A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing
Abstract
:1. Introduction
Cost | j1 | j2 | j3 | j4 | j5 |
---|---|---|---|---|---|
i1 | 5 | 9 | 1 | 2 | 7 |
i2 | 9 | 8 | 6 | 4 | 4 |
i3 | 4 | 7 | 8 | 5 | 2 |
2. Results and Discussion
2.1. The Adleman-Lipton Model
- (1)
- Merge(T1,T2): for two given test tubes T1 and T2, it stores the union T1∪T2 in T1 and leaves T2 empty;
- (2)
- Copy(T1,T2): for a given test tube T1, it produces a test tube T2 with the same contents as T1;
- (3)
- Detect(T): given a test tube T, it outputs “yes” if T contains at least one strand, otherwise, outputs “no”;
- (4)
- Separation(T1,X,T2): for a given test tube T1 and a given set of strings X, it removes all single strands containing a string in X from T1, and produces a test tube T2 with the removed strands;
- (5)
- Selection(T1,L,T2): for a given test tube T1 and a given integer L, it removes all strands with length L from T1, and produces a test tube T2 with the removed strands;
- (6)
- Sort(T1,T2,T3): for a given test tube T1, it choose the shortest length strands in the tube T2, the longest strands in T3 and the remaining strands in T1;
- (7)
- Annealing(T): for a given test tube T, it produces all feasible double strands in T. The produced double strands are still stored in T after annealing;
- (8)
- Denaturation(T): for a given test tube T, it dissociates each double strand in T into two single strands;
- (9)
- Ligation(T): for a given tube T, the operation is used to ligate together the strands in T;
- (10)
- Discard(T): for a given test tube T, it discards the tube T;
- (11)
- Read(T): for a given tube T, the operation is used to describe a single molecule, which is contained in the tube T. Even if T contains many different molecules each encoding a different set of bases, the operation can give an explicit description of exactly one of them;
- (12)
- Append-tail(T,Z): for a given test tube T and a given DNA singled strand, it appends Z onto the end of every strand in the tube T.
2.2. DNA Algorithm for the Unbalanced Assignment Problem
2.2.1. Thinking Process
- Step 1:
- Construct set T of all possible mn solutions for unbalanced assignment problem;
- Step 2:
- For all possible solutions, eliminate inappropriate allocation, such as one job distribution to multiple individuals, one job without been assigned.
- Step 3:
- Append time weight chain at the corresponding qualified strands in order to find the optimal solution.
- Step 4:
- Get the shortest strands as the answer to the problem and identify the specific distribution.
2.2.2. Detailed DNA Algorithm
- (1-1) Merge(P,Q);
- (1-2) Annealing(P);
- (1-3) Ligation(P);
- (1-4) Denaturation(P);
- (1-5) Separation(P,{s},T1);
- (1-6) Selection(T1,4nt,T2).
- For k = 1 to k = n
- (2-1) Separation(T2,{eBks},T3);
- (2-2) Discard(T2);
- (2-3) Copy(T3,T2);
- (2-4) Discard(T3).
- End for
- For k = 1 to k = n
- (3-1) Separation(T2,{sAke},T4);
- (3-2) Discard(T2);
- (3-3) Copy(T4,T2);
- (3-4) Discard(T4).
- End for
- For i = 1 to i = m
- For j = 1 to j = n
- (4-1) Separation(T2,{sAieBj},T5);
- (4-2) If (Detect(T5))Then execute (4-3) to (4-5)
- (4-3) Append-tail(T5,wij);
- (4-4) Merge(T2,T5);
- (4-5) Discard(T5).
- End for
- End for
- (5-1) Sort(T2,T5,T6);
- (5-2) Read(T6).
