Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding
Abstract
:1. Introduction
Solvent | (cm−1) | (cm−1) | (cm−1) | (cm−1) | (cm−1) | ε( ) (mol−1·dm3·cm−1) | f(ε, n2) | ε a | n a | α a | β a |
---|---|---|---|---|---|---|---|---|---|---|---|
1-Chloro-n-hexadecane b | 27,250 | 21,030 | 4780 | 4350 | 6220 | − | 0.110 | 3.70 | 1.450 | 0.00 | 0.00 |
1-Chloro-n-decane b | 27,250 | 20,750 | 4640 | 4370 | 6500 | 2860 | 0.145 | 4.58 | 1.438 | 0.00 | 0.00 |
1-Chloro-n-octane | 27,250 | 20,650 | 4600 | 4350 | 6600 | 3240 | 0.160 | 5.05 | 1.430 | 0.00 | 0.00 |
1-Chloro-n-hexane | 27,250 c | 20,490 | 4650 | 4320 | 6760 | 3270 | 0.184 | 6.10 | 1.419 | 0.00 | 0.00 |
1-Chloro-n-butane | 27,250 c | 20,400 | 4650 | 4300 | 6850 | 3350 | 0.209 | 7.39 | 1.400 | 0.00 | 0.00 |
1-Chloro-n-propane b | 27,250 | 20,300 | 4600 | 4400 | 6950 | 3450 | 0.226 | 8.59 | 1.386 | 0.00 | 0.00 |
Acrylonitrile | 26,950 | 18,470 | 4660 | 4270 | 8480 | 2850 | 0.287 | 33.00 | 1.388 | 0.00 | 0.25 |
Propionitrile b | 26,880 | 18,810 | 4750 | 4340 | 8070 | 2750 | 0.292 | 28.26 | 1.363 | 0.00 | 0.37 |
DBE | 26,950 | 20,070 | 4620 | 4330 | 6880 | 2820 | 0.096 | 3.08 | 1.397 | 0.00 | 0.46 |
THF | 26,670 | 19,430 | 4840 | 4480 | 7240 | 2930 | 0.210 | 7.58 | 1.405 | 0.00 | 0.55 |
DMF | 26,100 | 17,850 | 4810 | 4220 | 8250 | 2800 | 0.275 | 36.71 | 1.428 | 0.00 | 0.69 |
DMSO | 25,910 c | 17,500 | 4800 | 4180 | 8410 | 2860 | 0.264 | 46.45 | 1.477 | 0.00 | 0.76 |
HMPA | 25,250 | 17,550 | 5200 | 4170 | 7700 | 2340 | 0.261 | 29.30 | 1.457 | 0.00 | 1.00 |
2. Results and Discussion
2.1. Spectral Properties of 6AC in Aprotic Hydrogen-Bond Forming Solvents
Solvent | ∆EHB | |
---|---|---|
S0→S1 | S1→S0 | |
Acrylonitrile | 300 | 1420 |
Propionitrile | 370 | 1040 |
DBE | 300 | 1015 |
THF | 580 | 930 |
DMF | 1150 | 2120 |
DMSO | 1340 a | 2530 |
HMPA | 2000 | 2500 |
2.2. Hydrogen-Bonded Complexes in Ground S0 and Excited S1 States
2.3. Photophysical Study Results
Solvent | ΦF a | λexc (nm) | τ1 (ps) | τ2 (ps) | kF 107 (s−1) | knr 107 (s−1) |
---|---|---|---|---|---|---|
1-Chloro-n-propane b | 0.31 | 367 | 8200 | 3.78 | 8.4 | |
Acrylonitrile | 0.18 | 370 | 9100 | 1.98 | 9.01 | |
Propionitrile b | 0.26 | 380 | 12,580 | 2.07 | 5.88 | |
DBE | 0.32 | 371 | 9050 | 3.53 | 7.51 | |
THF | 0.30 | 374 | 13,500 (0.93) | 2700 (0.07) | 2.22 | 5.18 |
DMF | 0.15 | 383 | 6610 | 2.27 | 12.8 | |
DMSO | 0.084 | 387 | 4800 | 1.75 | 19.1 | |
HMPA | 0.092 | 400 | 6000 (0.80) | 4000 (0.20) | 1.64 | 16.2 |
Solvent | Mg→e (D) | Me→g (D) |
---|---|---|
Propionitrile a | 1.8 | 2.1 |
DBE | 1.9 | 2.4 |
THF | 1.9 | 2.0 |
DMF | 1.9 | 2.2 |
DMSO | 1.9 | 1.8 |
HMPA | 1.9 | 1.8 |
2.4. Deactivation of the Species Formed by 6AC in S1-Excited State in Aprotic Hydrogen-Bond Forming Solvents
3. Experimental and Computational Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Krystkowiak, E.; Dobek, K.; Maciejewski, A. Origin of the strong effect of protic solvents on the emission spectra, quantum yield of fluorescence and fluorescence lifetime of 4-aminophthalimide: Role of hydrogen bonds in deactivation of S1-4-aminophthalimide. J. Photochem. Photobiol. A Chem. 2006, 184, 250–264. [Google Scholar]
