Gender Differences in the VDR-FokI Polymorphism and Conventional Non-Genetic Risk Factors in Association with Lumbar Spine Pathologies in an Italian Case-Control Study
Abstract
:1. Introduction
2. Results
2.1. Influences of Conventional, Behavioral and Environmental Risk Factors According to Gender
2.2. VDR-FokI Genotypes and Alleles According to Gender
Categorical Variable | All Controls | All Cases | OR (95% CI) | Male Controls | Male Cases | OR (95% CI) | Female Controls | Female Cases | OR (95% CI) |
---|---|---|---|---|---|---|---|---|---|
Age ≥ 45 years | 79 (31.1) | 136 (50.9) | 2.30 (1.61–3.29) p < 0.001 | 41 (32.3) | 72 (48.3) | 1.96 (1.20–3.21) p = 0.007 | 38 (29.9) | 64 (54.2) | 2.78 (1.64–4.69) p < 0.001 |
Age ≥ 50 years | 45 (17.7) | 83 (31.1) | 2.10 (1.39–3.17) p < 0.001 | 23 (18.1) | 40 (26.8) | 1.66 (0.93–2.96) p = 0.085 | 22 (17.3) | 43 (36.4) | 2.74 (1.51–4.95) p = 0.001 |
BMI ≥ 25.0 kg/m2 | 87 (34.3) | 132 (49.4) | 1.88 (1.32–2.67) p < 0.001 | 61 (48.0) | 92 (61.7) | 1.75 (1.08–2.82) p = 0.022 | 26 (20.5) | 40 (33.9) | 1.99 (1.12–3.54) p = 0.018 |
BMI ≥ 30.0 kg/m2 | 17 (6.7) | 37 (13.9) | 2.24 (1.23–4.10) p = 0.007 | 11 (8.7) | 27 (18.1) | 2.33 (1.11–4.92) p = 0.023 | 6 (4.7) | 10 (8.5) | 1.87 (0.66–5.31) |
Family history | 37 (14.6) | 97 (36.3) | 3.35 (2.18–5.14) p < 0.001 | 13 (10.2) | 61 (40.9) | 6.08 (3.14–11.8) p < 0.001 | 24 (18.9) | 36 (30.5) | 1.88 (1.04–3.41) p = 0.035 |
Past and present smoking | 104 (40.9) | 144 (53.9) | 1.69 (1.19–2.39) p = 0.003 | 61 (48.0) | 93 (62.4) | 1.80 (1.11–2.91) p = 0.016 | 43 (33.9) | 51 (43.2) | 1.49 (0.89–2.50) |
Present smoking | 57 (22.4) | 86 (32.2) | 1.64 (1.11–2.43) p = 0.013 | 31 (24.4) | 52 (34.9) | 1.66 (0.98–2.81) p = 0.058 | 26 (20.5) | 34 (28.8) | 1.57 (0.87–2.83) |
Smoking ≥ 10 cigarettes/day | 23 (9.1) | 54 (20.2) | 2.55 (1.51–4.29) p < 0.001 | 12 (9.4) | 38 (25.5) | 3.28 (1.63–6.60) p = 0.001 | 11 (8.7) | 16 (13.6) | 1.65 (0.73–3.73) |
Smoking ≥ 20 cigarettes/day | 3 (1.2) | 18 (6.7) | 6.05 (1.76–20.8) p = 0.001 | 1 (0.8) | 15 (10.1) | 14.1 (1.84–108) p = 0.001 | 2 (1.6) | 3 (2.5) | 1.63 (0.27–9.93) |
Physical job demand more than sedentary | 155 (61.0) | 192 a (73.3) | 1.75 (1.21–2.54) p = 0.003 | 71 (55.9) | 110 (74.8) b | 2.35 (1.41–3.91) p = 0.001 | 84 (66.1) | 82 (71.3) d | 1.27 (0.74–2.20) |
Medium or intense | 91 (35.8) | 117 a (44.7) | 1.45 (1.02–2.06) p = 0.041 | 40 (31.5) | 80 (54.4) b | 2.60 (1.58–4.26) p < 0.001 | 51 (40.2) | 37 (32.2) d | 0.71 (0.42–1.20) |
Intense | 21 (8.3) | 53 a (20.2) | 2.81 (1.64–4.82) p < 0.001 | 8 (6.3) | 43 (29.3) b | 6.15 (2.77–13.7) p < 0.001 | 13 (10.2) | 10 (8.7) d | 0.84 (0.35–1.99) |
Exposure to vibration > 0 h/day | 219 (86.2) | 218 (81.6) | 0.71 (0.44–1.14) | 111 (87.4) | 127 (85.2) | 0.83 (0.42–1.66) | 108 (85.0) | 91 (77.1) | 0.59 (0.31–1.14) |
