Iodine Excess as an Environmental Risk Factor for Autoimmune Thyroid Disease
Abstract
:1. Introduction
1.1. Iodine as an Essential Element for Thyroid Hormone
1.2. Global Prevention and Elimination of Iodine Deficiency
1.3. Iodine Excess as Another Concern
2. Iodine: An Abundant and Easily Accessible Environmental Risk Factor for ATD
2.1. Excessive Iodine Exposure in the Environment
2.2. Excess Iodine Is a Recognized Environmental Factor for Autoimmune Thyroiditis
3. Mechanisms Involved in Iodine-Induced Autoimmune Thyroiditis
3.1. Stimulation of Lymphocytic Response in Thyroid by Excess Iodine
3.2. Induction of Oxidative Thyroid Tissue Injury by Excess Iodine
3.3. Influence of Iodine on Thyroglobulin Auto-Antigenicity
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Heyland, A.; Moroz, L.L. Cross-kingdom hormonal signaling: An insight from thyroid hormone functions in marine larvae. J. Exp. Biol. 2005, 208, 4355–4361. [Google Scholar] [CrossRef]
- Hulbert, A.J. Thyroid hormones and their effects: A new perspective. Biol. Rev. Camb. Philos. Soc. 2000, 75, 519–631. [Google Scholar] [CrossRef]
- Everett, L.A.; Glaser, B.; Beck, J.C.; Idol, J.R.; Buchs, A.; Heyman, M.; Adawi, F.; Hazani, E.; Nassir, E.; Baxevanis, A.D.; et al. Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PDS). Nat. Genet. 1997, 17, 411–422. [Google Scholar] [CrossRef]
- Royaux, I.E.; Suzuki, K.; Mori, A.; Katoh, R.; Everett, L.A.; Kohn, L.D.; Green, E.D. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 2000, 141, 839–845. [Google Scholar] [CrossRef]
- Yoshida, A.; Hisatome, I.; Taniguchi, S.; Sasaki, N.; Yamamoto, Y.; Miake, J.; Fukui, H.; Shimizu, H.; Okamura, T.; Okura, T.; et al. Mechanism of iodide/chloride exchange by pendrin. Endocrinology 2004, 145, 4301–4308. [Google Scholar] [CrossRef]
- Yoshida, A.; Taniguchi, S.; Hisatome, I.; Royaux, I.E.; Green, E.D.; Kohn, L.D.; Suzuki, K. Pendrin is an iodide-specific apical porter responsible for iodide efflux from thyroid cells. J. Clin Endocrinol. Metab. 2002, 87, 3356–3361. [Google Scholar]
- Yoshida, A.; Hattori, K.; Hisatome, I.; Taniguchi, S.; Ueta, Y.; Hukui, H.; Santo, Y.; Igawa, O.; Shigemasa, C.; Kosugi, S.; et al. A TSH/dibutyryl cAMP activated Cl−/I− channel in FRTL-5 cells. Biochem. Biophys. Res. Commun. 1999, 259, 631–635. [Google Scholar] [CrossRef]
- Robbins, J.; Rall, J.E.; Gorden, P. The thyroid and iodine metabolism. In Duncan’s Diseases of Metabolism; Bondy, P.K., Rosenberg, L.E., Eds.; Saunders: Philadelphia, PA, USA, 1974; pp. 1009–1104. [Google Scholar]
- Koibuchi, N.; Chin, W.W. Thyroid hormone action and brain development. Trends Endocrinol. Metab. 2000, 11, 123–128. [Google Scholar] [CrossRef]
- Delange, F. The disorders induced by iodine deficiency. Thyroid 1994, 4, 107–128. [Google Scholar] [CrossRef]
- Pearce, E.N.; Andersson, M.; Zimmermann, M.B. Global iodine nutrition: Where do we stand in 2013? Thyroid 2013, 23, 523–528. [Google Scholar] [CrossRef]
- Zimmermann, M.B. Iodine deficiency and excess in children: Worldwide status in 2013. Endocr. Pract. 2013, 19, 839–846. [Google Scholar] [CrossRef]
- Zimmermann, M.B.; Andersson, M. Update on iodine status worldwide. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 382–387. [Google Scholar] [CrossRef]
- Teas, J.; Pino, S.; Critchley, A.; Braverman, L.E. Variability of iodine content in common commercially available edible seaweeds. Thyroid 2004, 14, 836–841. [Google Scholar] [CrossRef]
- Zava, T.T.; Zava, D.T. Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis. Thyroid Res. 2011, 4, 14:1–14:7. [Google Scholar]
