Possible Prognostic and Therapeutic Significance of c-Kit Expression, Mast Cell Count and Microvessel Density in Renal Cell Carcinoma
Abstract
:1. Introduction
2. c-Kit Receptor/Stem Cell Factor Pathway
3. The Significance of c-Kit Expression in Renal Cancer Patients
Author, Reference, Year | Histological Types (%) | Stage | Patients (n) | Methods of c-Kit/c-KitR Evaluation | Type of c-KitR Pattern | Percentage of c-Kit/c-KitR Expression | Intensity of c-Kit/c-KitR Expression | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Yamazaki [31] 2003 | clear cell: 67% chromophobe: 20% papillary: 13% | n.d. | 15 | immunohistochemistry primary MoAb anti-CD 117 | membranous | n.d. | chromophobe: strong clear cell: slight papillary: slight | ||||
Zigeuner [32] 2004 | clear cell: 76% chromophobe: 13% papillary: 11% | I–IV | 180 | immunohistochemistry primary PoAb anti-CD 117 | mainly membranous | n.d. | chromophobe: moderate clear cell: none papillary: none | ||||
Petit [33] 2004 | clear cell: 33% chromophobe: 29% oncocytoma: 15% papillary: 11% | n.d. | 87 | immunohistochemistry primary PoAb anti-CD 117 | cytoplasmic or membranous or nuclear | chromophobe: 88% oncocytoma: 71% clear cell: 0% papillary: 0% | chromophobe: strong oncocytoma: moderate | ||||
Wang [34] 2005 | oncocytoma: 52% chromophobe: 48% | n.d. | 23 | immunohistochemistry primary PoAb anti-CD 117 | cytoplasmic or membranous | chromophobe: 100% oncocytoma: 100% | n.d. | ||||
Li [35] 2005 | clear cell: 33% papillary: 33% oncocytoma: 18% chromophobe: 16% | I–IV | 45 | RT-PCR c-Kit gene expression | electrophoresis band as DNA marker | chromophobe: 86% oncocytoma: 88% papillary: 7% clear cell: 0% | n.d. | ||||
Huo [36] 2005 | clear cell: 23% oncocytoma: 24% chromophobe: 23% angiomyolipoma: 12% papillary: 9% | n.d. | 171 | immunohistochemistry primary MoAb anti-CD 117 | cytoplasmic or membranous or both | chromophobe: 95% oncocytoma: 88% angiomyolipoma: 17% papillary: 5% clear cell: 3% | n.d. | ||||
Kruger [37] 2005 | chromophobe: 39% clear cell: 27% oncocytoma: 18% papillary: 7% | I–III | 74 | immunohistochemistry primary PoAb anti-CD 117 | membranous or both | chromophobe: 100%–77% oncocytoma: 100%–77% clear cell: 0% papillary: 0% | n.d. | ||||
Sengupta [39] 2006 | clear cell: 90.2% chromophobe: 3.6% n.s.: 3.1% papillary: 1.6% | n.d. | 194 | immunohistochemistry primary PoAb anti-CD 117 | membranous | n.s.: 33.3% chromophobe: 14.3% clear cell: 2.3% papillary: 0% | n.d. | ||||
Terada [39] 2012 | clear cell: 70% chromophobe: 15% papillary: 15% | n.d. | 61 | immunohistochemistry primary MoAb anti-CD 117 | membranous | chromophobe: 100% clear cell: 0% papillary: 0% | n.d. | ||||
Horstmann [9] 2012 | clear cell: 36% oncocytoma: 24% papillary: 23% chromophobe: 17% | I–IV | 111 | immunohistochemistry primary PoAb anti-CD 117 | cytoplasmic or both | n.d. | chromophobe: strong oncocytoma: strong papillary: strong/moderate clear cell: slight/moderate |