Exposure to vibration > 1 h/day | 89 (35.0) | 124 (46.4) | 1.61 (1.13–2.29) p = 0.008 | 47 (37.0) | 86 (57.7) | 2.32 (1.43–3.77) p = 0.001 | 42 (33.1) | 38 (32.2) | 0.96 (0.56–1.64) |
Exposure to vibration > 2 h/day | 26 (10.2) | 66 (20.7) | 2.88 (1.76–4.71) p < 0.001 | 14 (11.0) | 52 (34.9) | 4.33 (2.26–8.28) p < 0.001 | 12 (9.4) | 14 (11.9) | 1.29 (0.57–2.92) |
Exposure to vibration > 3 h/day | 13 (5.1) | 44 (16.5) | 3.66 (1.92–6.97) p < 0.001 | 7 (5.5) | 39 (26.2) | 6.08 (2.61–14.2) p < 0.001 | 6 (4.7) | 5 (4.2) | 0.89 (0.27–3.01) |
Exposure to vibration > 4 h/day | 4 (1.6) | 32 (12.0) | 8.51 (2.97–24.4) p < 0.001 | 4 (3.1) | 31 (20.8) | 8.08 (2.77–23.6) p < 0.001 | 0 (0) | 1 (0.8) | - |
Leisure physical activity once or more per week | 148 (58.3) | 85 (31.8) | 0.34 (0.24–0.48) p < 0.001 | 81 (63.8) | 59 (39.9) c | 0.38 (0.23–0.61) p < 0.001 | 67 (52.8) | 26 (22.0) | 0.25 (0.15–0.44) p < 0.001 |
Leisure physical activity 2-fold or more per week | 104 (40.9) | 55 (20.6) | 0.38 (0.26–0.55) p < 0.001 | 60 (47.2) | 40 (27.0) c | 0.41 (0.25–0.68) p = 0.001 | 44 (34.6) | 15 (12.7) | 0.28 (0.14–0.53) p < 0.001 |
Variables | Controls n = 254 (%) | Cases n = 267 (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All Subjects n = 254 | Males n = 127 (50.0) | Females n = 127 (50.0) | All Subjects n = 267 | Males n = 149 (55.8) | Females n = 118 (44.2) | All Subjects n = 521 | Males n = 276 | Females n = 245 | All Subjects | Males | Females | ||
VDR-FokI genotypes | FF | 101 (39.8) | 51 (40.2) | 50 (39.4) | 117 (43.8) | 71 (47.7) | 46 (39.0) | 1.18 (0.83–1.68) | 1.36 (0.84–2.19) | 0.98 (0.59–1.64) | 1.13 (0.77–1.66) | 1.40 (0.79–2.48) | 1.08 (0.62–1.88) |
Ff | 117 (46.1) | 56 (44.1) | 61 (48.0) | 120 (44.9) | 66 (44.3) | 54 (45.8) | 0.96 (0.68–1.35) | 1.01 (0.63–1.62) | 0.91 (0.55–1.51) | 0.94 (0.64–1.38) | 0.97 (0.55–1.72) | 0.81 (0.47–1.39) | |
ff | 36 (14.2) | 20 (15.7) | 16 (12.6) | 30 (11.2) | 12 (8.1) | 18 (15.3) | 0.77 (0.46–1.29) | 0.47 (0.22–1.00) p = 0.047 | 1.25 (0.60–2.58) | 0.89 (0.50–1.58) | 0.48 (0.19–1.20) | 1.34 (0.61–2.92) | |
VDR-FokI alleles | F | 319/508 (62.8) | 158/254 (62.2) | 161/254 (63.4) | 354/534 (66.3) | 208/298 (69.8) | 146/236 (61.9) | 1.17 (0.90–1.50) | 1.40 (0.99–2.00) p = 0.060 | 0.94 (0.65–1.35) | 1.10 (0.83–1.45) | 1.42 (0.93–2.17) | 0.97 (0.65–1.43) |
f | 189/508 (37.2) | 96/254 (37.8) | 93/254 (36.6) | 180/534 (33.7) | 90/298 (30.2) | 90/236 (38.1) | 0.86 (0.67–1.11) | 0.71 (0.50–1.01) p = 0.060 | 1.07 (0.74–1.54) | 0.91 (0.69–1.21) | 0.71 (0.46–1.08) | 1.04 (0.70–1.53) |
Variables | FF n (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value | Ff n (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value | ff n (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value |
