Nutritionally Enhanced Food Crops; Progress and Perspectives
Abstract
:1. Introduction
2. Biofortification of Crops
2.1. Nutritionally Enhanced Food Crops to Improve Global Health
2.1.1. Biofortified Rice
2.1.2. Biofortified Maize and Cassava
2.1.3. Biofortified Wheat
2.1.4. Nutritionally-Enhanced Feed Crops
2.2. Plants with Other Health Benefits
3. Biopharmaceuticals Produced in Plants
3.1. Public Perception and Politicization of Nutritionally Enhanced Crops
3.2. Commercial and Approval Status of Nutritionally Enhanced Crops
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Pérez-Massot, E.; Banakar, R.; Gómez-Galera, S.; Zorrilla-López, U.; Sanahuja, G.; Arjó, G.; Miralpeix, B.; Vamvaka, E.; Farré, G.; Rivera, S.M.; et al. The contribution of transgenic plants to better health through improved nutrition: Opportunities and constraints. Genes Nutr. 2013, 8, 29–41. [Google Scholar] [CrossRef]
- Farre, G.; Twyman, R.M.; Zhu, C.; Capell, T.; Christou, P. Nutritionally enhanced crops and food security: Scientific achievements versus political expediency. Curr. Opin. Biotechnol. 2011, 22, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Pachón, H.; Ortiz, D.A.; Araujo, C.; Blair, M.W.; Restrepo, J. Iron, zinc, and protein bioavailability proxy measures of meals prepared with nutritionally enhanced beans and maize. J. Food Sci. 2009, 74, H147–H154. [Google Scholar] [CrossRef]
- Gilani, G.S.; Nasim, A. Impact of foods nutritionally enhanced through biotechnology in alleviating malnutrition in developing countries. J. AOAC Int. 2007, 90, 1440–1444. [Google Scholar] [PubMed]
- Glenn, K.C. Nutritional and safety assessment of foods and feeds nutritionally improved through biotechnology—Case studies by the International Food Biotechnology Committee of ILSI. Asia Pac. J. Clin. Nutr. 2008, 17, 229–232. [Google Scholar] [PubMed]
- Stoger, E.; Fischer, R.; Moloney, M.; Ma, J.K. Plant molecular pharming for the treatment of chronic and infectious diseases. Annu. Rev. Plant Biol. 2014, 65, 743–768. [Google Scholar] [CrossRef] [PubMed]
- FAO. The State of Food Insecurity in the World, Executive Summary; FAO: Rome, Italy, 2013. [Google Scholar]
- Von Grebmer, K.; Saltzman, A.; Birol, E.; Wiesmann, D.; Prasai, N.; Yin, S.; Yohannes, Y.; Menon, P.; Thompson, J.; Sonntag, A. Global Hunger Index; International Food Policy Research Institute: Washington, DC, USA, 2014. [Google Scholar]
- Maternal and Child Nutrition. Available online: http://www.thelancet.com/series/maternal-and-child-nutrition (accessed on 11 February 2015).
- Bazuin, S.; Azadi, H.; Witlox, F. Application of GM crops in Sub-Saharan Africa: Lessons learned from Green Revolution. Biotechnol. Adv. 2011, 29, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Kershen, D.L. Trade and commerce in improved crops and food: an essay on food security. New Biotechnol. 2010, 27, 623–627. [Google Scholar] [CrossRef]
- Das, J.K.; Kumar, R.; Salam, R.A.; Bhutta, Z.A. Systematic review of zinc fortification trials. Ann. Nutr. Metab. 2013, 62 (Suppl. 1), 44–56. [Google Scholar] [CrossRef] [PubMed]
- Bhutta, Z.A.; Salam, R.A.; Das, J.K. Meeting the challenges of micronutrient malnutrition in the developing world. Br. Med. Bull. 2013, 106, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P.; Infante, H.G.; Sargent, M. Food-chain selenium and human health: Spotlight on speciation. Br. J. Nutr. 2008, 100, 238–253. [Google Scholar] [PubMed]
- Rayman, M.P. Selenium and human health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.-L.; Zhu, Y.G.; Zhang, M.; Huang, Y.Z. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil. Biol. Trace Elem. Res. 2004, 101, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Hartikainen, H. Biogeochemistry of selenium and its impact on food chain quality and human health. J. Trace Elem. Med. Biol. 2005, 18, 309–318. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Frossard, E.; Bucher, M.; Mächler, F.; Mozafar, A.; Hurrellet, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- Lyons, G.; Ortiz-Monasterio, I.; Stangoulis, J.; Graham, R. Selenium concentration in wheat grain: Is there sufficient genotypic variation to use in breeding? Plant Soil 2005, 269, 369–380. [Google Scholar] [CrossRef]
