Role of EZH2 Polymorphisms in Esophageal Squamous Cell Carcinoma Risk in Han Chinese Population
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Subjects
Parameters | No. of Cases (%) N = 476 | No. of Controls (%) N = 492 | p Value c |
---|---|---|---|
Age a,b | |||
≤45 | 38 (8.0) | 43 (8.7) | 0.818 |
45–69 | 349 (73.3) | 352 (71.5) | |
≥70 | 89 (18.7) | 97 (19.7) | |
Sex | |||
Female | 135 (28.4) | 154 (31.3) | 0.318 |
Male | 341 (71.6) | 338 (68.7) | |
Alcohol drinking | |||
No | 165 (34.7) | 187 (38.0) | 0.280 |
Yes | 311 (65.3) | 305 (62.0) | |
Cigarette smoking | |||
No | 227 (47.7) | 234 (47.6) | 0.968 |
Yes | 249 (52.3) | 258 (52.4) | |
Family history of cancer | |||
No | 385 (80.9) | 390 (79.3) | 0.530 |
Yes | 91 (19.1) | 102 (20.7) |
2.2. EZH2 Gene 148505302C > T, 2110 + 6A > C and 626 − 394T > C Polymorphisms in ESCC
Genotype | Cases a,
n (%) (N = 476) | Controls a, n (%) (N = 492) | p Value | Crude OR (95% CI) | Adjusted OR (95% CI) b | |
---|---|---|---|---|---|---|
148505302C > T | ||||||
CC | 126 (26.5) | 129 (26.2) | 1 (Reference) | 1 (Reference) | ||
CT | 253 (53.2) | 264 (53.7) | 0.901 | 0.991 (0.855–1.148) | 0.997 (0.867–1.108) | |
TT | 97 (20.3) | 99 (20.1) | 0.987 | 1.002 (0.833–1.204) | 1.028 (0.734–1.455) | |
C allele | 505 (26.1) | 522 (27.0) | ||||
T allele | 447 (23.1) | 462 (23.9) | 0.999 | 1.000 (0.916–1.092) | ||
2110 + 6A > C | ||||||
AA | 133 (27.9) | 141 (28.7) | 1 (Reference) | 1 (Reference) | ||
AC | 242 (50.8) | 231 (46.9) | 0.490 | 1.054 (0.909–1.221) | 1.067 (0.914–1.432) | |
CC | 101 (21.3) | 120 (24.4) | 0.529 | 0.948 (0.802–1.120) | 0.971 (0.889–1.257) | |
A allele | 508 (26.2) | 513 (26.5) | ||||
C allele | 444 (22.9) | 471 (24.3) | 0.589 | 0.976 (0.894–1.066) | ||
626 − 394T > C | ||||||
TT | 112 (23.5) | 147 (29.9) | 1 (Reference) | 1 (Reference) | ||
CT | 260 (54.6) | 267 (54.3) | 0.108 | 1.120 (0.978–1.283) | 1.135 (0.942–1.341) | |
CC | 104 (21.9) | 78 (15.8) | 0.004 | 1.324 (1.086–1.615) | 1.436 (1.286–1.812) | |
T allele | 484 (25.0) | 561 (29.0) | ||||
C allele | 468 (24.2) | 423 (21.8) | 0.006 | 1.131 (1.034–1.236) |
2.3. Relationship between EZH2 Gene 148505302C > T, 2110 + 6A > C and 626 − 394T > C Polymorphism and Known Clinicopathological Variables
Parameters | 148505302C > T | p Value | 2110 + 6A > C | p Value | 626 − 394T > C | p Value | |||
---|---|---|---|---|---|---|---|---|---|
CC + CT (%) | TT (%) | AA + AC (%) | CC (%) | TT + TC (%) | CC (%) | ||||
Gender | |||||||||
Female | 102 (21.4) | 33 (6.9) | 0.166 | 105 (22.1) | 30 (6.3) | 0.736 | 104 (21.8) | 31 (6.5) | 0.711 |
Male | 277 (58.2) | 64 (13.4) | 270 (56.7) | 71 (14.9) | 268 (56.3) | 73 (15.3) | |||
Age | |||||||||
<55 years | 174 (36.6) | 42 (8.8) | 0.645 | 175 (36.8) | 41 (8.6) | 0.277 | 173 (36.3) | 43 (9.0) | 0.350 |
≥55 years | 205 (43.1) | 55 (11.6) | 200 (42.0) | 60 (12.6) | 199 (41.8) | 61 (12.8) | |||
Size | |||||||||
≤5 cm | 175 (36.8) | 45 (9.5) | 0.969 | 178 (37.4) | 42 (8.8) | 0.293 | 183 (38.4) | 37 (7.8) | 0.014 |
>5 cm | 204 (42.9) | 52 (10.9) | 197 (41.4) | 59 (12.4) | 189 (39.7) | 67 (14.1) | |||
Differentiation | |||||||||
Good | 85 (17.9) | 26 (5.5) | 0.313 | 91 (19.1) | 20 (4.2) | 0.223 | 98 (20.6) | 13 (2.7) | 0.001 |