---|---|---|---|---|---|---|---|---|---|
Controls n =127 | 51 (40.2) | - | - | 56 (44.1) | - | - | 20 (15.7) | - | - |
Subgroup 1 n = 48 | 25 (52.1) | 1.62 (0.83–3.16) | 1.46 (0.65–3.27) | 19 (39.6) | 0.83 (0.42–1.63) | 0.82 (0.37–1.84) | 4 (8.3) | 0.49 (0.16–1.51) | 0.62 (0.18–2.22) |
Subgroup 2 n = 55 | 29 (52.7) | 1.66 (0.88–3.14) | 2.32 (1.02–5.30) p = 0.045 | 23 (41.8) | 0.91 (0.48–1.73) | 0.72 (0.32–1.62) | 3 (5.5) | 0.31 (0.09–1.09) p = 0.055 | 0.24 (0.05–1.14) p = 0.073 |
Subgroup 3 n = 21 | 7 (33.3) | 0.75 (0.28–1.97) | 0.70 (0.22–2.23) | 12 (57.1) | 1.69 (0.67–4.30) | 2.34 (0.75–7.31) | 2 (9.5) | 0.56 (0.12–2.61) | 0.30 (0.04–2.04) |
Subgroup 4 n = 25 | 10 (40.0) | 0.99 (0.41–2.38) | 0.93 (0.33–2.58) | 12 (48.0) | 1.17 (0.50–2.76) | 1.24 (0.47–3.31) | 3 (12.0) | 0.73 (0.20–2.67) | 0.80 (0.19–3.37) |
Subgroup 1 + 2 + 3 n = 124 | 61 (49.2) | 1.44 (0.88–2.38) | 1.48 (0.81–2.69) | 54 (43.5) | 0.98 (0.59–1.61) | 0.95 (0.52–1.74) | 9 (7.3) | 0.42 (0.18–0.96) p = 0.035 | 0.43 (0.16–1.17) p = 0.097 |
Subgroup A n = 103 | 54 (52.4) | 1.64 (0.97–2.78) p = 0.063 | 1.80 (0.94–3.43) p = 0.074 | 42 (40.8) | 0.87 (0.52–1.48) | 0.75 (0.39–1.44) | 7 (6.8) | 0.39 (0.16–0.96) p = 0.036 | 0.47 (0.16–1.36) |
Subgroup B n = 76 | 36 (47.4) | 1.34 (0.76–2.38) | 1.59 (0.78–3.22) | 35 (46.1) | 1.08 (061–1.92) | 1.06 (0.53–2.14) | 5 (6.6) | 0.38 (0.14–1.05) p = 0.054 | 0.23 (0.06–0.88) p = 0.032 |
Subgroup C n = 27 | 16 (59.3) | 2.17 (0.93–5.05) p = 0.069 | 2.59 (0.89–7.50) p = 0.079 | 10 (37.0) | 0.75 (0.32–1.76) | 0.67 (0.23–1.90) | 1 (3.7) | 0.21 (0.03–1.60) p = 0.098 | 0.18 (0.02–1.84) |
Subgroup D n = 40 | 19 (47.5) | 1.35 (0.66–2.76) | 1.94 (0.79–4.79) | 19 (47.5) | 1.15 (0.56–2.34) | 0.90 (0.37–2.16) | 2 (5.0) | 0.28 (0.06–1.26) p = 0.080 | 0.22 (0.04–1.31) p = 0.096 |
Variables | FF n (%) | Crude OR | Adjusted OR 1 | Ff n (%) | Crude OR | Adjusted OR 1 | ff n (%) | Crude OR | Adjusted OR 1 |
---|---|---|---|---|---|---|---|---|---|
(95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | (95% CI) | ||||
p Value | p Value | p Value | p Value | p Value | p Value | ||||
Controls n = 127 | 50 (39.4) | - | - | 61 (48.0) | - | - | 16 (12.6) | - | - |
Subgroup 1 n = 41 | 12 (29.3) | 0.64 (0.30–1.36) | 0.75 (0.34–1.66) | 21 (51.2) | 1.14 (0.56–2.30) | 0.96 (0.45–2.04) | 8 (19.5) | 1.68 (0.66–4.28) | 1.81 (0.65–4.99) |
Subgroup 2 n = 32 | 20 (62.5) | 2.57 (1.15–5.71) p = 0.018 | 2.48 (1.07–5.74) p = 0.034 | 9 (28.1) | 0.42 (0.18–0.99) p = 0.043 | 0.38 (0.16–0.93) p = 0.033 | 3 (9.4) | 0.72 (0.20–2.63) | 1.02 (0.25–4.06) |
Subgroup 3 n = 19 | 7 (36.8) | 0.90 (0.33–2.44) | 0.90 (0.32–2.54) | 11 (57.9) | 1.49 (0.56–3.94) | 1.41 (0.50–3.96) | 1 (5.3) | 0.39 (0.05–3.09) | 0.43 (0.05–3.72) |
Subgroup 4 n = 26 | 7 (26.9) | 0.57 (0.22–1.45) | 0.55 (0.19–1.57) | 13 (50.0) | 1.08 (0.47–2.52) | 0.89 (0.34–2.30) | 6 (23.1) | 2.08 (0.73–5.96) | 3.20 (0.94–11.0) p = 0.064 |