- Gregorio, G.B.; Senadhira, D.; Htut, H.; Graham, R.D. Breeding for trace mineral density in rice. Food Nutr. Bull. 2000, 21, 382–386. [Google Scholar]
- Welch, R.M.; Graham, R.D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 2004, 55, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Hirschi, K.D. Nutrient biofortification of food crops. Annu. Rev. Nutr. 2009, 29, 401–421. [Google Scholar] [CrossRef] [PubMed]
- Waters, B.M.; Sankaran, R.P. Moving micronutrients from the soil to the seeds: Genes and physiological processes from a biofortification perspective. Plant Sci. 2011, 180, 562–574. [Google Scholar] [CrossRef] [PubMed]
- Nestel, P.; Bouis, H.E.; Meenakshi, J.V.; Pfeiffer, W. Biofortification of staple food crops. J. Nutr. 2006, 136, 1064–1067. [Google Scholar] [PubMed]
- Demont, M.; Stein, A.J. Global value of GM rice: A review of expected agronomic and consumer benefits. New Biotechnol. 2013, 30, 426–436. [Google Scholar] [CrossRef]
- De Steur, H.; Blancquaert, D.; Strobbe, S.; Lambert, W.; Gellynck, X.; van der Straeten, D. Status and market potential of transgenic biofortified crops. Nat. Biotechnol. 2015, 33, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.J.; Nestel, P.; Meenakshi, J.V.; Qaim, M.; Sachdev, H.P.; Bhutta, Z.A. Plant breeding to control zinc deficiency in India: How cost-effective is biofortification? Public Health Nutr. 2007, 10, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Gaj, T.; Charles, A.; Gersbach, C.A.; Barbas, C.F., III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Jankele, R.; Svoboda, P. TAL effectors: Tools for DNA Targeting. Brief. Funct. Genomics 2014, 13, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Puchta, H.; Fauser, F. Gene targeting in plants: 25 years later. Int. J. Dev. Biol. 2013, 57, 629–637. [Google Scholar] [CrossRef]
- Gurushidze, M.; Hensel, G.; Hiekel, S.; Schedel, S.; Valkov, V.; Kumlehn, J. True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS One 2014, 9, e92046. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhang, K.; Chen, K.; Gao, C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genomics 2014, 41, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, F.; Li, X.; Baller, J.A.; Qi, Y.; Starker, C.G.; Bogdanove, A.J.; Voytas, D.F. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol. 2013, 161, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Shukla, V.K.; Doyon, Y.; Miller, J.C.; deKelver, R.C.; Moehle, E.A.; Worden, S.E.; Mitchell, J.C.; Arnold, N.L.; Gopalan, S.; Meng, X.; et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 2009, 459, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.A.; Wright, D.A.; Winfrey, R.J.; Fu, F.; Maeder, M.L.; Joung, J.K.; Voytas, D.F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 2009, 459, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Naqvi, S.; Gomez-Galera, S.; Pelacho, A.M.; Capelland, T.; Christou, P. Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci. 2007, 12, 548–555. [Google Scholar] [CrossRef]
- Mayer, J.E.; Pfeiffer, W.H.; Beyer, P. Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 2008, 11, 166–170. [Google Scholar] [CrossRef] [PubMed]
- Bouis, H.E.; Hotz, C.; McClafferty, B.; Meenakshi, J.V.; Pfeiffer, W.H. Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 2011, 32 (Suppl. 1), S31–S40. [Google Scholar] [PubMed]
- Sperotto, R.A.; Ricachenevsky, F.K.; Waldow Vde, A.; Fett, J.P. Biofortification in rice: It’s a long way to the top. Plant Sci. 2012, 190, 24–39. [Google Scholar] [CrossRef] [PubMed]