2.3. A Simple Example
Cost | j1 | j2 | j3 |
---|---|---|---|
i1 | 2 | 4 | 1 |
i2 | 1 | 2 | 3 |
3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence |
---|---|---|---|
sA1eB1sA1eB1sA1eB1 | sA1eB1sA1eB1sA1eB2 | sA1eB1sA1eB1sA1eB3 | sA1eB1sA1eB1sA2eB1 |
sA1eB1sA1eB1sA2eB2 | sA1eB1sA1eB1sA2eB3 | sA1eB1sA1eB2sA1eB1 | sA1eB1sA1eB2sA1eB2 |
sA1eB1sA1eB2sA1eB3 | sA1eB1sA1eB2sA2eB1 | sA1eB1sA1eB2sA2eB2 | sA1eB1sA1eB2sA2eB3 |
sA1eB1sA1eB3sA1eB1 | sA1eB1sA1eB3sA1eB2 | sA1eB1sA1eB3sA1eB3 | sA1eB1sA1eB3sA2eB1 |
sA1eB1sA1eB3sA2eB2 | sA1eB1sA1eB3sA2eB3 | sA1eB1sA2eB1sA1eB1 | sA1eB1sA2eB1sA1eB2 |
sA1eB1sA2eB1sA1eB3 | sA1eB1sA2eB1sA2eB1 | sA1eB1sA2eB1sA2eB2 | sA1eB1sA2eB1sA2eB3 |
sA1eB1sA2eB2sA1eB1 | sA1eB1sA2eB2sA1eB2 | sA1eB1sA2eB2sA1eB3 | sA1eB1sA2eB2sA2eB1 |
sA1eB1sA2eB2sA2eB2 | sA1eB1sA2eB2sA2eB3 | sA1eB1sA2eB3sA1eB1 | sA1eB1sA2eB3sA1eB2 |
sA1eB1sA2eB3sA1eB3 | sA1eB1sA2eB3sA2eB1 | sA1eB1sA2eB3sA2eB2 | sA1eB1sA2eB3sA2eB3 |
sA1eB2sA1eB1sA1eB1 | sA1eB2sA1eB1sA1eB2 | sA1eB2sA1eB1sA1eB3 | sA1eB2sA1eB1sA2eB1 |
sA1eB2sA1eB1sA2eB2 | sA1eB2sA1eB1sA2eB3 | sA1eB2sA1eB2sA1eB1 | sA1eB2sA1eB2sA1eB2 |
sA1eB2sA1eB2sA1eB3 | sA1eB2sA1eB2sA2eB1 | sA1eB2sA1eB2sA2eB2 | sA1eB2sA1eB2sA2eB3 |
sA1eB2sA1eB3sA1eB1 | sA1eB2sA1eB3sA1eB2 | sA1eB2sA1eB3sA1eB3 | sA1eB2sA1eB3sA2eB1 |
sA1eB2sA1eB3sA2eB2 | sA1eB2sA1eB3sA2eB3 | sA1eB2sA2eB1sA1eB1 | sA1eB2sA2eB1sA1eB2 |
sA1eB2sA2eB1sA1eB3 | sA1eB2sA2eB1sA2eB1 | sA1eB2sA2eB1sA2eB2 | sA1eB2sA2eB1sA2eB3 |
sA1eB2sA2eB2sA1eB1 | sA1eB2sA2eB2sA1eB2 | sA1eB2sA2eB2sA1eB3 | sA1eB2sA2eB2sA2eB1 |
sA1eB2sA2eB2sA2eB2 | sA1eB2sA2eB2sA2eB3 | sA1eB2sA2eB3sA1eB1 | sA1eB2sA2eB3sA1eB2 |
sA1eB2sA2eB3sA1eB3 | sA1eB2sA2eB3sA2eB1 | sA1eB2sA2eB3sA2eB2 | sA1eB2sA2eB3sA2eB3 |
sA1eB3sA1eB1sA1eB1 | sA1eB3sA1eB1sA1eB2 | sA1eB3sA1eB1sA1eB3 | sA1eB3sA1eB1sA2eB1 |
sA1eB3sA1eB1sA2eB2 | sA1eB3sA1eB1sA2eB3 | sA1eB3sA1eB2sA1eB1 | sA1eB3sA1eB2sA1eB2 |
sA1eB3sA1eB2sA1eB3 | sA1eB3sA1eB2sA2eB1 | sA1eB3sA1eB2sA2eB2 | sA1eB3sA1eB2sA2eB3 |
sA1eB3sA1eB3sA1eB1 | sA1eB3sA1eB3sA1eB2 | sA1eB3sA1eB3sA1eB3 | sA1eB3sA1eB3sA2eB1 |
sA1eB3sA1eB3sA2eB2 | sA1eB3sA1eB3sA2eB3 | sA1eB3sA2eB1sA1eB1 | sA1eB3sA2eB1sA1eB2 |
sA1eB3sA2eB1sA1eB3 | sA1eB3sA2eB1sA2eB1 | sA1eB3sA2eB1sA2eB2 | sA1eB3sA2eB1sA2eB3 |
sA1eB3sA2eB2sA1eB1 | sA1eB3sA2eB2sA1eB2 | sA1eB3sA2eB2sA1eB3 | sA1eB3sA2eB2sA2eB1 |
sA1eB3sA2eB2sA2eB2 | sA1eB3sA2eB2sA2eB3 | sA1eB3sA2eB3sA1eB1 | sA1eB3sA2eB3sA1eB2 |
sA1eB3sA2eB3sA1eB3 | sA1eB3sA2eB3sA2eB1 | sA1eB3sA2eB3sA2eB2 | sA1eB3sA2eB3sA2eB3 |