- Krystkowiak, E.; Maciejewski, A.; Kubicki, J. Spectral and photophysical properties of thioxanthone in protic and aprotic solvents: The role of hydrogen bonds in S1-thioxanthone deactivation. ChemPhysChem 2006, 7, 597–606. [Google Scholar]
- Krystkowiak, E.; Maciejewski, A. Changes in energy of three types of hydrogen bonds upon excitation of aminocoumarins determined from absorption solvatochromic experiments. Phys. Chem. Chem. Phys. 2011, 13, 11317–11324. [Google Scholar]
- Krystkowiak, E.; Dobek, K.; Burdziński, G.; Maciejewski, A. Radiationless deactivation of 6-aminocoumarin from S1-ICT state in nonspecifically interacting solvents. Photochem. Photobiol. Sci. 2012, 11, 1322–1330. [Google Scholar]
- Krystkowiak, E.; Dobek, K.; Maciejewski, A. Intermolecular hydrogen-bonding effect on spectral and photophysical properties of 6-aminocoumarin in protic solvents. Photochem. Photobiol. Sci. 2013, 12, 446–455. [Google Scholar]
- Catalan, J. Toward a generalized treatment of the solvent effect based on four empirical scales: Dipolarity (SdP, a new scale), polarizability (SP), acidity (SA), and basicity (SB) of the medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar]
- Katritzky, A.R.; Fara, D.C.; Yang, H.; Tämm, K.; Tamm, T.; Karelson, M. Quantitative measures of solvent polarity. Chem. Rev. 2004, 104, 175–198. [Google Scholar]
- Kamlet, M.J.; Abboud, J.L.M.; Abraham, M.H.; Taft, R.W. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, pi*, α, and β, and some methods for simplifying the generalized solvatochromic equation. J. Org. Chem. 1983, 48, 2877–2887. [Google Scholar]
- Marcus, Y.; Kamlet, M.J.; Taft, R.W. Linear solvation energy relationships: Standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents. J. Phys. Chem. 1988, 92, 3613–3622. [Google Scholar]
- Kamlet, M.J.; Taft, R.W. The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar]
- Catalan, J.; Diaz, C.; Lopez, V.; Perez, P.; de Paz, J.-L.G.; Rodriguez, J.G. A generalized solvent basicity scale: The solvatochromism of 5-nitroindoline and its homomorph 1-methyl-5-nitroindoline. Liebigs Ann. 1996, 11, 1785–1794. [Google Scholar]
- Catalan, J. Acid-base interactions. In Handbook of Solvents; Wypych, G., Ed.; ChemTec Publishing William Andrew Publishing: Toronto, NY, USA, 2001; pp. 583–638. [Google Scholar]
- Marcus, Y. The Properties of Solvents; Wiley: Chichester, UK, 1998. [Google Scholar]
- Das, K.; Jain, B.; Patel, H.S. Hydrogen bonding properties of coumarin 151, 500, and 35: The effect of substitution at the 7-amino position. J. Phys. Chem. A 2006, 110, 1698–1704. [Google Scholar]
- Jones II, G.; Jackson, W.R.; Konaktanaporn, S. Solvent effects on photophysical parameters for coumarin laser dyes. Opt. Commun. 1980, 33, 315–320. [Google Scholar]
- Jones II, G.; Jackson, W.R.; Choi, C.Y.; Bergmark, W.R. Solvent effects on emission yield and lifetime for coumarin laser dyes: Requirements for a rotatory decay mechanism. J. Phys. Chem. 1985, 89, 294–300. [Google Scholar]