- Al-Babili, S.; Beyer, P. Golden Rice—Five years on the road—Five years to go? Trends Plant Sci. 2005, 10, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Paine, J.A.; Shipton, C.A.; Chaggar, S.; Howells, R.M.; Kennedy, M.J.; Vernon, G.; Wright, S.Y.; Hinchliffe, E.; Adams, J.L.; Silverstone, A.L.; et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 2005, 23, 482–487. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Qin, J.; Dolnikowski, G.G.; Russell, R.M.; Grusak, M.A. Golden Rice is an effective source of vitamin A. Am. J. Clin. Nutr. 2009, 89, 1776–1783. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.; Hu, Y.; Yin, S.A.; Wang, Y.; Dallal, G.E.; Grusak, M.A.; Russell, R.M. β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children. Am. J. Clin. Nutr. 2012, 96, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Shumskaya, M.; Wurtzel, E.T. The carotenoid biosynthetic pathway: Thinking in all dimensions. Plant Sci. 2013, 208, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Tanumihardjo, S.A.; Palacios, N.; Pixley, K.V. Provitamin a carotenoid bioavailability: What really matters? Int. J. Vitam. Nutr. Res. 2010, 80, 336–350. [Google Scholar] [CrossRef] [PubMed]
- Haskell, M.J. The Challenge to reach nutritional adequacy for vitamin A: β-carotene bioavailability and conversion—Evidence in humans. Am. J. Clin. Nutr. 2012, 96, 1193S–1203S. [Google Scholar] [CrossRef] [PubMed]
- Xudong, Y.; al-Babili, S.; Klöti, A.; Zhang, J.; Lucca, P.; Beyer, P.; Potrykus, I. Engineering the provitamin A (b-carotene) biosynthetic pathway into carotenoid-free) rice endosperm. Science 2000, 287, 303–305. [Google Scholar] [CrossRef] [PubMed]
- Moghissi, A.A.; Pei, S.; Liu, Y. Golden rice: Scientific, regulatory and public information processes of a genetically modified organism. Crit. Rev. Biotechnol. 2015, 21, 1–7. [Google Scholar] [CrossRef]
- Van Loo-Bouwman, C.A.; Naber, T.H.; Schaafsma, G. A review of vitamin A equivalency of β-carotene in various food matrices for human consumption. Br. J. Nutr. 2014, 111, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Murray-Kolb, L.E.; Takaiwa, F.; Goto, F.; Yoshihara, T.; Theil, E.C.; Beard, J.L. Transgenic rice is a source of iron for iron-depleted rats. J. Nutr. 2002, 132, 957–960. [Google Scholar] [PubMed]
- De Steur, H.; Blancquaert, D.; Gellynck, X.; Lambert, W.; van der Straeten, D. Ex-ante evaluation of biotechnology innovations: The case of folate biofortified rice in China. Curr. Pharm. Biotechnol. 2012, 13, 2751–2760. [Google Scholar] [CrossRef] [PubMed]
- Cockell, K.A. An overview of methods for assessment of iron bioavailability from foods nutritionally enhanced through biotechnology. J. AOAC Int. 2007, 90, 1480–1491. [Google Scholar] [PubMed]
- Vasconcelos, M.; Datta, K.; Oliva, N.; Khalekuzzaman, M.; Torrizo, L.; Krishnan, S.; Oliveira, M.; Goto, F.; Datta, S.K. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 2003, 164, 371–378. [Google Scholar] [CrossRef]
- Landoni, M.; Cerino Badone, F.; Haman, N.; Schiraldi, A.; Fessas, D.; Cesari, V.; Toschi, I.; Cremona, R.; Delogu, C.; Villa, D.; et al. Low phytic acid 1 mutation in maize modifies density, starch properties, cations, and fiber contents in the seed. J. Agric. Food Chem. 2013, 61, 4622–4630. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Sharma, S.; Dar, B.N.; Singh, B. Optimization of process for reduction of antinutritional factors in edible cereal brans. Food Sci. Technol. Int. 2012, 18, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.Q.; Chan, M.L.; Duan, R.X.; Yu, H.X.; Gu, M.H.; Sun, M. Regulation of Lysine Synthesis and Catabolism in Rice. Abstract in Plant Genomics in China. PGCIX. 2008. Available online: http://www.plantgenomics.cn/abslist.cgi?absid=789 (accessed on 15 August 2014).