4. The Significance of Mast Cells and Angiogenesis in Renal Cancer Patients
Author, Reference, Year | Histological Types | Stage | Patients (n) | Methods of MC Identification | Methods of MVD Identification | Correlation between MC Count & MVD | p Value |
---|---|---|---|---|---|---|---|
Tuna [71] 2006 | clear cell: 66.2% chromophobe: 14.1% papillary: 11.3% sarcomatoid: 8.5% | I–IV | 71 | histochemistry toludine blue | immunohistochemistry primary MoAb anti-CD31 | yes | p = 0.034 |
Mohseni [72] 2010 | clear cell: 72.5% granular cell: 12.5% sarcomatoid: 7.5% chromophobe: 5% papillary: 1% | I–IV | 40 | histochemistry toludine blue | immunohistochemistry primary MoAb anti-CD34 | no | p = 0.45 |
Author, Reference, Year | Histological Types | Stage | Patients (n) | Methods of MVD Identification | Clinical Parameters | Correlation | p Value |
---|---|---|---|---|---|---|---|
Mclennan [75] 1995 | clear cell: 75% granular cell: 11% papillary: 9% sarcomatoid: 3% chromophobe: 1% | I–IV | 97 | immunohistochemistry primary MoAb anti-factor VIII | DFS | no | p > 0.05 |
Yoshino [73] 1995 | n.d. | I–IV | 84 | immunohistochemistry primary MoAb anti-factor VIII | DFS | yes | p < 0.004 |
Nativ [74] 1997 | non papillary: 86.1% papillary: 13.9% | I–II | 36 | immunohistochemistry primary MoAb anti-factor VIII | OS | yes | p = 0.00014 |
Kirkali [76] 2001 | clear cell: 60% chromophobe: 20% sarcomatoid: 13% chromophilic: 7% | I–IV | 70 | immunohistochemistry primary MoAb anti-CD31 | OS, DFS | no | p > 0.05 |
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ridge, C.A.; Pua, B.B.; Madoff, D.C. Epidemiology and staging of renal cell carcinoma. Semin. Interv. Radiol. 2014, 31, 3–8. [Google Scholar] [CrossRef]
- Ljungberg, B.; Campbell, S.C.; Cho, H.Y.; Jacqmin, D.; Lee, J.E.; Weikert, S.; Kiemeney, L.A. The epidemiology of renal cell carcinoma. Eur. Urol. 2011, 60, 615–621. [Google Scholar] [CrossRef]
- Srigley, J.R.; Delahunt, B.; Eble, J.N.; Egevad, L.; Epstein, J.I.; Grignon, D.; Hes, O.; Moch, H.; Montironi, R.; Tickoo, S.K.; et al. The International Society of Urological Pathology (ISUP) vancouver classification of renal neoplasia. Am. J. Surg. Pathol. 2013, 37, 1469–1489. [Google Scholar] [CrossRef]
- Vanharanta, S.; Shu, W.; Brenet, F.; Hakimi, A.A.; Heguy, A.; Viale, A.; Reuter, V.E.; Hsieh, J.J.; Scandura, J.M.; Massagué, J. Epigenetic expansion of VHL–HIF signal output drives multiorgan metastasis in renal cancer. Nat. Med. 2013, 19, 50–56. [Google Scholar]
- Shen, C.; Kaelin, W.G., Jr. The VHL–HIF axis in clear cell renal carcinoma. Semin. Cancer Biol. 2013, 23, 18–25. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, H. The roles of VHL-dependent ubiquitination in signaling and cancer. Front. Oncol. 2012, 2, 35. [Google Scholar]
- Medina Villaamil, V.; Aparicio Gallego, G.; Santamarina Caínzos, I.; Valladares-Ayerbes, M.; Antón Aparicio, L.M. Searching for HIF1-α interacting proteins in renal cell carcinoma. Clin. Transl. Oncol. 2012, 14, 698–708. [Google Scholar] [CrossRef]