Subgroup 1 + 2 + 3 n = 92 | 39 (42.4) | 1.13 (0.66–1.96) | 1.25 (0.70–2.24) | 41 (44.6) | 0.87 (0.51–1.49) | 0.77 (0.43–1.37) | 12 (13.0) | 1.04 (0.47–2.32) | 1.10 (0.46–2.59) |
Subgroup A n = 73 | 32 (43.8) | 1.20 (0.67–2.15) | 1.30 (0.69–2.42) | 30 (41.1) | 0.76 (0.42–1.35) | 0.67 (0.36–1.25) | 11 (15.1) | 1.23 (0.54–2.82) | 1.39 (0.56–3.44) |
Subgroup B n = 51 | 27 (52.9) | 1.73 (0.90–3.34) p = 0.098 | 1.74 (0.88–3.46) | 20 (39.2) | 0.70 (0.36–1.35) | 0.64 (0.32–1.28) | 4 (7.8) | 0.59 (0.19–1.86) | 0.71 (0.21–2.36) |
Subgroup C n = 37 | 21 (56.8) | 2.02 (0.96–4.24) p = 0.060 | 1.88 (0.87–4.08) | 12 (32.4) | 0.52 (0.24–1.12) p = 0.093 | 0.49 (0.22–1.10) p = 0.083 | 4 (10.8) | 0.84 (0.26–2.69) | 1.07 (0.31–3.65) |
Subgroup D n = 10 | 5 (50.0) | 1.54 (0.42–5.59) | 1.62 (0.43–6.06) | 5 (50.0) | 1.08 (0.30–3.92) | 1.01 (0.26–3.85) | 0 (-) | - | - |
Male Subjects | ||||||
---|---|---|---|---|---|---|
Variables | F n (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value | f n (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value |
Controls n = 254 | 158 (62.2) | - | - | 96 (37.8) | - | - |
Subgroup 1 n = 96 | 69 (71.9) | 1.55 (0.93–2.59) p = 0.091 | 1.37 (0.75–2.50) | 27 (28.1) | 0.64 (0.39–1.08) p = 0.091 | 0.73 (0.40–1.34) |
Subgroup 2 n = 110 | 81 (73.6) | 1.70 (1.04–2.78) p = 0.035 | 2.16 (1.15–4.05) p = 0.017 | 29 (26.4) | 0.59 (0.36–0.97) p = 0.035 | 0.46 (0.25–0.87) p = 0.017 |
Subgroup 3 n = 42 | 26 (61.9) | 0.99 (0.50–1.93) | 1.09 (0.50–2.37) | 16 (38.1) | 1.01 (0.52–1.98) | 0.92 (0.42–2.01) |
Subgroup 4 n = 50 | 32 (64.0) | 1.08 (0.58–2.03) | 1.01 (0.49–2.09) | 18 (36.0) | 0.93 (0.49–1.74) | 0.99 (0.48–2.03) |
Subgroup 1 + 2 + 3 n = 248 | 176 (71.0) | 1.49 (1.02–2.16) p = 0.038 | 1.50 (0.95–2.35) p = 0.080 | 72 (29.0) | 0.67 (0.46–0.98) p = 0.038 | 0.67 (0.43–1.05) p = 0.080 |
Subgroup A n = 206 | 150 (72.8) | 1.63 (1.09–2.42) p = 0.016 | 1.66 (1.02–2.70) p = 0.042 | 56 (27.2) | 0.61 (0.41–0.92) p = 0.016 | 0.60 (0.37–0.98) p = 0.042 |
Subgroup B n = 152 | 107 (70.4) | 1.45 (0.94–2.22) p = 0.093 | 1.72 (1.01–2.95) p = 0.048 | 45 (29.6) | 0.69 (0.45–1.07) p = 0.093 | 0.58 (0.34–0.99) p = 0.048 |
Subgroup C n = 54 | 42 (77.8) | 2.13 (1.07–4.24) p = 0.029 | 2.36 (1.02–5.44) p = 0.044 | 12 (22.2) | 0.47 (0.24–0.94) p = 0.029 | 0.42 (0.18–0.98) p = 0.044 |
Subgroup D n = 80 | 57 (71.3) | 1.51 (0.87–2.60) | 1.92 (0.97–3.80) p = 0.060 | 23 (28.8) | 0.66 (0.38–1.15) | 0.52 (0.26–1.03) p = 0.060 |
Female Subjects | ||||||
---|---|---|---|---|---|---|
Variables | F n (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value | f n (%) | Crude OR (95% CI) p Value | Adjusted OR 1 (95% CI) p Value |
Controls n = 254 | 161 (63.4) | - | - | 93 (36.6) | - | - |