- De Steur, H.; Gellynck, X.; Blancquaert, D.; Lambert, W.; van der Straeten, D.; Qaim, M. Potential impact and cost-effectiveness of multi-biofortified rice in China. New Biotechnol. 2012, 29, 432–442. [Google Scholar] [CrossRef]
- Haas, J.D.; Beard, J.L.; Murray-Kolb, L.E.; del Mundo, A.M.; Felix, A.; Gregorio, G.B. Iron-biofortified rice improves the iron stores of nonanemic Filipino women. J. Nutr. 2005, 135, 2823–2830. [Google Scholar] [PubMed]
- Lucca, P.; Hurrel, R.; Potrykus, I. Genetic engineering approaches to improve the bioavailability and the level of iron in the rice grains. Theor. Appl. Genet. 2002, 102, 392–397. [Google Scholar] [CrossRef]
- Moretti, D.; Biebinger, R.; Bruins, M.J.; Hoeft, B.; Kraemer, K. Bioavailability of iron, zinc, folic acid, and vitamin A from fortified maize. Ann. N. Y. Acad. Sci. 2014, 1312, 54–65. [Google Scholar] [CrossRef]
- Brnić, M.; Wegmüller, R.; Zeder, C.; Senti, G.; Hurrell, R.F. Influence of phytase, EDTA, and polyphenols on zinc absorption in adults from porridges fortified with zinc sulfate or zinc oxide. J. Nutr. 2014, 144, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.Q.; Ji, C.; Zhao, L.H.; Zhang, J.Y.; Ma, Q.G. Phytase transgenic corn in nutrition of laying hens: Residual phytase activity and phytate phosphorus content in the gastrointestinal tract. Poult. Sci. 2013, 92, 2923–2929. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Paul, S.; Gayen, D.; Sarkar, S.N.; Datta, K.; Datta, S.K. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakisphosphate 2-kinase gene (IPK1). PLoS One 2013, 8, e68161. [Google Scholar] [CrossRef] [PubMed]
- Li, S.S.; Nugroho, A.; Rocheford, T.; White, W.S. Vitamin A equivalence of the β-carotene in β-carotene-biofortified maize porridge consumed by women. Am. J. Clin. Nutr. 2010, 92, 1105–1112. [Google Scholar] [CrossRef] [PubMed]
- Muzhingi, T.; Gadaga, T.H.; Siwela, A.H.; Grusak, M.A.; Russell, R.M.; Tang, G. Yellow maize with high β-carotene is an effective source of vitamin A in healthy Zimbabwean men. Am. J. Clin. Nutr. 2011, 94, 510–519. [Google Scholar] [CrossRef] [PubMed]
- Howe, J.A.; Tanumihardjo, S.A. Carotenoid-biofortified maize maintains adequate vitamin a status in Mongolian gerbils. J. Nutr. 2006, 136, 2562–2567. [Google Scholar] [PubMed]
- Pillay, K.; Siwela, M.; Derera, J.; Veldman, F.J. Provitamin A carotenoids in biofortified maize and their retention during processing and preparation of South African maize foods. J. Food Sci. Technol. 2014, 51, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Mugode, L.; Há, B.; Kaunda, A.; Sikombe, T.; Phiri, S.; Mutale, R.; Davis, C.; Tanumihardjo, S.; de Moura, F.F. Carotenoid retention of biofortified provitamin a maize (Zea mays L.) after Zambian traditional methods of milling, cooking and storage. J. Agric. Food Chem. 2014, 62, 6317–6325. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Guerinot, M.L. Biofortified and bioavailable: The gold standard for plant-based diets. Proc. Natl. Acad. Sci. USA 2008, 105, 1777–1778. [Google Scholar] [CrossRef] [PubMed]
- Naqvi, S.; Zhu, C.; Farre, G.; Ramessar, K.; Bassie, L.; Breitenbach, J.; Perez Conesa, D.; Ros, G.; Sandmann, G.; Capell, T.; et al. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA 2009, 106, 7762–7767. [Google Scholar] [CrossRef] [PubMed]
- La Frano, M.R.; Woodhouse, L.R.; Burnett, D.J.; Burri, B.J. Biofortified cassava increases β-carotene and vitamin A concentrations in the TAG-rich plasma layer of American women. Br. J. Nutr. 2013, 110, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Sayre, R.; Beeching, J.R.; Cahoon, E.B.; Egesi, C.; Fauquet, C.; Fellman, J.; Fregene, M.; Gruissem, W.; Mallowa, S.; Manary, M.; et al. The BioCassava plus program: Biofortification of cassava for sub-Saharan Africa. Annu. Rev. Plant Biol. 2011, 62, 251–272. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Guerrero, E.; Narayanan, N.N.; Ihemere, U.; Sayre, R.T. Iron and protein biofortification of cassava: Lessons learned. Curr. Opin. Biotechnol. 2012, 23, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, A. GM Wheat Means Hope for Celiac Sufferers. 2010. Available online: http://www.foodsafetynews.com/2010/01/genetically-modified-foods-are-becoming-1/ (accessed on 15 August 2014).