- Billemont, B.; Méric, J.B.; Izzedine, H.; Taillade, L.; Sultan-Amar, V.; Rixe, O. Angiogenesis and renal cell carcinoma. Bull. Cancer 2007, 94, S232–S240. [Google Scholar]
- Horstmann, M.; Hennenlotter, J.; Geiger, L.M.; Vogel, U.; Schmid, H.; Kuehs, U.; Stenzl, A.; Bedke, J. Evaluation of the Kit/stem cell factor axis in renal tumours. Anticancer Res. 2012, 32, 4339–4345. [Google Scholar]
- Reith, A.D.; Ellis, C.; Lyman, S.D.; Anderson, D.M.; Williams, D.E.; Bernstein, A.; Pawson, T. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J. 1991, 10, 2451–2459. [Google Scholar]
- Cools, J.; de Angelo, D.J.; Gotlib, J.; Stover, E.H.; Legare, R.D.; Cortes, J.; Kutok, J.; Clark, J.; Galinsky, I.; Griffin, J.D.; et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 2003, 348, 1201–1214. [Google Scholar] [CrossRef]
- Ranieri, G. Hot topic: Targeting tumor angiogenesis: An update. Curr. Med. Chem. 2012, 19, 937. [Google Scholar] [CrossRef]
- Ribatti, D.; Ranieri, G.; Basile, A.; Azzariti, A.; Paradiso, A.; Vacca, A. Tumor endothelial markers as a target in cancer. Expert Opin. Ther. Targets 2012, 16, 1215–1225. [Google Scholar] [CrossRef]
- Broudy, V.C. Stem cell factor and hematopoiesis. Blood 1997, 90, 1345–1364. [Google Scholar]
- Nick, H.J.; Kim, H.G.; Chang, C.W.; Harris, K.W.; Reddy, V.; Klug, C.A. Distinct classes of c-Kit-activating mutations differ in their ability to promote RUNX1–ETO-associated acute myeloid leukemia. Blood 2012, 119, 1522–1531. [Google Scholar] [CrossRef]
- London, C.A.; Galli, S.J.; Yuuki, T.; Hu, Z.Q.; Helfand, S.C.; Geissler, E.N. Spontaneous canine mast cell tumors express tandem duplications in the proto-oncogene c-Kit. Exp. Hematol. 1999, 27, 689–697. [Google Scholar] [CrossRef]
- Broudy, V.C.; Lin, N.L.; Sabath, D.F. The fifth immunoglobulin-like domain of the kit receptor is required for proteolytic cleavage from the cell surface. Cytokine 2001, 15, 188–195. [Google Scholar] [CrossRef]
- López-Martin, A.; Ballestín, C.; Garcia-Carbonero, R.; Castaño, A.; Lopez-Ríos, F.; López-Encuentra, A.; Sánchez-Cespedes, M.; Castellano, D.; Bartolomé, A.; Cortés-Funes, H.; et al. Prognostic value of Kit expression in small cell lung cancer. Lung Cancer 2007, 56, 405–413. [Google Scholar] [CrossRef]
- Chau, W.K.; Ip, C.K.; Mak, A.S.; Lai, H.C.; Wong, A.S. c-Kit mediates chemoresistance and tumor-initiating capacity of ovarian cancer cells through activation of Wnt/β-catenin-ATP-binding cassette G2 signaling. Oncogene 2013, 32, 2767–2781. [Google Scholar] [CrossRef]
- Wiesner, C.; Nabha, S.M.; dos Santos, E.B.; Yamamoto, H.; Meng, H.; Melchior, S.W.; Bittinger, F.; Thüroff, J.W.; Vessella, R.L.; Cher, M.L.; et al. c-Kit and its ligand stem cell factor: Potential contribution to prostate cancer bone metastasis. Neoplasia 2008, 10, 996–1003. [Google Scholar]
- Cohen, P.S.; Chan, J.P.; Lipkunskaya, M.; Biedler, J.L.; Seeger, R.C. Expression of stem cell factor and c-Kit in human neuroblastoma. The Children’s Cancer Group. Blood 1994, 84, 3465–3472. [Google Scholar]