Moderate | 121 (25.4) | 35 (7.4) | 127 (26.7) | 29 (6.1) | 127 (26.7) | 29 (6.1) | |||
Poor | 173 (36.3) | 36 (7.6) | 157 (33.0) | 52 (10.9) | 147 (30.9) | 62 (13.0) | |||
T stage | |||||||||
1 + 2 | 192 (40.3) | 54 (11.3) | 0.378 | 187 (39.3) | 59 (12.4) | 0.127 | 203 (42.6) | 43 (9.0) | 0.017 |
3 + 4 | 187 (39.3) | 43 (9.0) | 188 (39.5) | 42 (8.8) | 169 (35.5) | 61 (12.8) | |||
Lymph node metastasis | |||||||||
Present | 203 (42.6) | 57 (12.0) | 0.359 | 205 (43.1) | 55 (11.6) | 0.970 | 205 (43.1) | 55 (11.6) | 0.687 |
Absent | 176 (37.0) | 40 (8.4) | 170 (35.7) | 46 (9.7) | 167 (35.1) | 49 (10.3) | |||
TNM pathological stage | |||||||||
I and II | 181 (38.0) | 45 (9.5) | 0.810 | 176 (37.0) | 50 (10.5) | 0.646 | 186 (39.1) | 40 (8.4) | 0.037 |
III and IV | 198 (41.6) | 52 (10.9) | 199 (41.8) | 51 (10.7) | 186 (39.1) | 64 (13.4) |
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. DNA Extraction
4.3. Genotyping
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar] [CrossRef]
- Suntharalingam, M. Definitive chemoradiation in the management of locally advanced esophageal cancer. Semin. Radiat. Oncol. 2007, 17, 22–28. [Google Scholar] [CrossRef]
- Rohatgi, P.R.; Swisher, S.G.; Correa, A.M.; Wu, T.T.; Liao, Z.; Komaki, R.; Walsh, G.; Vaporciyan, A.; Lynch, P.M.; Rice, D.C.; et al. Failure patterns correlate with the proportion of residual carcinoma after preoperative chemoradiotherapy for carcinoma of the esophagus. Cancer 2005, 104, 1349–1355. [Google Scholar] [CrossRef]
- Di Fiore, F.; Lecleire, S.; Rigal, O.; Galais, M.P.; Ben Soussan, E.; David, I.; Paillot, B.; Jacob, J.H.; Michel, P. Predictive factors of survival in patients treated with definitive chemoradiotherapy for squamous cell esophageal carcinoma. World J. Gastroenterol. 2006, 12, 4185–4190. [Google Scholar]
- Hu, J.; Nyren, O.; Wolk, A.; Bergstrom, R.; Yuen, J.; Adami, H.O.; Guo, L.; Li, H.; Huang, G.; Xu, X.; et al. Risk factors for oesophageal cancer in northeast China. Int. J. Cancer 1994, 57, 38–46. [Google Scholar]
- Zhou, L.; Zhang, X.; Li, Z.; Zhou, C.; Li, M.; Tang, X.; Lu, C.; Li, H.; Yuan, Q.; Yang, M. Association of a genetic variation in a miR-191 binding site in MDM4 with risk of esophageal squamous cell carcinoma. PLoS One 2013, 8, e64331. [Google Scholar]
- Zhu, M.L.; Shi, T.Y.; Hu, H.C.; He, J.; Wang, M.; Jin, L.; Yang, Y.J.; Wang, J.C.; Sun, M.H.; Chen, H.; et al. Polymorphisms in the ERCC5 gene and risk of esophageal squamous cell carcinoma (ESCC) in Eastern Chinese populations. PLoS One 2012, 7, e41500. [Google Scholar]
- Mathews, L.A.; Crea, F.; Farrar, W.L. Epigenetic gene regulation in stem cells and correlation to cancer. Differentiation 2009, 78, 1–17. [Google Scholar] [CrossRef]
- Simon, J.A.; Lange, C.A. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat. Res. 2008, 647, 21–29. [Google Scholar] [CrossRef]
- Tonini, T.; D’Andrilli, G.; Fucito, A.; Gaspa, L.; Bagella, L. Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements. J. Cell. Physiol. 2008, 214, 295–300. [Google Scholar]
- Cardoso, C.; Mignon, C.; Hetet, G.; Grandchamps, B.; Fontes, M.; Colleaux, L. The human EZH2 gene: Genomic organisation and revised mapping in 7q35 within the critical region for malignant myeloid disorders. Eur. J. Hum. Genet. 2000, 8, 174–180. [Google Scholar] [CrossRef]