- Jones II, G.; Jackson, W.R.; Halpern, A.M. Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes. Chem. Phys. Lett. 1980, 72, 391–395. [Google Scholar]
- Nandi, N.; Bhattacharyya, K.; Bagchi, B. Dielectric relaxation and solvation dynamics of water in complex chemical and biological systems. Chem. Rev. 2000, 100, 2013–2046. [Google Scholar]
- Demchenco, A.P. Advanced Fluorescence Reporters in Chemistry and Biology III: Applications in Sensing and Imaging; Springer: Berlin Heidelberg, Germany, 2011. [Google Scholar]
- Wagner, B.D. The use of coumarins as environmentally-sensitive fluorescent probes of heterogeneous inclusion systems. Molecules 2009, 14, 210–237. [Google Scholar]
- George, S.; Kumbhakar, M.; Singh, P.K.; Ganguly, R.; Nath, S.; Pal, H. Fluorescence spectroscopic investigation to identify the micelle to gel transition of aqueous triblock copolymer solutions. J. Phys. Chem. B 2009, 113, 5117–5127. [Google Scholar]
- Burai, T.N.; Datta, A. Slow solvation dynamics in the microheterogeneous water channels of nafion membranes. J. Phys. Chem. B 2009, 113, 15901–15906. [Google Scholar]
- Grazula, M.; Budzisz, E. Biological activity of metal ions complexes of chromones, coumarins and flavones. Coord. Chem. Rev. 2009, 253, 2588–2598. [Google Scholar]
- Oliveira, E.; Nunez, C.; Rodriguez-Gonzalez, B.; Capelo, J.L.; Lodeiro, C. Novel small stable gold nanoparticles bearing fluorescent cysteine-coumarin probes as new metal-modulated chemosensors. Inorg. Chem. 2011, 50, 8797–8807. [Google Scholar]
- Al Kady, A.S.; Gaber, M.; Hussein, M.M.; Ebeid, E.-Z.M. Fluorescence enhancement of coumarin thiourea derivatives by Hg2+, Ag+, and silver nanoparticles. J. Phys. Chem. A 2009, 113, 9474–9484. [Google Scholar]
- Berezin, M.Y.; Achilefu, S. Fluorescence lifetime measurements and biological imaging. Chem. Rev. 2010, 110, 2641–2684. [Google Scholar]
- Yu, H.; Li, J.; Wu, D.; Qiu, Z.; Zhang, Y. Chemistry and biological applications of photo-labile organic molecules. Chem. Soc. Rev. 2010, 39, 464–473. [Google Scholar]
- Kulkarni, M.V.; Kulkarni, G.M.; Lin, C.-H.; Sun, C.-M. Recent advances in coumarins and 1-azacoumarins as versatile biodynamic agents. Curr. Med. Chem. 2006, 13, 2795–2818. [Google Scholar]
- Madhavan, G.R.; Balraju, V.; Mallesham, B.; Chakrabarti, R.; Lohray, V.B. Novel coumarin derivatives of heterocyclic compounds as lipid-lowering agents. Bioorg. Med. Chem. Lett. 2003, 13, 2547–2551. [Google Scholar]
- Anufrik, S.S.; Tarkovsky, V.V. 3-(2-Benzimidazolyl)coumarin derivatives: Highly effective laser media. J. Appl. Spectr. 2010, 77, 640–647. [Google Scholar]
- Yang, Y.; Zou, J.; Rong, H.; Qian, G.D.; Wang, Z.Y.; Wang, M.Q. Influence of various coumarin dyes on the laser performance of laser dyes co-doped into ORMOSILs. Appl. Phys. B: Laser Opt. 2007, 86, 309–313. [Google Scholar]
- Nedumpara, R.J.; Thomas, K.J.; Jayasree, V.K.; Girijavallabhan, C.P.; Nampoori, V.P.N.; Radhakrishnan, P. Study of solvent effect in laser emission from coumarin 540 dye solution. Appl. Opt. 2007, 46, 4786–4792. [Google Scholar]