- Hassan, S.; Kinoshita, Y.; Kawanami, C.; Kishi, K.; Matsushima, Y.; Ohashi, A.; Funasaka, Y.; Okada, A.; Maekawa, T.; He-Yao, W.; et al. Expression of proto-oncogene c-Kit and its ligand stem cell factor (SCF) in gastric carcinoma cell lines. Dig. Dis. Sci. 1998, 43, 8–14. [Google Scholar] [CrossRef]
- Hines, S.J.; Organ, C.; Kornstein, M.J.; Krystal, G.W. Co-expression of the c-kit and stem cell factor genes in breast carcinomas. Cell Growth Differ. 1995, 6, 769–779. [Google Scholar]
- Inoue, M.; Kyo, S.; Fujita, M.; Enomoto, T.; Kondoh, G. Co-expression of the c-Kit receptor and the stem cell factor in gynecological tumors. Cancer Res. 1994, 54, 3049–3053. [Google Scholar]
- Orfao, A.; Garcia-Montero, A.C.; Sanchez, L.; Escribano, L. Recent advances in the understanding of mastocytosis: The role of Kit mutations. Br. J. Haematol. 2007, 138, 12–30. [Google Scholar] [CrossRef]
- Buchdunger, E.; Zimmermann, J.; Mett, H.; Meyer, T.; Müller, M.; Druker, B.J.; Lydon, N.B. Inhibition of the Abl protein–tyrosine kinase in vitro and in vivo by a 2-phenylaminopyrimidine derivative. Cancer Res. 1996, 56, 100–104. [Google Scholar]
- Merchant, M.S.; Woo, C.W.; Mackall, C.L.; Thiele, C.J. Potential use of imatinib in Ewing’s sarco-ma: Evidence for in vitro and in vivo activity. J. Natl. Cancer Inst. 2002, 94, 1673–1679. [Google Scholar] [CrossRef]
- Hodi, F.S.; Corless, C.L.; Giobbie-Hurder, A.; Fletcher, J.A.; Zhu, M.; Marino-Enriquez, A.; Friedlander, P.; Gonzalez, R.; Weber, J.S.; Gajewski, T.F.; et al. Imatinib for melanomas harboring mutationally activated or amplified Kit arising on mucosal, acral, and chronically sun-damaged skin. J. Clin. Oncol. 2013, 31, 3182–3190. [Google Scholar] [CrossRef]
- Ma, Y.; Zeng, S.; Metcalfe, D.D.; Akin, C.; Dimitrijevic, S.; Butterfield, J.H.; McMahon, G.; Longley, B.J. The c-Kit mutation causing human mastocytosis is resistant to STI571 and other Kit kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood 2002, 99, 1741–1744. [Google Scholar] [CrossRef]
- Marech, I.; Patruno, R.; Zizzo, N.; Gadaleta, C.; Introna, M.; Zito, A.F.; Gadaleta, C.D.; Ranieri, G. Masitinib (AB1010), from canine tumor model to human clinical development: Where we are? Crit. Rev. Oncol. Hematol. 2014, 91, 98–111. [Google Scholar] [CrossRef]
- Yamazaki, K.; Sakamoto, M.; Ohta, T.; Kanai, Y.; Ohki, M.; Hirohashi, S. Over-expression of Kit in chromophobe renal cell carcinoma. Oncogene 2003, 22, 847–852. [Google Scholar] [CrossRef]
- Zigeuner, R.; Ratschek, M.; Langner, C. Kit (CD117) immunoreactivity is rare in renal cell and upper urinary tract transitional cell carcinomas. BJU Int. 2005, 95, 315–318. [Google Scholar] [CrossRef]
- Petit, A.; Castillo, M.; Santos, M.; Mellado, B.; Alcover, J.B.; Mallofré, C. Kit expression in chromophobe renal cell carcinoma: Comparative immunohistochemical analysis of Kit expression in different renal cell neoplasms. Am. J. Surg. Pathol. 2004, 28, 676–678. [Google Scholar] [CrossRef]
