekar, S.S.; Rasheed, A.; Jain, R.; Zammarano, M.; Koziol, K.K.; Windle, A.H.; Gilman, J.W.; Kumar, S. Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 2009, 50, 4577–4583. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Isik, M.; Sardon, H.; Mecerreyes, D. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials. Int. J. Mol. Sci. 2014, 15, 11922-11940. https://doi.org/10.3390/ijms150711922
Isik M, Sardon H, Mecerreyes D. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials. International Journal of Molecular Sciences. 2014; 15(7):11922-11940. https://doi.org/10.3390/ijms150711922
Chicago/Turabian StyleIsik, Mehmet, Haritz Sardon, and David Mecerreyes. 2014. "Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials" International Journal of Molecular Sciences 15, no. 7: 11922-11940. https://doi.org/10.3390/ijms150711922
APA StyleIsik, M., Sardon, H., & Mecerreyes, D. (2014). Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials. International Journal of Molecular Sciences, 15(7), 11922-11940. https://doi.org/10.3390/ijms150711922