- Matsubayashi, S.; Mukuta, T.; Watanabe, H.; Fuchigami, H.; Taniguchi, J.; Chinen, M.; Ninomiya, H.; Sasaki, H. Iodine-induced hypothyroidism as a result of excessive intake of confectionery made with tangle weed, Kombu, used as a low calorie food during a bulimic period in a patient with anorexia nervosa. Eat. Weight Disord. 1998, 3, 50–52. [Google Scholar] [CrossRef]
- Michikawa, T.; Inoue, M.; Shimazu, T.; Sawada, N.; Iwasaki, M.; Sasazuki, S.; Yamaji, T.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Seaweed consumption and the risk of thyroid cancer in women: The Japan Public Health Center-based Prospective Study. Eur. J. Cancer Prev. 2012, 21, 254–260. [Google Scholar] [CrossRef]
- Tsubota-Utsugi, M.; Imai, E.; Nakade, M.; Matsumoto, T.; Tsuboyama-Kasaoka, N.; Nishi, N.; Tsubono, Y. Evaluation of the prevalence of iodine intakes above the tolerable upper intake level from four 3-day dietary records in a Japanese population. J. Nutr. Sci. Vitaminol. Tokyo 2013, 59, 310–316. [Google Scholar] [CrossRef]
- Lv, S.; Wang, Y.; Xu, D.; Rutherford, S.; Chong, Z.; Du, Y.; Jia, L.; Zhao, J. Drinking water contributes to excessive iodine intake among children in Hebei, China. Eur. J. Clin. Nutr. 2013, 67, 961–965. [Google Scholar] [CrossRef]
- Sui, H.X.; Li, J.W.; Mao, W.F.; Zhu, J.H.; He, Y.N.; Song, X.Y.; Ma, N.; Zhang, L.; Liu, S.N.; Liu, Z.P.; et al. Dietary iodine intake in the Chinese population. Biomed. Environ. Sci. 2011, 24, 617–623. [Google Scholar]
- Kassim, I.A.; Moloney, G.; Busili, A.; Nur, A.Y.; Paron, P.; Jooste, P.; Gadain, H.; Seal, A.J. Iodine intake in Somalia is excessive and associated with the source of household drinking water. J. Nutr. 2014, 144, 375–381. [Google Scholar] [CrossRef]
- Henjum, S.; Barikmo, I.; Gjerlaug, A.K.; Mohamed-Lehabib, A.; Oshaug, A.; Strand, T.A.; Torheim, L.E. Endemic goitre and excessive iodine in urine and drinking water among Saharawi refugee children. Public Health Nutr. 2010, 13, 1472–1477. [Google Scholar] [CrossRef]
- Andersen, S.; Guan, H.; Teng, W.; Laurberg, P. Speciation of iodine in high iodine groundwater in china associated with goitre and hypothyroidism. Biol. Trace Elem. Res. 2009, 128, 95–103. [Google Scholar] [CrossRef]
- Georgitis, W.J.; McDermott, M.T.; Kidd, G.S. An iodine load from water-purification tablets alters thyroid function in humans. Mil. Med. 1993, 158, 794–797. [Google Scholar]
- Zhao, J.; Chen, Z.; Maberly, G. Iodine-rich drinking water of natural origin in China. Lancet 1998, 352, 2024. [Google Scholar] [CrossRef]
- Li, S.; Zheng, Q.; Xu, J.; Gorstein, J.; Wang, H.; Dong, H. Iodine excess or not: Analysis on the necessity of reducing the iodine content in edible salt based on the national monitoring results. Asia Pac. J. Clin. Nutr. 2011, 20, 501–506. [Google Scholar]
- Arrizabalaga, J.J.; Larranaga, N.; Espada, M.; Amiano, P.; Bidaurrazaga, J.; Latorre, K.; Gorostiza, E. Changes in iodine nutrition status in schoolchildren from the Basque Country. Endocrinol. Nutr. 2012, 59, 474–484. [Google Scholar] [CrossRef]
- Franke, K.; Meyer, U.; Wagner, H.; Flachowsky, G. Influence of various iodine supplementation levels and two different iodine species on the iodine content of the milk of cows fed rapeseed meal or distillers dried grains with solubles as the protein source. J. Dairy Sci. 2009, 92, 4514–4523. [Google Scholar] [CrossRef]
- Launer, P.; Richter, O. [Iodine concentration in the blood serum of milk cows from Saxony as well as in cows’ milk and milk products (baby food)]. Berl. Munch. Tierarztl. Wochenschr. 2005, 118, 502–508. [Google Scholar]
- Perrine, C.G.; Sullivan, K.M.; Flores, R.; Caldwell, K.L.; Grummer-Strawn, L.M. Intakes of dairy products and dietary supplements are positively associated with iodine status among U.S. children. J. Nutr. 2013, 143, 1155–1160. [Google Scholar] [CrossRef]