- Wang, H.Y.; Mills, S.E. Kit and RCC are useful in distinguishing chromophobe renal cell carcinoma from the granular variant of clear cell renal cell carcinoma. Am. J. Surg. Pathol. 2005, 29, 640–646. [Google Scholar] [CrossRef]
- Li, G.; Gentil-Perret, A.; Lambert, C.; Genin, C.; Tostain, J. S100A1 and Kit gene expressions in common subtypes of renal tumours. Eur. J. Surg. Oncol. 2005, 31, 299–303. [Google Scholar] [CrossRef]
- Huo, L.; Sugimura, J.; Tretiakova, M.S.; Patton, K.T.; Gupta, R.; Popov, B.; Laskin, W.B.; Yeldandi, A.; Teh, B.T.; Yang, X.J. c-Kit expression in renal oncocytomas and chromophobe renal cell carcinomas. Hum. Pathol. 2005, 36, 262–268. [Google Scholar] [CrossRef]
- Krüger, S.; Sotlar, K.; Kausch, I.; Horny, H.P. Expression of Kit (CD117) in renal cell carcinoma and renal oncocytoma. Oncology 2005, 68, 269–275. [Google Scholar] [CrossRef]
- Sengupta, S.; Cheville, J.C.; Corless, C.L.; Lohse, C.M.; Heinrich, M.C.; Kwon, E.D.; Zincke, H.; Blute, M.L.; Leibovich, B.C. Rare expression of Kit and absence of Kit mutations in high grade renal cell carcinoma. J. Urol. 2006, 175, 53–56. [Google Scholar] [CrossRef]
- Terada, T. Protein expression and gene mutation status of Kit and PDGFRA in renal cell carcinoma. Histol. Histopathol. 2012, 27, 297–302. [Google Scholar]
- Shea-Donohue, T.; Stiltz, J.; Zhao, A.; Notari, L. Mast cells. Curr. Gastroenterol. Rep. 2010, 12, 349–357. [Google Scholar] [CrossRef]
- Irani, A.M.; Schechter, N.M.; Craing, S.S.; de Blois, G.; Schwartz, L.B. Two types of human mast cells that have distinct neutral protease composition. Proc. Natl. Acad. Sci. USA 1986, 63, 4464–4468. [Google Scholar]
- Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 2004, 4, 787–799. [Google Scholar] [CrossRef]
- Mangia, A.; Malfettone, A.; Rossi, R.; Paradiso, A.; Ranieri, G.; Simone, G.; Resta, L. Tissue remodelling in breast cancer: Human mast cell tryptase as an initiator of myofibroblast differentiation. Histopathology 2011, 58, 1096–1106. [Google Scholar] [CrossRef]
- Ranieri, G.; Ammendola, M.; Patruno, R.; Celano, G.; Zito, F.A.; Montemurro, S.; Rella, A.; di Lecce, V.; Gadaleta, C.D.; de Sarro, G.; et al. Tryptase-positive mast cells correlate with angiogenesis in early breast cancer patients. Int. J. Oncol. 2009, 35, 115–120. [Google Scholar]
- Ranieri, G.; Labriola, A.; Achille, G.; Florio, G.; Zito, A.F.; Grammatica, L.; Paradiso, A. Microvessel density, mast cell density and thymidine phosphorylase expression in oral squamous carcinoma. Int. J. Oncol. 2002, 21, 1317–1323. [Google Scholar]
- Ranieri, G.; Roccaro, A.M.; Vacca, A.; Ribatti, D. Thymidine phosphorylase (platelet-derived endothelial cell growth factor) as a target for capecitabine: From biology to the bedside. Recent Pat. Anticancer Drug Discov. 2006, 1, 171–183. [Google Scholar] [CrossRef]