sA2eB1sA1eB1sA1eB1 | sA2eB1sA1eB1sA1eB2 | sA2eB1sA1eB1sA1eB3 | sA2eB1sA1eB1sA2eB1 |
sA2eB1sA1eB1sA2eB2 | sA2eB1sA1eB1sA2eB3 | sA2eB1sA1eB2sA1eB1 | sA2eB1sA1eB2sA1eB2 |
sA2eB1sA1eB2sA1eB3 | sA2eB1sA1eB2sA2eB1 | sA2eB1sA1eB2sA2eB2 | sA2eB1sA1eB2sA2eB3 |
sA2eB1sA1eB3sA1eB1 | sA2eB1sA1eB3sA1eB2 | sA2eB1sA1eB3sA1eB3 | sA2eB1sA1eB3sA2eB1 |
sA2eB1sA1eB3sA2eB2 | sA2eB1sA1eB3sA2eB3 | sA2eB1sA2eB1sA1eB1 | sA2eB1sA2eB1sA1eB2 |
sA2eB1sA2eB1sA1eB3 | sA2eB1sA2eB1sA2eB1 | sA2eB1sA2eB1sA2eB2 | sA2eB1sA2eB1sA2eB3 |
sA2eB1sA2eB2sA1eB1 | sA2eB1sA2eB2sA1eB2 | sA2eB1sA2eB2sA1eB3 | sA2eB1sA2eB2sA2eB1 |
sA2eB1sA2eB2sA2eB2 | sA2eB1sA2eB2sA2eB3 | sA2eB1sA2eB3sA1eB1 | sA2eB1sA2eB3sA1eB2 |
sA2eB1sA2eB3sA1eB3 | sA2eB1sA2eB3sA2eB1 | sA2eB1sA2eB3sA2eB2 | sA2eB1sA2eB3sA2eB3 |
sA2eB2sA1eB1sA1eB1 | sA2eB2sA1eB1sA1eB2 | sA2eB2sA1eB1sA1eB3 | sA2eB2sA1eB1sA2eB1 |
sA2eB2sA1eB1sA2eB2 | sA2eB2sA1eB1sA2eB3 | sA2eB2sA1eB2sA1eB1 | sA2eB2sA1eB2sA1eB2 |
sA2eB2sA1eB2sA1eB3 | sA2eB2sA1eB2sA2eB1 | sA2eB2sA1eB2sA2eB2 | sA2eB2sA1eB2sA2eB3 |
sA2eB2sA1eB3sA1eB1 | sA2eB2sA1eB3sA1eB2 | sA2eB2sA1eB3sA1eB3 | sA2eB2sA1eB3sA2eB1 |
sA2eB2sA1eB3sA2eB2 | sA2eB2sA1eB3sA2eB3 | sA2eB2sA2eB1sA1eB1 | sA2eB2sA2eB1sA1eB2 |
sA2eB2sA2eB1sA1eB3 | sA2eB2sA2eB1sA2eB1 | sA2eB2sA2eB1sA2eB2 | sA2eB2sA2eB1sA2eB3 |
sA2eB2sA2eB2sA1eB1 | sA2eB2sA2eB2sA1eB2 | sA2eB2sA2eB2sA1eB3 | sA2eB2sA2eB2sA2eB1 |
sA2eB2sA2eB2sA2eB2 | sA2eB2sA2eB2sA2eB3 | sA2eB2sA2eB3sA1eB1 | sA2eB2sA2eB3sA1eB2 |
sA2eB2sA2eB3sA1eB3 | sA2eB2sA2eB3sA2eB1 | sA2eB2sA2eB3sA2eB2 | sA2eB2sA2eB3sA2eB3 |
sA2eB3sA1eB1sA1eB1 | sA2eB3sA1eB1sA1eB2 | sA2eB3sA1eB1sA1eB3 | sA2eB3sA1eB1sA2eB1 |
sA2eB3sA1eB1sA2eB2 | sA2eB3sA1eB1sA2eB3 | sA2eB3sA1eB2sA1eB1 | sA2eB3sA1eB2sA1eB2 |
sA2eB3sA1eB2sA1eB3 | sA2eB3sA1eB2sA2eB1 | sA2eB3sA1eB2sA2eB2 | sA2eB3sA1eB2sA2eB3 |
sA2eB3sA1eB3sA1eB1 | sA2eB3sA1eB3sA1eB2 | sA2eB3sA1eB3sA1eB3 | sA2eB3sA1eB3sA2eB1 |
sA2eB3sA1eB3sA2eB2 | sA2eB3sA1eB3sA2eB3 | sA2eB3sA2eB1sA1eB1 | sA2eB3sA2eB1sA1eB2 |
sA2eB3sA2eB1sA1eB3 | sA2eB3sA2eB1sA2eB1 | sA2eB3sA2eB1sA2eB2 | sA2eB3sA2eB1sA2eB3 |
sA2eB3sA2eB2sA1eB1 | sA2eB3sA2eB2sA1eB2 | sA2eB3sA2eB2sA1eB3 | sA2eB3sA2eB2sA2eB1 |
sA2eB3sA2eB2sA2eB2 | sA2eB3sA2eB2sA2eB3 | sA2eB3sA2eB3sA1eB1 | sA2eB3sA2eB3sA1eB2 |
sA2eB3sA2eB3sA1eB3 | sA2eB3sA2eB3sA2eB1 | sA2eB3sA2eB3sA2eB2 | sA2eB3sA2eB3sA2eB3 |
3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence |
---|---|---|---|
sA1eB1sA1eB1sA2eB1 | sA1eB1sA1eB1sA2eB2 | sA1eB1sA1eB1sA2eB3 | sA1eB1sA1eB2sA1eB1 |