- Garcia-Solis, P.; Solis, S.J.; Garcia-Gaytan, A.C.; Reyes-Mendoza, V.A.; Robles-Osorio, L.; Villarreal-Rios, E.; Leal-Garcia, L.; Hernandez-Montiel, H.L. Iodine nutrition in elementary state schools of Queretaro, Mexico: Correlations between urinary iodine concentration with global nutrition status and social gap index. Arq. Bras. Endocrinol. Metabol. 2013, 57, 473–482. [Google Scholar] [CrossRef]
- Kassim, I.A.; Ruth, L.J.; Creeke, P.I.; Gnat, D.; Abdalla, F.; Seal, A.J. Excessive iodine intake during pregnancy in Somali refugees. Matern. Child Nutr. 2012, 8, 49–56. [Google Scholar] [CrossRef]
- Li, S.; Fan, Y.; Chen, H.; Li, X.; Wang, J.; Gu, Y.; Li, S.; Li, M.; Wang, J.; Shu, Z. Is the current iodine content in edible salt appropriate for eliminating iodine deficiency in China. Asia Pac. J. Clin. Nutr. 2010, 19, 231–235. [Google Scholar]
- Gatseva, P.D.; Argirova, M.D. Benefits and risks from the national strategy for improvement of iodine nutrition in Bulgaria: Study on schoolchildren living in a rural area. Public Health 2009, 123, 456–458. [Google Scholar] [CrossRef]
- Camargo, R.Y.; Tomimori, E.K.; Neves, S.C.; Rubio, I.G.S.; Galrao, A.L.; Knobel, M.; Medeiros-Neto, G. Thyroid and the environment: Exposure to excessive nutritional iodine increases the prevalence of thyroid disorders in Sao Paulo, Brazil. Eur. J. Endocrinol. 2008, 159, 293–299. [Google Scholar] [CrossRef]
- Silva, K.D.; Munasinghe, D.L. Urinary iodine concentration of pregnant women and female adolescents as an indicator of excessive iodine intake in Sri Lanka. Food Nutr. Bull. 2006, 27, 12–18. [Google Scholar]
- Assey, V.D.; Peterson, S.; Kimboka, S.; Ngemera, D.; Mgoba, C.; Ruhiye, D.M.; Ndossi, G.D.; Greiner, T.; Tylleskar, T. Tanzania national survey on iodine deficiency: Impact after twelve years of salt iodation. BMC Public Health 2009, 9. [Google Scholar] [CrossRef] [Green Version]
- Delange, F.; de Benoist, B.; Alnwick, D. Risks of iodine-induced hyperthyroidism after correction of iodine deficiency by iodized salt. Thyroid 1999, 9, 545–556. [Google Scholar]
- Izzeldin, H.S.; Crawford, M.A.; Jooste, P.L. Population living in the Red Sea State of Sudan may need urgent intervention to correct the excess dietary iodine intake. Nutr. Health 2007, 18, 333–341. [Google Scholar] [CrossRef]
- Seal, A.J.; Creeke, P.I.; Gnat, D.; Abdalla, F.; Mirghani, Z. Excess dietary iodine intake in long-term African refugees. Public Health Nutr. 2006, 9, 35–39. [Google Scholar]
- Leung, A.M.; Pearce, E.N.; Braverman, L.E. Iodine content of prenatal multivitamins in the United States. N. Engl. J. Med. 2009, 360, 939–940. [Google Scholar] [CrossRef]
- Connelly, K.J.; Boston, B.A.; Pearce, E.N.; Sesser, D.; Snyder, D.; Braverman, L.E.; Pino, S.; LaFranchi, S.H. Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. J. Pediatr. 2012, 161, 760–762. [Google Scholar] [CrossRef]
- Minelli, R.; Gardini, E.; Bianconi, L.; Salvi, M.; Roti, E. Subclinical hypothyroidism, overt thyrotoxicosis and subclinical hypothyroidism: The subsequent phases of thyroid function in a patient chronically treated with amiodarone. J. Endocrinol. Investig. 1992, 15, 853–855. [Google Scholar] [CrossRef]
- Sato, K.; Yamazaki, K.; Kanaji, Y.; Ohnishi, S.; Kasanuki, H.; Demura, H. Amiodarone-induced thyrotoxicosis associated with thyrotropin receptor antibody. Thyroid 1998, 8, 1123–1126. [Google Scholar] [CrossRef]