Subgroup 1 n = 82 | 45 (54.9) | 0.70 (0.42–1.16) | 0.75 (0.44–1.28) | 37 (45.1) | 1.42 (0.86–2.36) | 1.33 (0.78–2.27) |
Subgroup 2 n = 64 | 49 (76.6) | 1.89 (1.00–3.55) p = 0.047 | 1.71 (0.89–3.28) | 15 (23.4) | 0.53 (0.28–1.00) p = 0.047 | 0.59 (0.31–1.13) |
Subgroup 3 n = 38 | 25 (65.8) | 1.11 (0.54–2.28) | 1.08 (0.52–2.26) | 13 (34.2) | 0.90 (0.44–1.84) | 0.93 (0.44–1.94) |
Subgroup 4 n = 52 | 27 (51.9) | 0.62 (0.34–1.14) | 0.55 (0.28–1.09) p = 0.085 | 25 (48.1) | 1.60 (0.88–2.92) | 1.82 (0.92–3.59) p = 0.085 |
Subgroup 1 + 2+ 3 n = 184 | 119 (64.7) | 1.06 (0.71–1.57) | 1.10 (0.73–1.67) | 65 (35.3) | 0.95 (0.64–1.41) | 0.91 (0.60–1.38) |
Subgroup A n = 146 | 94 (64.4) | 1.04 (0.68–1.60) | 1.06 (0.68–1.67) | 52 (35.6) | 0.96 (0.63–1.46) | 0.94 (0.60–1.48) |
Subgroup B n = 102 | 74 (72.5) | 1.53 (0.92–2.53) p = 0.099 | 1.45 (0.86–2.44) | 28 (27.5) | 0.66 (0.40–1.09) p = 0.099 | 0.69 (0.41–1.16) |
Subgroup C n = 74 | 54 (73.0) | 1.56 (0.88–2.77) | 1.40 (0.77–2.53) | 20 (27.0) | 0.64 (0.36–1.14) | 0.72 (0.40–1.29) |
Subgroup D n = 20 | 15 (75.0) | 1.73 (0.61–4.92) | 1.74 (0.60–5.00) | 5 (25.0) | 0.58 (0.20–1.64) | 0.58 (0.20–1.66) |
3. Discussion
4. Experimental Section
4.1. Subjects and Clinical Assessment
4.2. Conventional, Behavioral and Environmental Factors Evaluation
4.3. Determination of VDR-FokI Polymorphism
4.4. Statistical Analysis
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Colombini, A.; Cauci, S.; Lombardi, G.; Lanteri, P.; Croiset, S.; Brayda-Bruno, M.; Banfi, G. Relationship between vitamin d receptor gene (VDR) polymorphisms, vitamin D status, osteoarthritis and intervertebral disc degeneration. J. Steroid Biochem. Mol. Biol. 2013, 138C, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Videman, T.; Leppavuori, J.; Kaprio, J.; Battie, M.C.; Gibbons, L.E.; Peltonen, L.; Koskenvuo, M. Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine (Phila Pa 1976) 1998, 23, 2477–2485. [Google Scholar] [CrossRef]
- Uitterlinden, A.G.; Fang, Y.; van Meurs, J.B.; Pols, H.A.; van Leeuwen, J.P. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338, 143–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arai, H.; Miyamoto, K.; Taketani, Y.; Yamamoto, H.; Iemori, Y.; Morita, K.; Tonai, T.; Nishisho, T.; Mori, S.; Takeda, E. A vitamin D receptor gene polymorphism in the translation initiation codon: Effect on protein activity and relation to bone mineral density in Japanese women. J. Bone Miner. Res. 1997, 12, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Jurutka, P.W.; Remus, L.S.; Whitfield, G.K.; Thompson, P.D.; Hsieh, J.C.; Zitzer, H.; Tavakkoli, P.; Galligan, M.A.; Dang, H.T.; Haussler, C.A.; et al. The polymorphic N terminus in human vitamin D receptor isoforms influences transcriptional activity by modulating interaction with transcription factor IIB. Mol. Endocrinol. 2000, 14, 401–420. [Google Scholar] [CrossRef] [PubMed]