- Passantino, L.; Patruno, R.; Valerio, P.; Penna, A.; Mazzone, F.; Zito, A.F.; Catalano, V.; Pellecchia, A.; Jirillo, E.; Ranieri, G. Thymidine phosphorylase profiles in nonmalignant and malignant pancreatic tissue. Potential therapeutic role of capecitabine on tumoral and endothelial cells and tumor-infiltrating macrophages. Immunopharmacol. Immunotoxicol. 2005, 27, 95–107. [Google Scholar] [CrossRef]
- Raica, M.; Cimpean, A.M.; Ceausu, R.; Ribatti, D.; Gaje, P. Interplay between mast cells and lymphatic vessels in different molecular types of breast cancer. Anticancer Res. 2013, 33, 957–963. [Google Scholar]
- Ribatti, D.; Nico, B.; Finato, N.; Crivellato, E. Tryptase-positive mast cells and CD8-positive T cells in human endometrial cancer. Pathol. Int. 2011, 61, 442–444. [Google Scholar] [CrossRef]
- Nagata, M.; Shijubo, N.; Walls, A.F.; Ichimiya, S.; Abe, S.; Sato, N. Chymase-positive mast cells in small sized adenocarcinoma of the lung. Virchows Arch. 2003, 443, 565–573. [Google Scholar] [CrossRef]
- Horny, H.P.; Greschniok, A.; Jordan, J.H.; Menke, D.M.; Valent, P. Chymase expressing bone marrow mast cells in mastocytosis and myelodysplastic syndromes: An immunohistochemical and morphometric study. J. Clin. Pathol. 2003, 56, 103–106. [Google Scholar] [CrossRef]
- Tomita, M.; Matsuzaki, Y.; Edagawa, M.; Shimizu, T.; Hara, M.; Sekiya, R.; Onitsuka, T. Association of mast cells with tumor angiogenesis in esophageal squamous cell carcinoma. Dis. Esophagus 2001, 14, 135–138. [Google Scholar] [CrossRef]
- Ribatti, D.; Guidolin, D.; Marzullo, A.; Nico, B.; Annese, T.; Benagiano, V.; Crivellato, E. Mast cells and angiogenesis in gastric carcinoma. Int. J. Exp. Pathol. 2010, 91, 350–356. [Google Scholar] [CrossRef]
- Ammendola, M.; Sacco, R.; Donato, G.; Zuccalà, V.; Russo, E.; Luposella, M.; Vescio, G.; Rizzuto, A.; Patruno, R.; de Sarro, G.; et al. Mast cell positivity to tryptase correlates with metastatic lymph nodes in gastrointestinal cancer patients treated surgically. Oncology 2013, 85, 111–116. [Google Scholar] [CrossRef]
- Acikalin, M.F.; Oner, U.; Topçu, I.; Yaşar, B.; Kiper, H.; Colak, E. Tumour angiogenesis and mast cell density in the prognostic assessment of colorectal carcinomas. Dig. Liver Dis. 2005, 37, 162–169. [Google Scholar] [CrossRef]
- Gulubova, M.; Vlaykova, T. Prognostic significance of mast cell number and microvascular density for the survival of patients with primary colorectal cancer. J. Gastroenterol. Hepatol. 2009, 24, 1265–1275. [Google Scholar] [CrossRef]
- Peng, S.H.; Deng, H.; Yang, J.F.; Xie, P.P.; Li, C.; Li, H.; Feng, D.Y. Significance and relationship between infiltrating inflammatory cell and tumor angiogenesis in hepatocellular carcinoma tissues. World J. Gastroenterol. 2005, 11, 6521–6524. [Google Scholar]
- Esposito, I.; Menicagli, M.; Funel, N.; Bergmann, F.; Boggi, U.; Mosca, F.; Bevilacqua, G.; Campani, D. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J. Clin. Pathol. 2004, 57, 630–636. [Google Scholar] [CrossRef]