- Padovani, R.P.; Kasamatsu, T.S.; Nakabashi, C.C.; Camacho, C.P.; Andreoni, D.M.; Malouf, E.Z.; Marone, M.M.; Maciel, R.M.; Biscolla, R.P. One month is sufficient for urinary iodine to return to its baseline value after the use of water-soluble iodinated contrast agents in post-thyroidectomy patients requiring radioiodine therapy. Thyroid 2012, 22, 926–930. [Google Scholar] [CrossRef]
- Alkhuja, S.; Pyram, R.; Odeyemi, O. In the eye of the storm: Iodinated contrast medium induced thyroid storm presenting as cardiopulmonary arrest. Heart Lung 2013, 42, 267–269. [Google Scholar] [CrossRef]
- Gartner, W.; Weissel, M. Do iodine-containing contrast media induce clinically relevant changes in thyroid function parameters of euthyroid patients within the first week? Thyroid 2004, 14, 521–524. [Google Scholar] [CrossRef]
- Koroscil, T.M.; Pelletier, P.R.; Slauson, J.W.; Hennessey, J. Short-term effects of coronary angiographic contrast agents on thyroid function. Endocr. Pract. 1997, 3, 219–221. [Google Scholar] [CrossRef]
- Ozkan, S.; Oysu, A.S.; Kayatas, K.; Demirtunc, R.; Eren, M.; Uslu, H.; Altuntas, Y. Thyroid functions after contrast agent administration for coronary angiography: A prospective observational study in euthyroid patients. Anadolu Kardiyol. Derg. 2013, 13, 363–369. [Google Scholar]
- Rhee, C.M.; Bhan, I.; Alexander, E.K.; Brunelli, S.M. Association between iodinated contrast media exposure and incident hyperthyroidism and hypothyroidism. Arch. Intern. Med. 2012, 172, 153–159. [Google Scholar] [CrossRef]
- Ader, A.W.; Paul, T.L.; Reinhardt, W.; Safran, M.; Pino, S.; McArthur, W.; Braverman, L.E. Effect of mouth rinsing with two polyvinylpyrrolidone-iodine mixtures on iodine absorption and thyroid function. J. Clin. Endocrinol. Metab. 1988, 66, 632–635. [Google Scholar] [CrossRef]
- Linder, N.; Davidovitch, N.; Reichman, B.; Kuint, J.; Lubin, D.; Meyerovitch, J.; Sela, B.A.; Dolfin, Z.; Sack, J. Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. J. Pediatr. 1997, 131, 434–439. [Google Scholar] [CrossRef]
- Nobukuni, K.; Kawahara, S. Thyroid function in nurses: The influence of povidone-iodine hand washing and gargling. Dermatology 2002, 204 (Suppl. 1), 99–102. [Google Scholar] [CrossRef]
- Duntas, L.H. Environmental factors and autoimmune thyroiditis. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 454–460. [Google Scholar] [CrossRef]
- Alsanosy, R.M.; Gaffar, A.M.; Khalafalla, H.E.; Mahfouz, M.S.; Zaid, A.N.; Bani, I.A. Current iodine nutrition status and progress toward elimination of iodine deficiency disorders in Jazan, Saudi Arabia. BMC Public Health 2012, 12. [Google Scholar] [CrossRef]
- Alsayed, A.; Gad, A.M.; Abdel-Baset, H.; Abdel-Fattah, A.; Ahmed, A.; Azab, A. Excess urinary iodine is associated with autoimmune subclinical hypothyroidism among Egyptian women. Endocr. J. 2008, 55, 601–605. [Google Scholar] [CrossRef]
- Bastemir, M.; Emral, R.; Erdogan, G.; Gullu, S. High prevalence of thyroid dysfunction and autoimmune thyroiditis in adolescents after elimination of iodine deficiency in the Eastern Black Sea Region of Turkey. Thyroid 2006, 16, 1265–1271. [Google Scholar] [CrossRef]
- Laurberg, P.; Cerqueira, C.; Ovesen, L.; Rasmussen, L.B.; Perrild, H.; Andersen, S.; Pedersen, I.B.; Carle, A. Iodine intake as a determinant of thyroid disorders in populations. Best. Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 13–27. [Google Scholar] [CrossRef]
- Teng, X.; Shan, Z.; Chen, Y.; Lai, Y.; Yu, J.; Shan, L.; Bai, X.; Li, Y.; Li, N.; Li, Z.; et al. More than adequate iodine intake may increase subclinical hypothyroidism and autoimmune thyroiditis: A cross-sectional study based on two Chinese communities with different iodine intake levels. Eur. J. Endocrinol. 2011, 164, 943–950. [Google Scholar] [CrossRef]