sA1eB1sA1eB2sA1eB2 | sA1eB1sA1eB2sA1eB3 | sA1eB1sA1eB2sA2eB1 | sA1eB1sA1eB2sA2eB2 |
sA1eB1sA1eB2sA2eB3 | sA1eB1sA1eB3sA1eB1 | sA1eB1sA1eB3sA1eB2 | sA1eB1sA1eB3sA1eB3 |
sA1eB1sA1eB3sA2eB1 | sA1eB1sA1eB3sA2eB2 | sA1eB1sA1eB3sA2eB3 | sA1eB1sA2eB1sA1eB1 |
sA1eB1sA2eB1sA1eB2 | sA1eB1sA2eB1sA1eB3 | sA1eB1sA2eB1sA2eB1 | sA1eB1sA2eB1sA2eB2 |
sA1eB1sA2eB1sA2eB3 | sA1eB1sA2eB2sA1eB1 | sA1eB1sA2eB2sA1eB2 | sA1eB1sA2eB2sA1eB3 |
sA1eB1sA2eB2sA2eB1 | sA1eB1sA2eB2sA2eB2 | sA1eB1sA2eB2sA2eB3 | sA1eB1sA2eB3sA1eB1 |
sA1eB1sA2eB3sA1eB2 | sA1eB1sA2eB3sA1eB3 | sA1eB1sA2eB3sA2eB1 | sA1eB1sA2eB3sA2eB2 |
sA1eB1sA2eB3sA2eB3 | sA1eB2sA1eB1sA1eB1 | sA1eB2sA1eB1sA1eB2 | sA1eB2sA1eB1sA1eB3 |
sA1eB2sA1eB1sA2eB1 | sA1eB2sA1eB1sA2eB2 | sA1eB2sA1eB1sA2eB3 | sA1eB2sA1eB2sA1eB1 |
sA1eB2sA1eB2sA1eB2 | sA1eB2sA1eB2sA1eB3 | sA1eB2sA1eB2sA2eB1 | sA1eB2sA1eB2sA2eB2 |
sA1eB2sA1eB2sA2eB3 | sA1eB2sA1eB3sA1eB1 | sA1eB2sA1eB3sA1eB2 | sA1eB2sA1eB3sA1eB3 |
sA1eB2sA1eB3sA2eB1 | sA1eB2sA1eB3sA2eB2 | sA1eB2sA1eB3sA2eB3 | sA1eB2sA2eB1sA1eB1 |
sA1eB2sA2eB1sA1eB2 | sA1eB2sA2eB1sA1eB3 | sA1eB2sA2eB1sA2eB1 | sA1eB2sA2eB1sA2eB2 |
sA1eB2sA2eB1sA2eB3 | sA1eB2sA2eB2sA1eB1 | sA1eB2sA2eB2sA1eB2 | sA1eB2sA2eB2sA1eB3 |
sA1eB2sA2eB2sA2eB1 | sA1eB2sA2eB2sA2eB2 | sA1eB2sA2eB2sA2eB3 | sA1eB2sA2eB3sA1eB1 |
sA1eB2sA2eB3sA1eB2 | sA1eB2sA2eB3sA1eB3 | sA1eB2sA2eB3sA2eB1 | sA1eB2sA2eB3sA2eB2 |
sA1eB2sA2eB3sA2eB3 | sA1eB3sA1eB1sA1eB1 | sA1eB3sA1eB1sA1eB2 | sA1eB3sA1eB1sA1eB3 |
sA1eB3sA1eB1sA2eB1 | sA1eB3sA1eB1sA2eB2 | sA1eB3sA1eB1sA2eB3 | sA1eB3sA1eB2sA1eB1 |
sA1eB3sA1eB2sA1eB2 | sA1eB3sA1eB2sA1eB3 | sA1eB3sA1eB2sA2eB1 | sA1eB3sA1eB2sA2eB2 |
sA1eB3sA1eB2sA2eB3 | sA1eB3sA1eB3sA1eB1 | sA1eB3sA1eB3sA1eB2 | sA1eB3sA1eB3sA1eB3 |
sA1eB3sA1eB3sA2eB1 | sA1eB3sA1eB3sA2eB2 | sA1eB3sA1eB3sA2eB3 | sA1eB3sA2eB1sA1eB1 |
sA1eB3sA2eB1sA1eB2 | sA1eB3sA2eB1sA1eB3 | sA1eB3sA2eB1sA2eB1 | sA1eB3sA2eB1sA2eB2 |
sA1eB3sA2eB1sA2eB3 | sA1eB3sA2eB2sA1eB1 | sA1eB3sA2eB2sA1eB2 | sA1eB3sA2eB2sA1eB3 |
sA1eB3sA2eB2sA2eB1 | sA1eB3sA2eB2sA2eB2 | sA1eB3sA2eB2sA2eB3 | sA1eB3sA2eB3sA1eB1 |
sA1eB3sA2eB3sA1eB2 | sA1eB3sA2eB3sA1eB3 | sA1eB3sA2eB3sA2eB1 | sA1eB3sA2eB3sA2eB2 |
sA1eB3sA2eB3sA2eB3 | sA2eB1sA1eB1sA1eB1 | sA2eB1sA1eB1sA1eB2 | sA2eB1sA1eB1sA1eB3 |
3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence |
---|---|---|---|
sA1eB1sA1eB2sA2eB3 | sA1eB1sA1eB3sA2eB2 | sA1eB1sA2eB2sA1eB3 | sA1eB1sA2eB2sA2eB3 |
sA1eB1sA2eB3sA1eB2 | sA1eB1sA2eB3sA2eB2 | sA1eB2sA1eB1sA2eB3 | sA1eB2sA1eB3sA2eB1 |
sA1eB2sA2eB1sA1eB3 | sA1eB2sA2eB1sA2eB3 | sA1eB2sA2eB3sA1eB1 | sA1eB2sA2eB3sA2eB1 |