- Ibaraki, T.; Muramatsu, M.; Takai, S.; Jin, D.; Maruyama, H.; Orino, T.; Katsumata, T.; Miyazaki, M. The relationship of tryptase- and chymase- positive mast cells to angiogenesis in stage I non-small cell lung cancer. Eur. J. Cardiothorac. Surg. 2005, 28, 617–621. [Google Scholar] [CrossRef]
- Carlini, M.J.; Dalurzo, M.C.; Lastiri, J.M.; Smith, D.E.; Vasallo, B.C.; Puricelli, L.I.; Lauría de Cidre, L.S. Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum. Pathol. 2010, 41, 697–705. [Google Scholar] [CrossRef]
- Ribatti, D.; Ennas, M.G.; Vacca, A.; Ferreli, F.; Nico, B.; Orru, S.; Sirigu, P. Tumor vascularity and tryptase-positive mast cells correlate with a poor prognosis in melanoma. Eur. J. Clin. Investig. 2003, 33, 420–425. [Google Scholar] [CrossRef]
- Benítez-Bribiesca, L.; Wong, A.; Utrera, D.; Castellanos, E. The role of mast cell tryptase in neoangiogenesis of premalignant and malignant lesions of the uterine cervix. J. Histochem. Cytochem. 2001, 49, 1061–1062. [Google Scholar] [CrossRef]
- Ranieri, G.; Patruno, R.; Lionetti, A.; di Summa, A.; Mattioli, E.; Bufo, P.; Pellecchia, A.; Ribatti, D.; Zizzo, N. Endothelial area and microvascular density in a canine non-Hodgkin’s lymphoma: An interspecies model of tumor angiogenesis. Leuk. Lymphoma 2005, 46, 1639–1643. [Google Scholar] [CrossRef]
- Nico, B.; Mangieri, D.; Crivellato, E.; Vacca, A.; Ribatti, D. Mast cells contribute to vasculogenic mimicry in multiple myeloma. Stem Cells Dev. 2008, 17, 19–22. [Google Scholar] [CrossRef]
- Ribatti, D.; Finato, N.; Crivellato, E.; Marzullo, A.; Mangieri, D.; Nico, B.; Vacca, A.; Beltrami, C.A. Neovascularization and mast cells with tryptase activity increase simultaneously with pathologic progression in human endometrial cancer. Am. J. Obstet. Gynecol. 2005, 193, 1961–1965. [Google Scholar] [CrossRef]
- Claman, H.N. On scleroderma. Mast cells, endothelial cells, and fibroblasts. JAMA 1989, 262, 1206–1209. [Google Scholar] [CrossRef]
- Ehara, T.; Shigematsu, H. Mast cells in the kidney. Nephrology 2003, 8, 130–138. [Google Scholar] [CrossRef]
- Staemmler, M. Theodor Fahr’s contribution to modern renal pathology. Medizinische 1958, 3, 897–902. [Google Scholar]
- Lascano, E.F. Mast cells in human tumors. Cancer 1958, 11, 1110–1114. [Google Scholar] [CrossRef]
- Beil, W.J.; Füreder, W.; Wiener, H.; Grossschmidt, K.; Maier, U.; Schedle, A.; Bankl, H.C.; Lechner, K.; Valent, P. Phenotypic and functional characterization of mast cells derived from renal tumor tissues. Exp. Hematol. 1998, 26, 158–169. [Google Scholar]
- Tuna, B.; Yorukoglu, K.; Unlu, M.; Mungan, M.U.; Kirkali, Z. Association of mast cells with microvessel density in renal cell carcinomas. Eur. Urol. 2006, 50, 530–534. [Google Scholar] [CrossRef]
- Mohseni, M.G.; Mohammadi, A.; Heshmat, A.S.; Kosari, F.; Meysamie, A.P. The lack of correlation between mast cells and microvessel density with pathologic feature of renal cell carcinoma. Int. Urol. Nephrol. 2010, 42, 109–112. [Google Scholar] [CrossRef]