- Allen, E.M.; Appel, M.C.; Braverman, L.E. The effect of iodide ingestion on the development of spontaneous lymphocytic thyroiditis in the diabetes-prone BB/W rat. Endocrinology 1986, 118, 1977–1981. [Google Scholar] [CrossRef]
- Bagchi, N.; Brown, T.R.; Urdanivia, E.; Sundick, R.S. Induction of autoimmune thyroiditis in chickens by dietary iodine. Science 1985, 230, 325–327. [Google Scholar]
- Sundick, R.S.; Bagchi, N.; Brown, T.R. The role of iodine in thyroid autoimmunity: From chickens to humans: A review. Autoimmunity 1992, 13, 61–68. [Google Scholar] [CrossRef]
- Allen, E.M.; Braverman, L.E. The effect of iodine on lymphocytic thyroiditis in the thymectomized buffalo rat. Endocrinology 1990, 127, 1613–1616. [Google Scholar] [CrossRef]
- Rasooly, L.; Burek, C.L.; Rose, N.R. Iodine-induced autoimmune thyroiditis in NOD-H-2h4 mice. Clin. Immunol. Immunopathol. 1996, 81, 287–292. [Google Scholar] [CrossRef]
- Braley-Mullen, H.; Sharp, G.C.; Medling, B.; Tang, H. Spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Autoimmun. 1999, 12, 157–165. [Google Scholar] [CrossRef]
- Teng, X.; Shan, Z.; Teng, W.; Fan, C.; Wang, H.; Guo, R. Experimental study on the effects of chronic iodine excess on thyroid function, structure, and autoimmunity in autoimmune-prone NOD.H-2h4 mice. Clin. Exp. Med. 2009, 9, 51–59. [Google Scholar] [CrossRef]
- Wolff, J. Iodide goiter and the pharmacologic effects of excess iodide. Am. J. Med. 1969, 47, 101–124. [Google Scholar] [CrossRef]
- Wolff, J.; Chaikoff, I.L.; Goldberg, R.C.; Meier, J.R. The temporary nature of the inhibitory action of excess iodine on organic iodine synthesis in the normal thyroid. Endocrinology 1949, 45, 504–513. [Google Scholar] [CrossRef]
- Schuppert, F.; Taniguchi, S.; Schroder, S.; Dralle, H.; von zur Muhlen, A.; Kohn, L.D. In vivo and in vitro evidence for iodide regulation of major histocompatibility complex class I and class II expression in Graves’ disease. J. Clin. Endocrinol. Metab. 1996, 81, 3622–3628. [Google Scholar]
- Schuppert, F.; Ehrenthal, D.; Frilling, A.; Suzuki, K.; Napolitano, G.; Kohn, L.D. Increased major histocompatibility complex (MHC) expression in nontoxic goiters is associated with iodide depletion, enhanced ability of the follicular thyroglobulin to increase MHC gene expression, and thyroid autoantibodies. J. Clin. Endocrinol. Metab. 2000, 85, 858–867. [Google Scholar] [CrossRef]
- Bonita, R.E.; Rose, N.R.; Rasooly, L.; Caturegli, P.; Burek, C.L. Kinetics of mononuclear cell infiltration and cytokine expression in iodine-induced thyroiditis in the NOD-H2h4 mouse. Exp. Mol. Pathol. 2003, 74, 1–12. [Google Scholar] [CrossRef]
- Xue, H.; Wang, W.; Shan, Z.; Li, Y.; Li, Y.; Teng, X.; Gao, Y.; Fan, C.; Teng, W. Dynamic changes of CD4+CD25+ regulatory T cells in NOD.H-2h4 mice with iodine-induced autoimmune thyroiditis. Biol. Trace Elem. Res. 2011, 143, 292–301. [Google Scholar] [CrossRef]
- Hutchings, P.R.; Cooke, A.; Dawe, K.; Champion, B.R.; Geysen, M.; Valerio, R.; Roitt, I.M. A thyroxine-containing peptide can induce murine experimental autoimmune thyroiditis. J. Exp. Med. 1992, 175, 869–872. [Google Scholar] [CrossRef]
- Yu, S.; Dunn, R.; Kehry, M.R.; Braley-Mullen, H. B cell depletion inhibits spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Immunol. 2008, 180, 7706–7713. [Google Scholar] [CrossRef]
- Yu, S.; Medling, B.; Yagita, H.; Braley-Mullen, H. Characteristics of inflammatory cells in spontaneous autoimmune thyroiditis of NOD.H-2h4 mice. J. Autoimmun. 2001, 16, 37–46. [Google Scholar] [CrossRef]
- Mooij, P.; de Wit, H.J.; Drexhage, H.A. An excess of dietary iodine accelerates the development of a thyroid-associated lymphoid tissue in autoimmune prone BB rats. Clin. Immunol. Immunopathol. 1993, 69, 189–198. [Google Scholar] [CrossRef]