- Kopylova, T.N.; Mayer, G.V.; Reznichenko, A.V.; Samsonova, L.G.; Svetlichnyi, V.A.; Dolotov, S.M.; Ponomarenko, E.P.; Tavrizova, M.A. Solid-state active media based on aminocoumarins. Quantum Electron. 2003, 33, 498–502. [Google Scholar]
- Zhao, G.-J.; Han, K.-L. Early time hydrogen-bonding dynamics of photoexcited coumarin 102 in hydrogen-donating solvents: theoretical study. J. Phys. Chem. A 2007, 111, 2469–2474. [Google Scholar]
- Zhao, G.-J.; Han, K.-L. Hydrogen bonding in the electronic excited state. Acc. Chem. Res. 2012, 45, 404–413. [Google Scholar]
- Zhou, P.; Song, P.; Liu, J.; Han, K.; He, G. Experimental and theoretical study of the rotational reorientation dynamics of 7-aminocoumarin derivatives in polar solvents: Hydrogen-bonding effects. Phys. Chem. Chem. Phys. 2009, 11, 9440–9449. [Google Scholar]
- Liu, Y.; Ding, J.; Liu, R.; Shi, D.; Sun, J. Revisiting the electronic excited-state hydrogen bonding dynamics of coumarin chromophore in alcohols: Undoubtedly strengthened not cleaved. J. Photochem. Photobiol. A: Chem. 2009, 201, 203–207. [Google Scholar]
- Wells, N.P.; McGrath, M.J.; Siepmann, T.; Underwood, D.F.; Blanck, D.A. Excited state hydrogen bond dynamics: Coumarin 102 in acetonitrile-water binary mixtures. J. Phys. Chem. A 2008, 112, 2511–2514. [Google Scholar]
- Rettig, W.; Klock, A. Intramolecular fluorescence quenching in aminocoumarines: Identification of an excited state with full charge separation. Can. J. Chem. 1985, 63, 1649–1653. [Google Scholar]
- Nad, S.; Pal, H. Unusual photophysical properties of coumarin-151. J. Phys. Chem. A 2001, 105, 1097–1106. [Google Scholar]
- Pal, H.; Nad, S.; Kumbhakar, M. Photophysical properties of coumarin-120: Unusual behavior in nonpolar solvents. J. Chem. Phys. 2003, 119, 443–452. [Google Scholar]
- Yang, D.; Yang, Y.; Liu, Y. Effects of different-type intermolecular hydrogen bonds on the geometrical and spectral properties of 6-aminocoumarin clusters in solution. J. Clust. Sci. 2014, 25, 467–481. [Google Scholar]
- Xu, B.; Yang, J.; Jiang, X.; Wang, Y.; Sun, H.; Yin, J. Ground and excited calculations of 7-phenylamino-substituted coumarins. J. Mol. Struct. 2009, 917, 15–20. [Google Scholar]
- Han, K.-L.; Zhao, G.-J. Hydrogen Bonding and Transfer in the Excited State; John Wiley & Sons Ltd: Chichester, UK, 2011. [Google Scholar]
- Zhao, W.; Pan, L.; Bian, W.; Wang, J. Influence of solvent polarity and hydrogen bonding on the electronic transition of coumarin 120: A TDDFT study. ChemPhysChem 2008, 9, 1593–1602. [Google Scholar]
- Rechthaler, K.; Kohler, G. Excited state properties and deactivation pathways of 7-aminocoumarins. Chem. Phys. 1994, 189, 99–116. [Google Scholar]
- Samanta, A.; Fessenden, R.W. Excited-state dipole moment of 7-aminocoumarins as determined from time-resolved microwave dielectric absorption measurements. J. Phys. Chem. A 2000, 104, 8577–8582. [Google Scholar]