- Gil-Humanes, J.; Pistón, F.; Barro, F.; Rosell, C.M. The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One 2014, 9, e91931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borrill, P.; Connorton, J.M.; Balk, J.; Miller, A.J.; Sanders, D.; Uauy, C. Biofortification of wheat grain with iron and zinc: Integrating novel genomic resources and knowledge from model crops. Font. Plant Sci. 2014, 5, 53. [Google Scholar] [CrossRef]
- Hotz, C. The potential to improve zinc status through biofortification of staple food crops with zinc. Food Nutr. Bull. 2009, 30 (Suppl. 1), S172–S178. [Google Scholar] [PubMed]
- Grillet, L.; Mari, S.; Schmidt, W. Iron in seeds—Loading pathways and subcellular localization. Front. Plant Sci. 2014, 4, 535. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I. Enrichment of fertilizers with zinc: An excellent investment for humanity and crop production in India. J. Trace Elem. Med. Biol. 2009, 23, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Kalayci, M.; Kaya, Y.; Torun, A.A.; Aydin, N.; Wang, Y.; Arisoy, Z.; Erdem, H.; Yazici, A.; Gokmen, O.; et al. Biofortification and localization of zinc in wheat grain. J. Agric. Food Chem. 2010, 58, 9092–9102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erenoglu, E.B.; Kutman, U.B.; Ceylan, Y.; Yildiz, B.; Cakmak, I. Improved nitrogen nutrition enhances root uptake, root-to-shoot translocation and remobilization of zinc ((65) Zn) in wheat. New Phytol. 2011, 189, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Poblaciones, M.J.; Rodrigo, S.; Santamaria, O.; Chen, Y.; McGrath, S.P. Selenium accumulation and speciation in biofortified chickpea (Cicer arietinum L.) under Mediterranean conditions. J. Sci. Food Agric. 2014, 94, 1101–1106. [Google Scholar] [CrossRef] [PubMed]
- Poblaciones, M.J.; Rodrigo, S.; Santamaría, O.; Chen, Y.; McGrath, S.P. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: From grain to cooked pasta. Food Chem. 2014, 146, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, S.; Santamaria, O.; Chen, Y.; McGrath, S.P.; Poblaciones, M.J. Selenium speciation in malt, wort, and beer made from selenium-biofortified two-rowed barley grain. J. Agric. Food Chem. 2014, 62, 5948–5953. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; He, X.; Luo, Y.; Ma, L.; Tang, X.; Huang, K. Nutritional assessment of transgenic lysine-rich maize compared with conventional quality protein maize. J. Sci. Food Agric. 2013, 93, 1049–1054. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.; Xie, C.; Ma, L.; Liu, L.; Jin, Y.; Dong, J.; Wangm, T. Co-expression of bacterial aspartate kinase and adenylylsulfate reductase genes substantially increases sulfur amino acid levels in transgenic alfalfa (Medicago sativa L.). PLoS One 2014, 9, e88310. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, H.; Zhang, Y.; Kang, T.; Zhang, L.; Tong, J.; Xiao, L.; Zhang, H. Constitutive expression of cell wall invertase genes increases grain yield and starch content in maize. Plant Biotechnol. J. 2013, 11, 1080–1091. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, X.; Zhou, X.; Chen, R.; Yang, P.; Meng, Q.; Meng, K.; Luo, H.; Yuan, J.; Yao, B.; et al. Overexpression of an acidic endo-β-1,3-1,4-glucanase in transgenic maize seed for direct utilization in animal feed. PLoS One 2013, 8, e81993. [Google Scholar] [CrossRef] [PubMed]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Author information Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Wilson, S.A.; Roberts, S.C. Metabolic engineering approaches for production of biochemicals in food and medicinal plants. Curr. Opin. Biotechnol. 2014, 26, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lopez, N.; Haslam, R.P.; Napier, J.A.; Sayanova, O. Successful high-level accumulation of fish oil omega-3 long-chain polyunsaturated fatty acids in a transgenic oilseed crop. Plant J. 2014, 77, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-López, N.1.; Haslam, R.P.; Venegas-Calerón, M.; Li, T.; Bauer, J.; Napier, J.A.; Sayanova, O. Enhancing the accumulation of omega-3 long chain polyunsaturated fatty acids in transgenic Arabidopsis thaliana via iterative metabolic engineering and genetic crossing. Transgenic Res. 2012, 21, 1233–1243. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-López, N.; Sayanova, O.; Napier, J.A.; Haslam, R.P. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants. J. Exp. Bot. 2012, 63, 2397–2410. [Google Scholar] [CrossRef] [PubMed]
- Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol. 2014, 26, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Haslam, R.P.; Ruiz-Lopez, N.; Eastmond, P.; Moloney, M.; Sayanova, O.; Napier, J.A. The modification of plant oil composition via metabolic engineering—Better nutrition by design. Plant Biotechnol. J. 2013, 11, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Butelli, E.; Titta, L.; Giorgio, M.; Mock, H.P.; Matros, A.; Peterek, S.; Schijlen, E.G.; Hall, R.D.; Bovy, A.G.; Luo, J.; et al. Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat. Biotechnol. 2008, 26, 1301–1308. [Google Scholar] [CrossRef] [PubMed]
- Giovinazzo, G.; D’Amico, L.; Paradiso, A.; Bollini, R.; Sparvoli, F.; DeGara, L. Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol. J. 2005, 3, 57–69. [Google Scholar] [CrossRef] [PubMed]
- D’Introno, A.; Paradiso, A.; Scoditti, E.; D’Amico, L.; de Paolis, A.; Carluccio, M.A.; Nicoletti, I.; DeGara, L.; Santino, A.; Giovinazzo, G. Antioxidant and anti-inflammatory properties of tomato fruits synthesizing different amounts of stilbenes. Plant Biotechnol. J. 2009, 7, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Ingrosso, I.; Bonsegna, S.; de Domenico, S.; Laddomada, B.; Blando, F.; Santino, A.; Giovinazzo, G. Over-expression of a grape stilbene synthase gene in tomato induces parthenocarpy and causes abnormal pollen development. Plant Physiol. Biochem. 2011, 49, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Misra, P.; Khan, M.P.; Swarnkar, G.; Tewari, M.C.; Bhambhani, S.; Trivedi, R.; Chattopadhyay, N.; Trivedi, P.K. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity. Plant Biotechnol. J. 2014, 12, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Hefferon, K. Plant-derived pharmaceuticals for the developing world. Biotechnol. J. 2013, 8, 1193–1202. [Google Scholar] [PubMed]
- Richter, L.J.; Thanavala, Y.; Arntzen, C.J.; Mason, H.S. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol. 2000, 18, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; He, J.; Engle, M.; Diamond, M.S.; Chen, Q. Robust production of virus-like particles and monoclonal antibodies with geminiviral replicon vectors in lettuce. Plant Biotechnol. J. 2012, 10, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Davoodi-Semiromi, A.; Schreiber, M.; Nalapalli, S.; Verma, D.; Singh, N.D.; Banks, R.K.; Chakrabarti, D.; Daniell, H. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol. J. 2010, 8, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Talano, M.A.; Oller, A.L.; González, P.S.; Agostini, E. Hairy roots, their multiple applications and recent patents. Recent Pat. Biotechnol. 2012, 6, 115–133. [Google Scholar] [CrossRef] [PubMed]
- Schubert, D.R. The problem with nutritionally enhanced plants. J. Med. Food 2008, 11, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Apel, A. The costly benefits of opposing agricultural biotechnology. New Biotechnol. 2010, 27, 635–640. [Google Scholar] [CrossRef]
- Rao, C.K. Causes of Death of Cattle and Sheep in the Telengana Region of Andhra Pradesh in India; Foundation for Biotechnology Awareness and Education: Bangalore, India, 2008. [Google Scholar]
- Herring, R.J. Epistemic brokerage in the bio-property narrative: Contributions to explaining opposition to transgenic technologies in agriculture. New Biotechnol. 2010, 27, 614–622. [Google Scholar] [CrossRef]
- Casassus, B. Study linking GM maize to rat tumours is retracted: Nature News & Comment. Available online: http://www.nature.com/news/study-linking-gm-maize-to-rat-tumours-is-retracted-1.14268 (accessed on 11 February 2015).
- McMillan, T. In push to snare low income shoppers, Whole Foods to put cigarette-like warnings on GMO foods. Available online: http://geneticliteracyproject.org/2014/11/21/in-push-to-snare-low-income-shoppers-whole-foods-to-put-cigarette-like-warnings-on-gmo-foods/ (accessed on 11 February 2015).