- Sharma, R.B.; Alegria, J.D.; Talor, M.V.; Rose, N.R.; Caturegli, P.; Burek, C.L. Iodine and IFN-γ synergistically enhance intercellular adhesion molecule 1 expression on NOD.H2h4 mouse thyrocytes. J. Immunol. 2005, 174, 7740–7745. [Google Scholar] [CrossRef]
- Yamazaki, K.; Tanigawa, K.; Suzuki, K.; Yamada, E.; Yamada, T.; Takano, K.; Obara, T.; Sato, K. Iodide-induced chemokines and genes related to immunological function in cultured human thyroid follicles in the presence of thyrotropin. Thyroid 2010, 20, 67–76. [Google Scholar] [CrossRef]
- Yamazaki, K.; Yamada, E.; Kanaji, Y.; Yanagisawa, T.; Kato, Y.; Takano, K.; Obara, T.; Sato, K. Genes regulated by thyrotropin and iodide in cultured human thyroid follicles: Analysis by cDNA microarray. Thyroid 2003, 13, 149–158. [Google Scholar] [CrossRef]
- Horie, I.; Abiru, N.; Nagayama, Y.; Kuriya, G.; Saitoh, O.; Ichikawa, T.; Iwakura, Y.; Eguchi, K. T helper type 17 immune response plays an indispensable role for development of iodine-induced autoimmune thyroiditis in nonobese diabetic-H2h4 mice. Endocrinology 2009, 150, 5135–5142. [Google Scholar] [CrossRef]
- Yu, S.; Sharp, G.C.; Braley-Mullen, H. Dual roles for IFN-γ, but not for IL-4, in spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Immunol. 2002, 169, 3999–4007. [Google Scholar] [CrossRef]
- Ellis, J.S.; Hong, S.H.; Zaghouani, H.; Braley-Mullen, H. Reduced effectiveness of CD4+Foxp3+ regulatory T cells in CD28-deficient NOD.H-2h4 mice leads to increased severity of spontaneous autoimmune thyroiditis. J. Immunol. 2013, 191, 4940–4949. [Google Scholar] [CrossRef]
- Yu, S.; Fang, Y.; Sharp, G.C.; Braley-Mullen, H. Transgenic expression of TGF-β on thyrocytes inhibits development of spontaneous autoimmune thyroiditis and increases regulatory T cells in thyroids of NOD.H-2h4 mice. J. Immunol. 2010, 184, 5352–5359. [Google Scholar] [CrossRef]
- Nagayama, Y.; Horie, I.; Saitoh, O.; Nakahara, M.; Abiru, N. CD4+CD25+ naturally occurring regulatory T cells and not lymphopenia play a role in the pathogenesis of iodide-induced autoimmune thyroiditis in NOD-H2h4 mice. J. Autoimmun. 2007, 29, 195–202. [Google Scholar] [CrossRef]
- Many, M.C.; Maniratunga, S.; Varis, I.; Dardenne, M.; Drexhage, H.A.; Denef, J.F. Two-step development of Hashimoto-like thyroiditis in genetically autoimmune prone non-obese diabetic mice: Effects of iodine-induced cell necrosis. J. Endocrinol. 1995, 147, 311–320. [Google Scholar] [CrossRef]
- Yu, X.; Li, L.; Li, Q.; Zang, X.; Liu, Z. TRAIL and DR5 promote thyroid follicular cell apoptosis in iodine excess-induced experimental autoimmune thyroiditis in NOD mice. Biol. Trace Elem. Res. 2011, 143, 1064–1076. [Google Scholar] [CrossRef]
- Bagchi, N.; Brown, T.R.; Sundick, R.S. Thyroid cell injury is an initial event in the induction of autoimmune thyroiditis by iodine in obese strain chickens. Endocrinology 1995, 136, 5054–5060. [Google Scholar]
- Burek, C.L.; Rose, N.R. Autoimmune thyroiditis and ROS. Autoimmun. Rev. 2008, 7, 530–537. [Google Scholar] [CrossRef]
- Sharma, R.; Traore, K.; Trush, M.A.; Rose, N.R.; Burek, C.L. Intracellular adhesion molecule-1 up-regulation on thyrocytes by iodine of non-obese diabetic.H2h4 mice is reactive oxygen species-dependent. Clin. Exp. Immunol. 2008, 152, 13–20. [Google Scholar] [CrossRef]
- Duthoit, C.; Estienne, V.; Delom, F.; Durand-Gorde, J.M.; Mallet, B.; Carayon, P.; Ruf, J. Production of immunoreactive thyroglobulin C-terminal fragments during thyroid hormone synthesis. Endocrinology 2000, 141, 2518–2525. [Google Scholar] [CrossRef]