- Jurutka, P.W.; Whitfield, G.K.; Hsieh, J.C.; Thompson, P.D.; Haussler, C.A.; Haussler, M.R. Molecular nature of the vitamin D receptor and its role in regulation of gene expression. Rev. Endocr. Metab. Disord. 2001, 2, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Haussler, M.R.; Haussler, C.A.; Jurutka, P.W.; Thompson, P.D.; Hsieh, J.C.; Remus, L.S.; Selznick, S.H.; Whitfield, G.K. The vitamin D hormone and its nuclear receptor: Molecular actions and disease states. J. Endocrinol. 1997, 154, S57–S73. [Google Scholar] [CrossRef] [PubMed]
- Carlberg, C.; Molnar, F. Current status of vitamin D signaling and its therapeutic applications. Curr. Top. Med. Chem. 2012, 12, 528–547. [Google Scholar] [CrossRef] [PubMed]
- Berlanga-Taylor, A.J.; Knight, J.C. An integrated approach to defining genetic and environmental determinants for major clinical outcomes involving vitamin D. Mol. Diagn. Ther. 2014, 18, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Pike, J.W.; Meyer, M.B. The vitamin D receptor: New paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Rheum. Dis. Clin. N. Am. 2010, 39, 255–269. [Google Scholar]
- Colombini, A.; Lanteri, P.; Lombardi, G.; Grasso, D.; Recordati, C.; Lovi, A.; Banfi, G.; Bassani, R.; Brayda-Bruno, M. Metabolic effects of vitamin D active metabolites in monolayer and micromass cultures of nucleus pulposus and annulus fibrosus cells isolated from human intervertebral disc. Int. J. Biochem. Cell Biol. 2012, 44, 1019–1030. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.E.; Hoelscher, G.; Ingram, J.A.; Chow, Y.; Loeffler, B.; Hanley, E.N., Jr. 1,25(OH)2-vitamin D3 inhibits proliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro. Spine (Phila Pa 1976) 2008, 33, 755–765. [Google Scholar] [CrossRef]
- Eser, B.; Cora, T.; Eser, O.; Kalkan, E.; Haktanir, A.; Erdogan, M.O.; Solak, M. Association of the polymorphisms of vitamin D receptor and aggrecan genes with degenerative disc disease. Genet. Test. Mol. Biomark. 2010, 14, 313–317. [Google Scholar] [CrossRef]
- Nunes, F.T.B.; Conforti-Froes, N.D.T.; Negrelli, W.F.; Sousa, D.R.S. Genetic and environmental factors involved on intervertebral disc degeneration. Acta Ortop. Bras. 2007, 15, 9–13. [Google Scholar] [CrossRef]
- Omair, A.; Lie, B.A.; Reikeras, O.; Brox, J.I. An association study of interleukin 18 receptor genes (IL18R1 and IL18RAP) in lumbar disc degeneration. Open Orthop. J. 2012, 6, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Mayer, J.E.; Iatridis, J.C.; Chan, D.; Qureshi, S.A.; Gottesman, O.; Hecht, A.C. Genetic polymorphisms associated with intervertebral disc degeneration. Spine J. 2013, 13, 299–317. [Google Scholar] [CrossRef] [PubMed]