sA1eB3sA1eB1sA2eB2 | sA1eB3sA1eB2sA2eB1 | sA1eB3sA2eB1sA1eB2 | sA1eB3sA2eB1sA2eB2 |
sA1eB3sA2eB2sA1eB1 | sA1eB3sA2eB2sA2eB1 | sA2eB1sA1eB2sA1eB3 | sA2eB1sA1eB2sA2eB3 |
sA2eB1sA1eB3sA1eB2 | sA2eB1sA1eB3sA2eB2 | sA2eB1sA2eB2sA1eB3 | sA2eB1sA2eB3sA1eB2 |
sA2eB2sA1eB1sA1eB3 | sA2eB2sA1eB1sA2eB3 | sA2eB2sA1eB3sA1eB1 | sA2eB2sA1eB3sA2eB1 |
sA2eB2sA2eB1sA1eB3 | sA2eB2sA2eB3sA1eB1 | sA2eB3sA1eB1sA1eB2 | sA2eB3sA1eB1sA2eB2 |
sA2eB3sA1eB2sA1eB1 | sA2eB3sA1eB2sA2eB1 | sA2eB3sA2eB1sA1eB2 | sA2eB3sA2eB2sA1eB1 |
3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence |
---|---|---|
sA1eB1sA1eB2sA2eB3w11w12w23 | sA1eB1sA1eB3sA2eB2w11w13w22 | sA1eB1sA2eB2sA1eB3w11w13w22 |
sA1eB1sA2eB2sA2eB3w11w22w23 | sA1eB1sA2eB3sA1eB2w11w12w23 | sA1eB1sA2eB3sA2eB2w11w22w23 |
sA1eB2sA1eB1sA2eB3w11w12w23 | sA1eB2sA1eB3sA2eB1w12w13w21 | sA1eB2sA2eB1sA1eB3w12w13w21 |
sA1eB2sA2eB1sA2eB3w12w21w23 | sA1eB2sA2eB3sA1eB1w11w12w23 | sA1eB2sA2eB3sA2eB1w12w21w23 |
sA1eB3sA1eB1sA2eB2w11w13w22 | sA1eB3sA1eB2sA2eB1w12w13w21 | sA1eB3sA2eB1sA1eB2w12w13w21 |
sA1eB3sA2eB1sA2eB2w13w21w22 | sA1eB3sA2eB2sA1eB1w11w13w22 | sA1eB3sA2eB2sA2eB1w13w21w22 |
sA2eB1sA1eB2sA1eB3w12w13w21 | sA2eB1sA1eB2sA2eB3w12w21w23 | sA2eB1sA1eB3sA1eB2w12w13w21 |
sA2eB1sA1eB3sA2eB2w13w21w22 | sA2eB1sA2eB2sA1eB3w13w21w22 | sA2eB1sA2eB3sA1eB2w12w21w23 |
sA2eB2sA1eB1sA1eB3w11w13w22 | sA2eB2sA1eB1sA2eB3w11w22w23 | sA2eB2sA1eB3sA1eB1w11w13w22 |
sA2eB2sA1eB3sA2eB1w13w21w22 | sA2eB2sA2eB1sA1eB3w13w21w22 | sA2eB2sA2eB3sA1eB1w11w22w23 |
sA2eB3sA1eB1sA1eB2w11w12w23 | sA2eB3sA1eB1sA2eB2w11w22w23 | sA2eB3sA1eB2sA1eB1w11w12w23 |
sA2eB3sA1eB2sA2eB1w12w21w23 | sA2eB3sA2eB1sA1eB2w12w21w23 | sA2eB3sA2eB2sA1eB1w11w22w23 |
3′–5′ DNA Sequence | 3′–5′ DNA Sequence | 3′–5′ DNA Sequence |
---|---|---|
sA1eB3sA2eB1sA2eB2w13w21w22 | sA1eB3sA2eB2sA2eB1w13w21w22 | sA2eB1sA1eB3sA2eB2w13w21w22 |
sA2eB1sA2eB2sA1eB3w13w21w22 | sA2eB2sA1eB3sA2eB1w13w21w22 | sA2eB2sA2eB1sA1eB3w13w21w22 |
2.4. The Complexity and Feasibility of the Proposed DNA Algorithm
- T(Step (1)) = O(1);
- T(Step (2)) = O(n);
- T(Step (3)) = O(m);
- T(Step (4)) = O(mn);
- T(Step (4)) = O(1);
- T = T(Step (1)) + T(Step (2)) + T(Step (3)) + T(Step (4)) + T(Step (5));
- = O(1) + O(n) + O(m) + O(mn) + O(1);
- = O(mn).
3. Experimental Section
Bit | 3′–5′ DNA Sequence | Bit | 3′–5′ DNA Sequence | Bit | 3′–5′ DNA Sequence | Bit | 3′–5′ DNA Sequence |
---|---|---|---|---|---|---|---|
s | CTATC | e | AACTC | A1 | TAAAA | B1 | AATTA |