- Duthoit, C.; Estienne, V.; Giraud, A.; Durand-Gorde, J.M.; Rasmussen, A.K.; Feldt-Rasmussen, U.; Carayon, P.; Ruf, J. Hydrogen peroxide-induced production of a 40 kDa immunoreactive thyroglobulin fragment in human thyroid cells: The onset of thyroid autoimmunity? Biochem. J. 2001, 360, 557–562. [Google Scholar] [CrossRef]
- Basalaeva, N.L.; Sychugov, G.V.; Strizhikov, V.K.; Mikhailova, E.N. Iodine concentration and signs of apoptosis in the thyroid and pituitary of female rats after different single doses of potassium iodide. Endocr. Regul. 2011, 45, 183–190. [Google Scholar] [CrossRef]
- Foley, T.P., Jr. The relationship between autoimmune thyroid disease and iodine intake: A review. Endokrynol. Pol. 1992, 43 (Suppl. 1), 53–69. [Google Scholar]
- Poncin, S.; Gerard, A.C.; Boucquey, M.; Senou, M.; Calderon, P.B.; Knoops, B.; Lengele, B.; Many, M.C.; Colin, I.M. Oxidative stress in the thyroid gland: From harmlessness to hazard depending on the iodine content. Endocrinology 2008, 149, 424–433. [Google Scholar] [CrossRef]
- Xia, Y.; Qu, W.; Zhao, L.N.; Han, H.; Yang, X.F.; Sun, X.F.; Hao, L.P.; Xu, J. Iodine excess induces hepatic steatosis through disturbance of thyroid hormone metabolism involving oxidative stress in BALB/c mice. Biol. Trace Elem. Res. 2013, 154, 103–110. [Google Scholar] [CrossRef]
- Many, M.C.; Mestdagh, C.; van den Hove, M.F.; Denef, J.F. In vitro study of acute toxic effects of high iodide doses in human thyroid follicles. Endocrinology 1992, 131, 621–630. [Google Scholar]
- Mahmoud, I.; Colin, I.; Many, M.C.; Denef, J.F. Direct toxic effect of iodide in excess on iodine-deficient thyroid glands: Epithelial necrosis and inflammation associated with lipofuscin accumulation. Exp. Mol. Pathol. 1986, 44, 259–271. [Google Scholar] [CrossRef]
- Kawashima, A.; Tanigawa, K.; Akama, T.; Yoshihara, A.; Ishii, N.; Suzuki, K. Innate immune activation and thyroid autoimmunity. J. Clin. Endocrinol. Metab. 2011, 96, 3661–3671. [Google Scholar] [CrossRef]
- Kawashima, A.; Tanigawa, K.; Akama, T.; Wu, H.; Sue, M.; Yoshihara, A.; Ishido, Y.; Kobiyama, K.; Takeshita, F.; Ishii, K.J.; et al. Fragments of genomic DNA released by injured cells activate innate immunity and suppress endocrine function in the thyroid. Endocrinology 2011, 152, 1702–1712. [Google Scholar] [CrossRef]
- Kawashima, A.; Yamazaki, K.; Hara, T.; Akama, T.; Yoshihara, A.; Sue, M.; Tanigawa, K.; Wu, H.; Ishido, Y.; Takeshita, F.; et al. Demonstration of innate immune responses in the thyroid gland: Potential to sense danger and a possible trigger for autoimmune reactions. Thyroid 2013, 23, 477–487. [Google Scholar] [CrossRef]
- McLachlan, S.M.; Rapoport, B. Breaking tolerance to thyroid antigens: Changing concepts in thyroid autoimmunity. Endocr. Rev. 2014, 35, 59–105. [Google Scholar] [CrossRef]
- Edelhoch, H.; Carlomagno, M.S.; Salvatore, G. Iodine and the structure of thyroglobulin. Arch. Biochem. Biophys. 1969, 134, 264–265. [Google Scholar] [CrossRef]
- Lamas, L.; Ingbar, S.H. The effect of varying iodine content on the susceptibility of thyroglobulin to hydrolysis by thyroid acid protease. Endocrinology 1978, 102, 188–197. [Google Scholar] [CrossRef]
- Ebner, S.A.; Lueprasitsakul, W.; Alex, S.; Fang, S.L.; Appel, M.C.; Braverman, L.E. Iodine content of rat thyroglobulin affects its antigenicity in inducing lymphocytic thyroiditis in the BB/Wor rat. Autoimmunity 1992, 13, 209–214. [Google Scholar] [CrossRef]
- Champion, B.R.; Rayner, D.C.; Byfield, P.G.; Page, K.R.; Chan, C.T.; Roitt, I.M. Critical role of iodination for T cell recognition of thyroglobulin in experimental murine thyroid autoimmunity. J. Immunol. 1987, 139, 3665–3670. [Google Scholar]