- Nemkovich, N.A.; Reis, H.; Baumann, W. Ground and excited state dipole moments of coumarin laser dyes: Investigation by electro-optical absorption and emission methods. J. Lumin. 1997, 71, 255–263. [Google Scholar]
- Aaron, J.-J.; Buna, M.; Parkanyi, C.; Antonious, M.S.; Tine, A.; Cisse, L. Quantitative treatment of the effect of solvent on the electronic absorption and fluorescence spectra of substituted coumarins: Evaluation of the first excited singlet-state dipole moments. J. Fluorescence 1995, 5, 337–347. [Google Scholar]
- Meech, S.R.; Phillips, D. Photophysics of some common fluorescence standards. J. Photochem. 1983, 23, 193–217. [Google Scholar]
- Birks, J.B. Photophysics of Aromatic Molecules; Wiley-Interscience: New York, NY, USA, 1970. [Google Scholar]
- Priyadarsini, K.I.; Naik, D.B.; Moorthy, P.N. A study of the triplet state of 7-amino coumarin laser dyes by the nanosecond pulse radiolysis technique. J. Photochem. Photobiol. A Chem. 1990, 54, 251–261. [Google Scholar]
- Jones II, G.; Jackson, W.R.; Kanoktanaporn, S.; Bergmark, W.R. Photophysical and photochemical properties of coumarin dyes in amphiphilic media. Photochem. Photobiol. 1985, 42, 477–483. [Google Scholar]
- Shimada, H.; Nakamura, A.; Yoshihara, T.; Tobita, S. Intramolecular and intermolecular hydrogen-bonding effects on photophysical properties of 2'-aminoacetophenone and its derivatives in solution. Photochem. Photobiol. Sci. 2005, 4, 367–375. [Google Scholar]
- Yoshihara, T.; Shimada, H.; Shizuka, H.; Tobita, S. Internal conversion of o-aminoacetophenone in solution. Phys. Chem. Chem. Phys. 2001, 3, 4972–4978. [Google Scholar]
- Zhao, G.-J.; Han, K.-L. Ultrafast hydrogen bond strengthening of the photoexcited fluorenone in alcohols for facilitating the fluorescence quenching. J. Phys. Chem. A 2007, 111, 9218–9223. [Google Scholar]
- Zhao, G.-J.; Han, K.-L. Role of intramolecular and intermolecular hydrogen bonding in both singlet and triplet excited states of aminofluorenones on internal conversion, intersystem crossing, and twisted intramolecular charge transfer. J. Phys. Chem. A 2009, 113, 14329–14335. [Google Scholar]
- Biczok, L.; Berces, T.; Yatsuhashi, T.; Tachibana, H.; Inoue, H. The role of intersystem crossing in the deactivation of the singlet excited aminofluorenones. Phys. Chem. Chem. Phys. 2001, 3, 980–985. [Google Scholar]
- Liu, Y.-H.; Zhao, G.-J.; Li, G.-Y.; Han, K.-L. Fluorescence quenching phenomena facilitated by excited-state hydrogen bond strengthening for fluorenone derivatives in alcohols. J. Photochem. Photobiol. A Chem. 2010, 209, 181–185. [Google Scholar]
- Englman, R.; Jortner, J. The energy gap law for radiationiess transitions in large molecules. Mol. Phys. 1970, 18, 145–164. [Google Scholar]
- Maciejewski, A.; Milewski, M.; Szymański, M. A method of determination of quantum yields of S3→S2, S3→S1, and S3→S0 intramolecular radiationless transitions. J. Chem. Phys. 1999, 111, 8462–8468. [Google Scholar]
- Medvedev, E.S.; Osherev, V.I. Radiationless Transitions in Polyatomic Molecules; Springer: Berlin, Germany, 1993. [Google Scholar]