A2 | CTTTT | B2 | CATTA | A3 | TTCAA | B3 | ATCTA |
B4 | CAAAC | B5 | ATCCA | w11 | CCCAT | w12 | ATATA |
w13 | TTACA | w14 | TACCC | w15 | TTCTT | w21 | TTTCA |
w22 | ATAAT | w23 | CTACC | w24 | TTACA | w25 | CATAC |
w31 | CCTTC | w32 | ACTCA | w33 | TCACT | w34 | ACCCT |
w35 | TTAAC |
Job Assignment | 3′–5′ DNA Sequence | Job Assignment | 3′–5′ DNA Sequence |
---|---|---|---|
sA1eB1 | CTATCTAAAAAACTCAATTA | sA1eB2 | CTATCTAAAAAACTCCATTA |
sA1eB3 | CTATCTAAAAAACTCATCTA | sA1eB4 | CTATCTAAAAAACTCCAAAC |
sA1eB5 | CTATCTAAAAAACTCATCCA | sA2eB1 | CTATCCTTTTAACTCAATTA |
sA2eB2 | CTATCCTTTTAACTCCATTA | sA2eB3 | CTATCCTTTTAACTCATCTA |
sA2eB4 | CTATCCTTTTAACTCCAAAC | sA2eB5 | CTATCCTTTTAACTCATCCA |
sA3eB1 | CTATCTTCAAAACTCAATTA | sA3eB2 | CTATCTTCAAAACTCCATTA |
sA3eB3 | CTATCTTCAAAACTCATCTA | sA3eB4 | CTATCTTCAAAACTCCAAAC |
sA3eB5 | CTATCTTCAAAACTCATCCA |
Job Assignment | Enthalpy Energy H | Entropy Energy S | Free Energy G | Job Assignment | Enthalpy Energy H | Entropy Energy S | Free Energy G |
---|---|---|---|---|---|---|---|
sA1eB1 | 110.5 | 287.1 | 24.7 | sA1eB2 | 101.2 | 256.7 | 22.9 |
sA1eB3 | 111.6 | 294.4 | 25.9 | sA1eB4 | 107.4 | 281.3 | 24.9 |
sA1eB5 | 108.3 | 277.7 | 25.2 | sA2eB1 | 104.2 | 271.3 | 24.9 |
sA2eB2 | 99.8 | 248.2 | 22.9 | sA2eB3 | 105.4 | 270.3 | 24.8 |
sA2eB4 | 104.5 | 269.7 | 24.7 | sA2eB5 | 97.7 | 243.1 | 23.3 |
sA3eB1 | 107.6 | 275.3 | 25.2 | sA3eB2 | 111.2 | 289.5 | 25.8 |
sA3eB3 | 103.3 | 262.4 | 24.6 | sA3eB4 | 114.7 | 292.1 | 26.3 |
sA3eB5 | 112.1 | 288.5 | 26.1 |
Average | 106.463 | 273.613 | 24.794 |
Standard Deviation | 4.8018 | 15.3631 | 1.0363 |
Solutions | DNA Strands Denoting Solutions |
---|---|
{j3→i1, j4→i1,j2→i2, j1→i3,j5→i3} | 3′-CTATCTAAAAAACTCATCTACTATCTAAAAAACTCCAAAC CTATCCTTTTAACTCCATTACTATCTTCAAAACTCAATTACTAT CTTCAAAACTCATCCATTACATACCCATAATCCTTCTTAAC-5′ |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Adleman, L.M. Molecular computation of solution to combinatorial problems. Science 1994, 266, 1021–1024. [Google Scholar] [CrossRef] [PubMed]
- Lipton, R.J. DNA solution of HARD computational problems. Science 1995, 268, 542–545. [Google Scholar] [CrossRef] [PubMed]