- Barin, J.G.; Talor, M.V.; Sharma, R.B.; Rose, N.R.; Burek, C.L. Iodination of murine thyroglobulin enhances autoimmune reactivity in the NOD.H2 mouse. Clin. Exp. Immunol. 2005, 142, 251–259. [Google Scholar] [CrossRef]
- Carayanniotis, G. Recognition of thyroglobulin by T cells: The role of iodine. Thyroid 2007, 17, 963–973. [Google Scholar] [CrossRef]
- Gentile, F.; Conte, M.; Formisano, S. Thyroglobulin as an autoantigen: What can we learn about immunopathogenicity from the correlation of antigenic properties with protein structure? Immunology 2004, 112, 13–25. [Google Scholar] [CrossRef]
- Carayanniotis, G. Molecular parameters linking thyroglobulin iodination with autoimmune thyroiditis. Hormones Athens 2011, 10, 27–35. [Google Scholar] [CrossRef]
- Champion, B.R.; Page, K.R.; Parish, N.; Rayner, D.C.; Dawe, K.; Biswas-Hughes, G.; Cooke, A.; Geysen, M.; Roitt, I.M. Identification of a thyroxine-containing self-epitope of thyroglobulin which triggers thyroid autoreactive T cells. J. Exp. Med. 1991, 174, 363–370. [Google Scholar] [CrossRef]
- Kong, Y.C.; McCormick, D.J.; Wan, Q.; Motte, R.W.; Fuller, B.E.; Giraldo, A.A.; David, C.S. Primary hormonogenic sites as conserved autoepitopes on thyroglobulin in murine autoimmune thyroiditis. Secondary role of iodination. J. Immunol. 1995, 155, 5847–5854. [Google Scholar]
- Dawe, K.I.; Hutchings, P.R.; Geysen, M.; Champion, B.R.; Cooke, A.; Roitt, I.M. Unique role of thyroxine in T cell recognition of a pathogenic peptide in experimental autoimmune thyroiditis. Eur. J. Immunol. 1996, 26, 768–772. [Google Scholar] [CrossRef]
- Flynn, J.C.; McCormick, D.J.; Brusic, V.; Wan, Q.; Panos, J.C.; Giraldo, A.A.; David, C.S.; Kong, Y.C. Pathogenic human thyroglobulin peptides in HLA-DR3 transgenic mouse model of autoimmune thyroiditis. Cell. Immunol. 2004, 229, 79–85. [Google Scholar] [CrossRef]
- Li, H.S.; Carayanniotis, G. Iodination of tyrosyls in thyroglobulin generates neoantigenic determinants that cause thyroiditis. J. Immunol. 2006, 176, 4479–4483. [Google Scholar] [CrossRef]
- Jiang, H.Y.; Li, H.S.; Carayanniotis, K.; Carayanniotis, G. Variable influences of iodine on the T-cell recognition of a single thyroglobulin epitope. Immunology 2007, 121, 370–376. [Google Scholar] [CrossRef]
- Dai, Y.D.; Rao, V.P.; Carayanniotis, G. Enhanced iodination of thyroglobulin facilitates processing and presentation of a cryptic pathogenic peptide. J. Immunol. 2002, 168, 5907–5911. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Luo, Y.; Kawashima, A.; Ishido, Y.; Yoshihara, A.; Oda, K.; Hiroi, N.; Ito, T.; Ishii, N.; Suzuki, K. Iodine Excess as an Environmental Risk Factor for Autoimmune Thyroid Disease. Int. J. Mol. Sci. 2014, 15, 12895-12912. https://doi.org/10.3390/ijms150712895
Luo Y, Kawashima A, Ishido Y, Yoshihara A, Oda K, Hiroi N, Ito T, Ishii N, Suzuki K. Iodine Excess as an Environmental Risk Factor for Autoimmune Thyroid Disease. International Journal of Molecular Sciences. 2014; 15(7):12895-12912. https://doi.org/10.3390/ijms150712895
Chicago/Turabian StyleLuo, Yuqian, Akira Kawashima, Yuko Ishido, Aya Yoshihara, Kenzaburo Oda, Naoki Hiroi, Tetsuhide Ito, Norihisa Ishii, and Koichi Suzuki. 2014. "Iodine Excess as an Environmental Risk Factor for Autoimmune Thyroid Disease" International Journal of Molecular Sciences 15, no. 7: 12895-12912. https://doi.org/10.3390/ijms150712895
APA StyleLuo, Y., Kawashima, A., Ishido, Y., Yoshihara, A., Oda, K., Hiroi, N., Ito, T., Ishii, N., & Suzuki, K. (2014). Iodine Excess as an Environmental Risk Factor for Autoimmune Thyroid Disease. International Journal of Molecular Sciences, 15(7), 12895-12912. https://doi.org/10.3390/ijms150712895