- Sutherlin, E. Could Congress finally end the GMO labeling war. The Genetic Literacy Project; The City University of New York: New York, NY, USA, 2013. [Google Scholar]
- Bawa, A.S.; Anilakumar, K.R. Genetically modified foods: Safety, risks and public concerns—A review. J. Food Sci. Technol. 2013, 50, 1035–1046. [Google Scholar] [CrossRef] [PubMed]
- Potrykus, I. Regulation must be revolutionized. Nature 2010, 466, 561. [Google Scholar] [CrossRef] [PubMed]
- Potrykus, I. Lessons from the “Humanitarian Golden Rice” project: Regulation prevents development of public good genetically engineered crop products. New Biotechnol. 2010, 27, 466–472. [Google Scholar] [CrossRef]
- Potrykus, I. The private sector’s role in public sector genetically engineered crop projects. New Biotechnol. 2010, 27, 578–581. [Google Scholar] [CrossRef]
- Beyer, P. Golden Rice and “Golden” crops for human nutrition. New Biotechnol. 2010, 27, 478–481. [Google Scholar] [CrossRef]
- Gartland, K.M.; Bruschi, F.; Dundar, M.; Gahan, P.B.; Magni, V.; Akbarova, Y. Progress towards the “Golden Age” of biotechnology. Curr. Opin. Biotechnol. 2013, 24 (Suppl. 1), S6–S13. [Google Scholar] [CrossRef] [PubMed]
- ISAAA. Brief 46–2013: Executive Summary Global Status of Commercialized Biotech/GM Crops: 2013; ISAAA: Ithaca, NY, USA, 2015. [Google Scholar]
- Convention on Biological Diversity Biosafety Clearing House. Guidance on Risk Assessment of Living Modified Organisms Risk Assessment of Living Modified Plants with Stacked Genes or Traits. Available online: https://bch.cbd.int/onlineconferences/guidancedoc_ra_stackedgenes.shtml (accessed on 15 August 2014).
- Christer Andersson, H.; Arpaia, S.; Bartsch, D.; Casacuberta, J.; Davies, H.; du Jardin, P.; Herman, L.; Hendriksen, N.; Kärenlampi, S.; Kiss, J.; et al. EFSA panel on Genetically Modified Organisms (GMO). EFSA J. 2011, 9, 2150. [Google Scholar] [CrossRef]
- De Schrijvera, A.; Devosb, Y.; van den Bulckea, M.; Cadotc, P.; de Loosed, M.; Reheulb, D.; Sneyers, M. Risk assessment of GM stacked events obtained from crosses between GM events. Trends Food Sci. Technol. 2007, 18, 101–109. [Google Scholar]
- Food and Agriculture Organization of the United Nations FAO GM Foods Platform. 2014. Available online: http://www.fao.org/food/food-safety-quality/gm-foods-platform/en/ (accessed on 15 August 2014).
- Global Nutrition Report 2014, Actions and Accountability to Accelerate the World’s Progress on Nutrition. Available online: http://www.ifpri.org/sites/default/files/publications/ib85.pdf (accessed on 11 February 2015).
- Weale, A. Ethical arguments relevant to the use of GM crops. New Biotechnol. 2010, 27, 582–587. [Google Scholar] [CrossRef]
- Hotz, C.; Loechl, C.; de Brauw, A.; Eozenou, P.; Gilligan, D.; Moursi, M.; Munhaua, B.; van Jaarsveld, P.; Carriquiry, A.; Meenakshi, J.V. A large-scale intervention to introduce orange sweet potato in rural Mozambique increases vitamin A intakes among children and women. Br. J. Nutr. 2012, 108, 163–176. [Google Scholar] [CrossRef] [PubMed]
- Meenakshi, J.V.; Banerji, A.; Manyong, V.; Tomlins, K.; Mittal, N.; Hamukwala, P. Using a discrete choice experiment to elicit the demand for a nutritious food: Willingness-to-pay for orange maize in rural Zambia. J. Health Econ. 2012, 31, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Fiedler, J.L.; Lividini, K.; Bermudez, O.I.; Smitz, M.F. Household Consumption and Expenditures Surveys (HCES): A primer for food and nutrition analysts in low- and middle-income countries. Food Nutr. Bull. 2012, 33 (Suppl. 3), S170–S184. [Google Scholar] [PubMed]
- Joy, E.J.; Ander, E.L.; Young, S.D.; Black, C.R.; Watts, M.J.; Chilimba, A.D.; Chilima, B.; Siyame, E.W.; Kalimbira, A.A.; Hurst, R.; et al. Dietary mineral supplies in Africa. Physiol. Plant 2014, 151, 208–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiedler, J.L.; Lividini, K.; Kabaghe, G.; Zulu, R.; Tehinse, J.; Bermudez, O.I.; Jallier, V.; Guyondet, C. Assessing Zambia’s industrial fortification options: Getting beyond changes in prevalence and cost-effectiveness. Food Nutr. Bull. 2013, 34, 501–519. [Google Scholar] [PubMed]