- Roweis, S.; Winfree, E.; Burgoyne, R.; Chelyapov, N.V.; Goodman, M.F.; Rothemund, P.W.K.; Adleman, L.M. A sticker based model for DNA computation. J. Comput. Biol. 1998, 5, 615–629. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Kaplan, P.D.; Liu, S.; Libchaber, A. DNA solution of the maximal clique problem. Science 1997, 278, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Winfree, E.; Liu, F.; Wenzler, L.A.; Seeman, N.C. Design and self-assembly of two dimensional DNA crystals. Nature 1998, 394, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Gouzu, H.; Komiya, K.; Kiga, D.; Yokoyama, S.; Yokomori, T.; Hagiya, M. Molecular computation by DNA hairpin formation. Science 2000, 288, 1223–1226. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.M.; Corn, R.M.; Condon, A.E.; Lagally, M.G.; Frutos, A.G.; Liu, Q.; Thiel, A.J. A surface-based approach to DNA computation. J. Comput. Biol. 1998, 5, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Li, W.X.; Xiao, D.M.; He, L. DNA ternary addition. Appl. Math. Comput. 2006, 182, 977–986. [Google Scholar] [CrossRef]
- Xiao, D.M.; Li, W.X.; Yu, J.; Zhang, X.D.; Zhang, Z.Z.; He, L. Procedures for a dynamical system on {0,1}n with DNA molecules. BioSystems 2006, 84, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Huang, D.M.; Meng, H.J.; Tang, C.P. A new fast algorithm for solving the minimum spanning tree problem based on DNA molecules computation. BioSystems 2013, 114, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Shin, S.Y.; Park, T.H.; Zhang, B.T. Solving traveling salesman problems with DNA molecules encoding numerical values. BioSystems 2004, 78, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Huang, D.M.; Tan, J.; Liu, T.G.; Zhao, K.; Li, L. A parallel algorithm for solving the n-queens problem based on inspired computational model. BioSystems 2015, 131, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.L.; Lin, K.W.; Chen, J.C.; Wang, C.-C.; Lu, L.C.; Guo, M.; Ho, M. Molecular Solutions of the RSA Public-key Cryptosystem on a DNA-based Computer. J. Supercomput. 2012, 61, 642–672. [Google Scholar] [CrossRef]
- Chang, W.L.; Ren, T.T.; Luo, J.; Feng, M.; Guo, M. Quantum Algorithms for Biomolecular Solutions of the Satisfiability Problem on a Quantum Machine. IEEE Trans. Nanobiosci. 2008, 7, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.C.; Tan, J.; Huang, D.M.; Ren, Y.C.; Ji, Z.W. A biological algorithm to solve the assignment problem based on DNA molecules computation. Appl. Math. Comput. 2014, 244, 183–190. [Google Scholar] [CrossRef]
- Han, A. An improved DNA solution to the vertex cover problem. In Proceedings of the Fourth International Conference on Natural Computation (ICNC’08), Jinan, China, 18–20 October 2008.