- Van Kemenade, F.J.; Raaphorst, F.M.; Blokzijl, T.; Fieret, E.; Hamer, K.M.; Satijn, D.P.; Otte, A.P.; Meijer, C.J. Coexpression of BMI-1 and EZH2 polycomb-group proteins is associated with cycling cells and degree of malignancy in B-cell non-Hodgkin lymphoma. Blood 2001, 97, 3896–3901. [Google Scholar] [CrossRef]
- Matsukawa, Y.; Semba, S.; Kato, H.; Ito, A.; Yanagihara, K.; Yokozaki, H. Expression of the enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric cancer. Cancer Sci. 2006, 97, 484–491. [Google Scholar] [CrossRef]
- Mimori, K.; Ogawa, K.; Okamoto, M.; Sudo, T.; Inoue, H.; Mori, M. Clinical significance of enhancer of zeste homolog 2 expression in colorectal cancer cases. Eur. J. Surg. Oncol. 2005, 31, 376–380. [Google Scholar] [CrossRef]
- Collett, K.; Eide, G.E.; Arnes, J.; Stefansson, I.M.; Eide, J.; Braaten, A.; Aas, T.; Otte, A.P.; Akslen, L.A. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin. Cancer Res. 2006, 12, 1168–1174. [Google Scholar] [CrossRef]
- Bachmann, I.M.; Halvorsen, O.J.; Collett, K.; Stefansson, I.M.; Straume, O.; Haukaas, S.A.; Salvesen, H.B.; Otte, A.P.; Akslen, L.A. EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J. Clin. Oncol. 2006, 24, 268–273. [Google Scholar]
- Kidani, K.; Osaki, M.; Tamura, T.; Yamaga, K.; Shomori, K.; Ryoke, K.; Ito, H. High expression of EZH2 is associated with tumor proliferation and prognosis in human oral squamous cell carcinomas. Oral Oncol. 2009, 45, 39–46. [Google Scholar] [CrossRef]
- Varambally, S.; Dhanasekaran, S.M.; Zhou, M.; Barrette, T.R.; Kumar-Sinha, C.; Sanda, M.G.; Ghosh, D.; Pienta, K.J.; Sewalt, R.G.; Otte, A.P.; et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002, 419, 624–629. [Google Scholar] [CrossRef]
- He, L.R.; Liu, M.Z.; Li, B.K.; Jia, W.H.; Zhang, Y.; Liao, Y.J.; Chen, Y.C.; Zhang, L.J.; Guan, X.Y.; Zeng, Y.X. High expression of EZH2 is associated with tumor aggressiveness and poor prognosis in patients with esophageal squamous cell carcinoma treated with definitive chemoradiotherapy. Int. J. Cancer 2010, 127, 138–147. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.B.; Li, K.; Guo, G.H. Association between EZH2 polymorphisms and colorectal cancer risk in Han Chinese population. Med. Oncol. 2014, 31, 874. [Google Scholar] [CrossRef]
- Valk-Lingbeek, M.E.; Bruggeman, S.W.; van Lohuizen, M. Stem cells and cancer; the polycomb connection. Cell 2004, 118, 409–418. [Google Scholar] [CrossRef]
- Lund, A.H.; van Lohuizen, M. Polycomb complexes and silencing mechanisms. Curr. Opin. Cell Biol. 2004, 16, 239–246. [Google Scholar] [CrossRef]
- Kleer, C.G.; Cao, Q.; Varambally, S.; Shen, R.; Ota, I.; Tomlins, S.A.; Ghosh, D.; Sewalt, R.G.; Otte, A.P.; Hayes, D.F.; et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc. Natl. Acad. Sci. USA 2003, 100, 11606–11611. [Google Scholar] [CrossRef]
- Jacobs, J.J.; Kieboom, K.; Marino, S.; DePinho, R.A.; van Lohuizen, M. The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 1999, 397, 164–168. [Google Scholar] [CrossRef]
- Sasaki, M.; Yamaguchi, J.; Itatsu, K.; Ikeda, H.; Nakanuma, Y. Over-expression of polycomb group protein EZH2 relates to decreased expression of p16 INK4a in cholangiocarcinogenesis in hepatolithiasis. J. Pathol. 2008, 215, 175–183. [Google Scholar]