- Karppinen, J.; Daavittila, I.; Solovieva, S.; Kuisma, M.; Taimela, S.; Natri, A.; Haapea, M.; Korpelainen, R.; Niinimaki, J.; Tervonen, O.; et al. Genetic factors are associated with modic changes in endplates of lumbar vertebral bodies. Spine (Phila Pa 1976) 2008, 33, 1236–1241. [Google Scholar] [CrossRef]
- Virtanen, I.M.; Karppinen, J.; Taimela, S.; Ott, J.; Barral, S.; Kaikkonen, K.; Heikkila, O.; Mutanen, P.; Noponen, N.; Mannikko, M.; et al. Occupational and genetic risk factors associated with intervertebral disc disease. Spine (Phila Pa 1976) 2007, 32, 1129–1134. [Google Scholar] [CrossRef]
- Xu, G.; Mei, Q.; Zhou, D.; Wu, J.; Han, L. Vitamin D receptor gene and aggrecan gene polymorphisms and the risk of intervertebral disc degeneration—A meta-analysis. PLoS One 2012, 7, e50243. [Google Scholar] [CrossRef] [PubMed]
- Colombini, A.; Brayda-Bruno, M.; Lombardi, G.; Croiset, S.J.; Vrech, V.; Maione, V.; Banfi, G.; Cauci, S. FokI polymorphism in the vitamin D receptor gene (VDR) and its association with lumbar spine pathologies in the Italian population: A case-control study. PLoS One 2014, 9, e97027. [Google Scholar] [CrossRef] [PubMed]
- Baggio, G.; Corsini, A.; Floreani, A.; Giannini, S.; Zagonel, V. Gender medicine: A task for the third millennium. Clin. Chem. Lab. Med. 2013, 51, 713–727. [Google Scholar] [CrossRef] [PubMed]
- Messing, K.; Stock, S.R.; Tissot, F. Should studies of risk factors for musculoskeletal disorders be stratified by gender? Lessons from the 1998 Quebec health and social survey. Scand. J. Work Environ. Health 2009, 35, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Boos, N.; Aebi, M. Individual risk factors. In Spinal Disorders: Fundamentals of Diagnosis and Treatment; Boos, N., Aebi, M., Eds.; Springer-Verlag: Berlin, Heidelberg, Germany, 2008; p. 161. [Google Scholar]
- An, H.S.; Silveri, C.P.; Simpson, J.M.; File, P.; Simmons, C.; Simeone, F.A.; Balderston, R.A. Comparison of smoking habits between patients with surgically confirmed herniated lumbar and cervical disc disease and controls. J. Spinal Disord. 1994, 7, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Kelsey, J.L.; Githens, P.B.; O’Conner, T.; Weil, U.; Calogero, J.A.; Holford, T.R.; White, A.A., III; Walter, S.D.; Ostfeld, A.M.; Southwick, W.O. Acute prolapsed lumbar intervertebral disc: An epidemiologic study with special reference to driving automobiles and cigarette smoking. Spine (Phila Pa 1976) 1984, 9, 608–613. [Google Scholar] [CrossRef]