- Fiedler, J.L.; Lividini, K.; Zulu, R.; Kabaghe, G.; Tehinse, J.; Bermudez, O.I. Identifying Zambia’s industrial fortification options: Toward overcoming the food and nutrition information gap-induced impasse. Food Nutr. Bull. 2013, 34, 480–500. [Google Scholar] [PubMed]
- Demont, M.; Devos, Y. Regulating coexistence of GM and non-GM crops without jeopardizing economic incentives. Trends Biotechnol. 2008, 26, 353–358. [Google Scholar] [CrossRef] [PubMed]
- De Moura, F.F.; Palmer, A.C.; Finkelstein, J.L.; Haas, J.D.; Murray-Kolb, L.E.; Wenger, M.J.; Birol, E.; Boy, E.; Peña-Rosas, J.P. Are biofortified staple food crops improving vitamin a and iron status in women and children? New evidence from efficacy trials. Adv. Nutr. 2014, 5, 568–570. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, D.; de Steur, H.; Gellynck, X.; van der Straeten, D. Present and future of folate biofortification of crop plants. J. Exp. Bot. 2014, 65, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Galera, S.; Rojas, E.; Sudhakar, D.; Zhu, C.; Pelacho, A.M.; Capell, T.; Christou, P. Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 2010, 19, 165–180. [Google Scholar] [CrossRef] [PubMed]
- La Frano, M.R.; de Moura, F.F.; Boy, E.; Lönnerdal, B.; Burri, B.J. Bioavailability of iron, zinc, and provitamin A carotenoids in biofortified staple crops. Nutr. Rev. 2014, 72, 289–307. [Google Scholar] [CrossRef] [PubMed]
- Farré, G.; Bai, C.; Twyman, R.M.; Capell, T.; Christou, P.; Zhu, C. Nutritious crops producing multiple carotenoids—A metabolic balancing act. Trends Plant Sci. 2011, 16, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Sanahuja, G.; Farré, G.; Berman, J.; Zorrilla-López, U.; Twyman, R.M.; Capell, T.; Christou, P.; Zhu, C. A question of balance: Achieving appropriate nutrient levels in biofortified staple crops. Nutr. Res. Rev. 2013, 26, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Casas, M.I.; Duarte, S.; Doseff, A.I.; Grotewold, E. Flavone-rich maize: An opportunity to improve the nutritional value of an important commodity crop. Front. Plant Sci. 2014, 5, 440. [Google Scholar] [CrossRef] [PubMed]
- Azmach, G.; Gedil, M.; Menkir, A.; Spillane, C. Marker-trait association analysis of functional gene markers for provitamin A levels across diverse tropical yellow maize inbred lines. BMC Plant Biol. 2013, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- De Moura, F.F.; Miloff, A.; Boy, E. Retention of provitamin a carotenoids in staple crops targeted for biofortification in africa: Cassava, maize and sweet potato. Crit. Rev. Food Sci. Nutr. 2013. [Google Scholar] [CrossRef]
- Gomes, S.; Torres, A.G.; Godoy, R.; Pacheco, S.; Carvalho, J.; Nutti, M. Effects of boiling and frying on the bioaccessibility of beta-carotene in yellow-fleshed cassava roots (Manihot esculenta Crantz cv. BRS Jari). Food Nutr. Bull. 2013, 34, 65–74. [Google Scholar] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hefferon, K.L. Nutritionally Enhanced Food Crops; Progress and Perspectives. Int. J. Mol. Sci. 2015, 16, 3895-3914. https://doi.org/10.3390/ijms16023895
Hefferon KL. Nutritionally Enhanced Food Crops; Progress and Perspectives. International Journal of Molecular Sciences. 2015; 16(2):3895-3914. https://doi.org/10.3390/ijms16023895
Chicago/Turabian StyleHefferon, Kathleen L. 2015. "Nutritionally Enhanced Food Crops; Progress and Perspectives" International Journal of Molecular Sciences 16, no. 2: 3895-3914. https://doi.org/10.3390/ijms16023895
APA StyleHefferon, K. L. (2015). Nutritionally Enhanced Food Crops; Progress and Perspectives. International Journal of Molecular Sciences, 16(2), 3895-3914. https://doi.org/10.3390/ijms16023895