- Liu, X.C.; Yang, X.F.; Li, S.L.; Ding, Y. Solving the minimum bisection problem using a biologically inspired computational model. Theor. Comput. Sci. 2010, 411, 888–896. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhang, Y.M.; Zhou, W.H.; Liu, H.F. Solving traveling salesman problem in the Adleman-Lipton model. Appl. Math. Comput. 2012, 219, 2267–2270. [Google Scholar] [CrossRef]
- Castellanos-Garzn, J.A.; Garca, C.A.; Novais, P.; Díaz, F. A visual analytics framework for cluster analysis of DNA microarray data. Expert Syst. Appl. 2013, 40, 758–774. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-L.; Ho, M.; Guo, M. Fast Parallel Molecular Algorithms for DNA-based Computation: Factoring Integers. IEEE Trans. Nanobiosci. 2005, 4, 149–163. [Google Scholar] [CrossRef]
- Chang, W.L.; Ren, T.T.; Feng, M. Quantum Algorithms and Mathematical Formulations of Biomolecular Solutions of the Vertex Cover Problem in the Finite-Dimensional Hilbert Space. IEEE Trans. Nanobiosci. 2014, 14, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman and Company: New York, NY, USA, 1979. [Google Scholar]
- Zimmermann, K.H.; Ignatova, Z.; Israel, M.P. DNA Computing Models; Springer: New York, NY, USA, 2008; pp. 146–147. [Google Scholar]
- Han, A.; Zhu, D.; Pan, J. DNA Solution Based on Sequence Alignment to the Minimum Spanning Tree problem. J. Bioinform. Res. Appl. 2008, 2, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, M.; Hiroto, Y.; Matoba, T. Solutions of shortest path problems by concentration control. Lect. Notes Comput. Sci. 2002, 2340, 231–240. [Google Scholar]
- Zhang, Y.; Chu, C.H.; Chen, Y.; Zha, H.; Ji, X. Splice site prediction using support vector machines with a Bayes kernel. Expert Syst. Appl. 2006, 30, 73–81. [Google Scholar] [CrossRef]
- Braich, R.S.; Johnson, C.; Rothemund, P.W.K.; Hwang, D.; Chelyapov, N.; Adleman, L.M. Solution of a satisfiability problem on a gel-based DNA computer, in: Proceedings of the Sixth International Conference on DNA Computation (DNA 2000). Lect. Notes Comput. Sci. 2001, 2054, 27–42. [Google Scholar]
- Zhang, H.Y.; Liu, X.Y. A CLIQUE algorithm using DNA computing techniques based on closed-circle DNA sequences. Biosystems 2011, 105, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Darehmiraki, M. A New Solution for Maximal Clique Problem based Sticker Model. Biosystems 2009, 95, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Braich, R.S.; Johnson, C.; Rothemund, P.W.K.; Chelyapov, N.; Adleman, L.M. Solution of a 20-variable 3-SAT problem on a DNA computer. Science 2002, 296, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Alonso Sanches, C.A.; Soma, N.Y. A polynomial-time DNA computing solution for the Bin-Packing Problem. Appl. Math. Comput. 2009, 215, 2055–2062. [Google Scholar] [CrossRef]
- Ting, C.J.; Wu, K.C.; Chou, H. Particle swarm optimization algorithm for the berth allocation problem. Expert Syst. Appl. 2014, 41, 1543–1550. [Google Scholar] [CrossRef]
- Balachandran, V. Faster strongly polynomial algorithms for the unbalanced transportation problem and assignment problem with monge costs. Networks 2013, 62, 136–148. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Pu, J.; Cao, L.; Tan, J. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing. Int. J. Mol. Sci. 2015, 16, 25338-25352. https://doi.org/10.3390/ijms161025338
Wang Z, Pu J, Cao L, Tan J. A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing. International Journal of Molecular Sciences. 2015; 16(10):25338-25352. https://doi.org/10.3390/ijms161025338
Chicago/Turabian StyleWang, Zhaocai, Jun Pu, Liling Cao, and Jian Tan. 2015. "A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing" International Journal of Molecular Sciences 16, no. 10: 25338-25352. https://doi.org/10.3390/ijms161025338
APA StyleWang, Z., Pu, J., Cao, L., & Tan, J. (2015). A Parallel Biological Optimization Algorithm to Solve the Unbalanced Assignment Problem Based on DNA Molecular Computing. International Journal of Molecular Sciences, 16(10), 25338-25352. https://doi.org/10.3390/ijms161025338