- Crea, F.; Fornaro, L.; Paolicchi, E.; Masi, G.; Frumento, P.; Loupakis, F.; Salvatore, L.; Cremolini, C.; Schirripa, M.; Graziano, F. An EZH2 polymorphism is associated with clinical outcome in metastatic colorectal cancer patients. Ann. Oncol. 2012, 23, 1207–1213. [Google Scholar] [CrossRef]
- Yoon, K.A.; Gil, H.J.; Han, J.; Park, J.; Lee, J.S. Genetic polymorphisms in the polycomb group gene EZH2 and the risk of lung cancer. J. Thorac. Oncol. 2010, 5, 10–16. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, L.; Hao, F.; Wang, G.; Fan, P.; Liu, Y. Intron-1 rs3761548 is related to the defective transcription of Foxp3 in psoriasis through abrogating E47/c-Myb binding. J. Cell. Mol. Med. 2010, 14, 226–241. [Google Scholar] [CrossRef]
- Zhang, W.; Winder, T.; Ning, Y.; Pohl, A.; Yang, D.; Kahn, M.; Lurje, G.; Labonte, M.; Wilson, P.; Gordon, M. A let-7 microRNA-binding site polymorphism in 3'-untranslated region of KRAS gene predicts response in wild-type KRAS patients with metastatic colorectal cancer treated with cetuximab monotherapy. Ann. Oncol. 2011, 22, 104–109. [Google Scholar] [CrossRef]
- Lipkin, S.M.; Chao, E.C.; Moreno, V.; Rozek, L.S.; Rennert, H.; Pinchev, M.; Dizon, D.; Rennert, G.; Kopelovich, L.; Gruber, S.B. Genetic variation in 3-hydroxy-3-methylglutaryl CoA reductase modifies the chemopreventive activity of statins for colorectal cancer. Cancer Prev. Res. 2010, 3, 597–603. [Google Scholar] [CrossRef]
- Fornaro, L.; Crea, F.; Masi, G.; Paolicchi, E.; Loupakis, F.; Graziano, F.; Salvatore, L.; Ronzoni, M.; Ricci, V.; Cremolini, C.; et al. EZH2 polymorphism and benefit from bevacizumab in colorectal cancer: Another piece to the puzzle. Ann. Oncol. 2012, 23, 1370–1371. [Google Scholar]
- Edge, S.B. American Joint Committee on Cancer. In AJCC Cancer Staging Manual, 7th ed.; Springer: New York, NY, USA, 2010; p. 648. [Google Scholar]
- Nazir, M.; Kayani, M.R.; Malik, F.A.; Masood, N.; Kayani, M.A. Lack of germ line changes in KISS1 and KAI1 genes in sporadic head and neck cancer patients of Pakistani origin. Asian Pac. J. Cancer Prev. 2011, 12, 2767–2771. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Ma, Z.-B.; Guo, G.-H.; Niu, Q.; Shi, N. Role of EZH2 Polymorphisms in Esophageal Squamous Cell Carcinoma Risk in Han Chinese Population. Int. J. Mol. Sci. 2014, 15, 12688-12697. https://doi.org/10.3390/ijms150712688
Ma Z-B, Guo G-H, Niu Q, Shi N. Role of EZH2 Polymorphisms in Esophageal Squamous Cell Carcinoma Risk in Han Chinese Population. International Journal of Molecular Sciences. 2014; 15(7):12688-12697. https://doi.org/10.3390/ijms150712688
Chicago/Turabian StyleMa, Zhen-Bin, Guang-Hong Guo, Qiong Niu, and Ning Shi. 2014. "Role of EZH2 Polymorphisms in Esophageal Squamous Cell Carcinoma Risk in Han Chinese Population" International Journal of Molecular Sciences 15, no. 7: 12688-12697. https://doi.org/10.3390/ijms150712688
APA StyleMa, Z. -B., Guo, G. -H., Niu, Q., & Shi, N. (2014). Role of EZH2 Polymorphisms in Esophageal Squamous Cell Carcinoma Risk in Han Chinese Population. International Journal of Molecular Sciences, 15(7), 12688-12697. https://doi.org/10.3390/ijms150712688