- Yoshino, S.; Kato, M.; Okada, K. Evaluation of the prognostic significance of microvessel count and tumor size in renal cell carcinoma. Int. J. Urol. 1998, 5, 119–123. [Google Scholar] [CrossRef]
- Nativ, O.; Sabo, E.; Reiss, A.; Wald, M.; Madjar, S.; Moskovitz, B. Clinical significance of tumor angiogenesis in patients with localized renal cell carcinoma. Urology 1998, 51, 693–696. [Google Scholar] [CrossRef]
- MacLennan, G.T.; Bostwick, D.G. Microvessel density in renal cell carcinoma: Lack of prognostic significance. Urology 1995, 46, 27–30. [Google Scholar] [CrossRef]
- Kirkali, Z.; Yorukoglu, K.; Ozkara, E.; Kazimoglu, H.; Mungan, U. Proliferative activity, angiogenesis and nuclear morphometry in renal cell carcinoma. Int. J. Urol. 2001, 8, 697–703. [Google Scholar] [CrossRef]
- Patruno, R.; Marech, I.; Zizzo, N.; Ammendola, M.; Nardulli, P.; Gadaleta, C.; Introna, M.; Capriuolo, G.; Rubini, R.A.; Ribatti, D.; et al. c-Kit expression, angiogenesis, and grading in canine mast cell tumour: A unique model to study c-Kit driven human malignancies. Biomed. Res. Int. 2014. [Google Scholar] [CrossRef]
- Vuky, J.; Isacson, C.; Fotoohi, M.; dela Cruz, J.; Otero, H.; Picozzi, V.; Malpass, T.; Aboulafia, D.; Jacobs, A. Phase II trial of imatinib (Gleevec) in patients with metastatic renal cell carcinoma. Investig. New Drugs 2006, 24, 85–88. [Google Scholar] [CrossRef]
- Calvani, N.; Morelli, F.; Chiuri, V.; Gnoni, A.; Scavelli, C.; Fedele, P.; Orlando, L.; Maiello, E.; Lorusso, V.; Cinieri, S. Prolonged exposure to tyrosine kinase inhibitors or early use of everolimus in metastatic renal cell carcinoma: Are the two options alike? Med. Oncol. 2013, 30, 578. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Marech, I.; Gadaleta, C.D.; Ranieri, G. Possible Prognostic and Therapeutic Significance of c-Kit Expression, Mast Cell Count and Microvessel Density in Renal Cell Carcinoma. Int. J. Mol. Sci. 2014, 15, 13060-13076. https://doi.org/10.3390/ijms150713060
Marech I, Gadaleta CD, Ranieri G. Possible Prognostic and Therapeutic Significance of c-Kit Expression, Mast Cell Count and Microvessel Density in Renal Cell Carcinoma. International Journal of Molecular Sciences. 2014; 15(7):13060-13076. https://doi.org/10.3390/ijms150713060
Chicago/Turabian StyleMarech, Ilaria, Cosmo Damiano Gadaleta, and Girolamo Ranieri. 2014. "Possible Prognostic and Therapeutic Significance of c-Kit Expression, Mast Cell Count and Microvessel Density in Renal Cell Carcinoma" International Journal of Molecular Sciences 15, no. 7: 13060-13076. https://doi.org/10.3390/ijms150713060
APA StyleMarech, I., Gadaleta, C. D., & Ranieri, G. (2014). Possible Prognostic and Therapeutic Significance of c-Kit Expression, Mast Cell Count and Microvessel Density in Renal Cell Carcinoma. International Journal of Molecular Sciences, 15(7), 13060-13076. https://doi.org/10.3390/ijms150713060