- Freed, K.F. Radiationless Processes in Molecules and Condensed Phases; Fong, F. K., Ed.; Springer: Berlin, Germany, 1976; pp. 23–168. [Google Scholar]
- Morimoto, A.; Yatsuhashi, T.; Shimada, T.; Biczok, L.; Tryk, D.A.; Inoue, H. Radiationless deactivation of an intramolecular charge transfer excited state through hydrogen bonding: Effect of molecular structure and hard-soft anionic character in the excited state. J. Phys. Chem. A 2001, 105, 10488–10496. [Google Scholar]
- Karolczak, J.; Komar, D.; Kubicki, J.; Szymański, M.; Wróżowa, T.; Maciejewski, A. Fluorescence dynamics spectrometer of single-picosecond resolution: Optimisation of experimental performance. Bull. Pol. Acad. Sci. Chem. 1999, 47, 361–380. [Google Scholar]
- Karolczak, J.; Komar, D.; Kubicki, J.; Wróżowa, T.; Dobek, K.; Ciesielska, B.; Maciejewski, A. The measurements of picosecond fluorescence lifetimes with high accuracy and subpicosecond precision. Chem. Phys. Lett. 2001, 344, 154–164. [Google Scholar]
- Wróżowa, T.; Ciesielska, B.; Komar, D.; Karolczak, J.; Maciejewski, A.; Kubicki, J. Measurements of picosecond lifetimes by time correlated single photon counting method: The effect of the refraction index of the solvent on the instrument response function. Rev. Sci. Instrum. 2004, 75, 3107–3121. [Google Scholar]
- Krystkowiak, E.; Dobek, K.; Maciejewski, A. 6-Aminokumaryna–Sonda Do Badań Międzycząsteczkowych Wiązań Wodorowych w Roztworach; Nauka i przemysł–metody spektroskopowe w praktyce, nowe wyzwania i możliwości; Hubicki, Z., Ed.; Uniwersytet Marii Curie-Skłodowskiej w Lublinie, Wydział Chemii: Lublin, Poland, 2013; pp. 381–384. [Google Scholar]
- Krystkowiak, E.; Bachorz, R.A.; Koput, J. Ground and excited state hydrogen bonding affects of 6-aminocoumarin in water: An ab initio study. Dyes Pigment. 2014, 112, 335–340. [Google Scholar]
- Krystkowiak, E.; Koput, J.; Maciejewski, A. Hydrogen bond effects in the ground and excited singlet states of 4 H-1-benzopyrane-4-thione in water—Theory and experiment. Phys. Chem. Chem. Phys. 2012, 14, 8842–8851. [Google Scholar]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Krystkowiak, E.; Dobek, K.; Maciejewski, A. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding. Int. J. Mol. Sci. 2014, 15, 16628-16648. https://doi.org/10.3390/ijms150916628
Krystkowiak E, Dobek K, Maciejewski A. Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding. International Journal of Molecular Sciences. 2014; 15(9):16628-16648. https://doi.org/10.3390/ijms150916628
Chicago/Turabian StyleKrystkowiak, Ewa, Krzysztof Dobek, and Andrzej Maciejewski. 2014. "Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding" International Journal of Molecular Sciences 15, no. 9: 16628-16648. https://doi.org/10.3390/ijms150916628
APA StyleKrystkowiak, E., Dobek, K., & Maciejewski, A. (2014). Deactivation of 6-Aminocoumarin Intramolecular Charge Transfer Excited State through Hydrogen Bonding. International Journal of Molecular Sciences, 15(9), 16628-16648. https://doi.org/10.3390/ijms150916628