- Shimia, M.; Babaei-Ghazani, A.; Sadat, B.E.; Habibi, B.; Habibzadeh, A. Risk factors of recurrent lumbar disk herniation. Asian J. Neurosurg. 2013, 8, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Falchetti, A.; Sferrazza, C.; Cepollaro, C.; Gozzini, A.; del Monte, F.; Masi, L.; Napoli, N.; di Fede, G.; Cannone, V.; Cusumano, G.; et al. FokI polymorphism of the vitamin D receptor gene correlates with parameters of bone mass and turnover in a female population of the Italian island of Lampedusa. Calcif. Tissue Int. 2007, 80, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Neyestani, T.R.; Djazayery, A.; Shab-Bidar, S.; Eshraghian, M.R.; Kalayi, A.; Shariatzadeh, N.; Khalaji, N.; Zahedirad, M.; Gharavi, A.; Houshiarrad, A.; et al. Vitamin D receptor Fok-I polymorphism modulates diabetic host response to vitamin D intake: Need for a nutrigenetic approach. Diabetes Care 2013, 36, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int. 2009, 20, 1807–1820. [Google Scholar] [CrossRef] [PubMed]
- Carnevale, V.; Modoni, S.; Pileri, M.; di Giorgio, A.; Chiodini, I.; Minisola, S.; Vieth, R.; Scillitani, A. Longitudinal evaluation of vitamin D status in healthy subjects from Southern Italy: Seasonal and gender differences. Osteoporos. Int. 2001, 12, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Abbas, S.; Nieters, A.; Linseisen, J.; Slanger, T.; Kropp, S.; Mutschelknauss, E.J.; Flesch-Janys, D.; Chang-Claude, J. Vitamin D receptor gene polymorphisms and haplotypes and postmenopausal breast cancer risk. Breast Cancer Res. 2008, 10, R31. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colombini, A.; Brayda-Bruno, M.; Ferino, L.; Lombardi, G.; Maione, V.; Banfi, G.; Cauci, S. Gender Differences in the VDR-FokI Polymorphism and Conventional Non-Genetic Risk Factors in Association with Lumbar Spine Pathologies in an Italian Case-Control Study. Int. J. Mol. Sci. 2015, 16, 3722-3739. https://doi.org/10.3390/ijms16023722
Colombini A, Brayda-Bruno M, Ferino L, Lombardi G, Maione V, Banfi G, Cauci S. Gender Differences in the VDR-FokI Polymorphism and Conventional Non-Genetic Risk Factors in Association with Lumbar Spine Pathologies in an Italian Case-Control Study. International Journal of Molecular Sciences. 2015; 16(2):3722-3739. https://doi.org/10.3390/ijms16023722
Chicago/Turabian StyleColombini, Alessandra, Marco Brayda-Bruno, Lucia Ferino, Giovanni Lombardi, Vincenzo Maione, Giuseppe Banfi, and Sabina Cauci. 2015. "Gender Differences in the VDR-FokI Polymorphism and Conventional Non-Genetic Risk Factors in Association with Lumbar Spine Pathologies in an Italian Case-Control Study" International Journal of Molecular Sciences 16, no. 2: 3722-3739. https://doi.org/10.3390/ijms16023722
APA StyleColombini, A., Brayda-Bruno, M., Ferino, L., Lombardi, G., Maione, V., Banfi, G., & Cauci, S. (2015). Gender Differences in the VDR-FokI Polymorphism and Conventional Non-Genetic Risk Factors in Association with Lumbar Spine Pathologies in an Italian Case-Control Study. International Journal of Molecular Sciences, 16(2), 3722-3739. https://doi.org/10.3390/ijms16023722