Lipidomics: An Evolving Discipline in Molecular Sciences
1. The Evolution of Lipid Analysis
2. Lipidomic Approaches
- (1)
- Untargeted Lipidomics offers the capability to explore, in an unbiased fashion, the lipid composition of a sample [9,11]. Comparative, untargeted analysis offers investigators the opportunity to identify new biomarkers or previously unknown mechanistic pathways involved in health and disease or in nutrition. This exploration can yield, for example, unexpected discoveries of particular lipids involved in certain pathologies.
- (2)
- Targeted Lipidomics aims to monitor selected lipids [12]. It can be used to validate initial discoveries or for routine analysis in clinical research. Compared to untargeted approaches, targeted approaches can enhance analytical sensitivity. Such enhancement is often required before analyzing lipids like eicosanoids, which are available only in very low abundance.
- (3)
- MS Lipidomics Imaging and in situ lipidomics provide spatial information about the lipid composition in tissues—a sort of molecular microscope [13,14]. At the core of this approach is the use of a desorption ionization tool, including matrix assisted laser desorption ionization (MALDI), desorption electrospray ionization (DESI), and secondary ions mass spectrometry (SIMS). The use of other ambient ionization tools, including rapid evaporative ionization mass spectrometry (REIMS) and direct analysis in real time (DART) allow rapid, real-time screenings of lipids for predictive, preventive, and personalized medicine.
3. Challenges Ahead
4. New Technology Is Bringing Innovation in Lipidomics
5. Future Directions
Conflicts of Interest
References
- Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M.J.; Dennis, E.A. Update of the LIPID MAPS comprehensive classification system for lipids. J. Lipid Res. 2009, 50, S9–S14. [Google Scholar] [CrossRef] [PubMed]
- Quehenberger, O.; Armando, A.M.; Brown, A.H.; Milne, S.B.; Myers, D.S.; Merrill, A.H.; Bandyopadhyay, S.; Jones, K.N.; Kelly, S.; Shaner, R.L.; et al. Lipidomics reveals a remarkable diversity of lipids in human plasma. J. Lipid Res. 2010, 51, 3299–3305. [Google Scholar]
- Quehenberger, O.; Dennis, E.A. The human plasma lipidome. N. Engl. J. Med. 2011, 365, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Wenk, M.R. The emerging field of lipidomics. Nat. Rev. Drug Discov. 2005, 4, 594–610. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.A.; Murphy, R.C. Working towards an exegesis for lipids in biology. Nat. Chem. Biol. 2009, 5, 602–606. [Google Scholar] [CrossRef] [PubMed]
- Shevchenko, A.; Simons, K. Lipidomics: Coming to grips with lipid diversity. Nat. Rev. Mol. Cell Biol. 2010, 11, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Piomelli, D.; Astarita, G.; Rapaka, R. A neuroscientist’s guide to lipidomics. Nat. Rev. Neurosci. 2007, 8, 743–754. [Google Scholar] [CrossRef] [PubMed]
- Astarita, G.; Langridge, J. An emerging role for metabolomics in nutrition science. J. Nutrigenet. Nutrigenomics 2013, 6, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Wenk, M.R. Lipidomics: New tools and applications. Cell 2010, 143, 888–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, R.C.; Gaskell, S.J. New applications of mass spectrometry in lipid analysis. J. Biol. Chem. 2011, 286, 25427–25433. [Google Scholar] [CrossRef] [PubMed]
- Ollero, M.; Guerrera, I.C.; Astarita, G.; Piomelli, D.; Edelman, A. New lipidomic approaches in cystic fibrosis. Methods Mol. Biol. 2011, 742, 265–278. [Google Scholar] [PubMed]
- Astarita, G.; Kendall, A.C.; Dennis, E.A.; Nicolaou, A. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. Biochim. Biophys. Acta 2015, 1851, 456–468. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.R.; Brown, S.H.; in het Panhuis, M.; Blanksby, S.J.; Mitchell, T.W. Surface analysis of lipids by mass spectrometry: More than just imaging. Prog. Lipid Res. 2013, 52, 329–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touboul, D.; Brunelle, A.; Laprevote, O. Mass spectrometry imaging: Towards a lipid microscope? Biochimie 2011, 93, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Damen, C.W.; Isaac, G.; Langridge, J.; Hankemeier, T.; Vreeken, R.J. Enhanced lipid isomer separation in human plasma using reversed-phase UPLC with ion-mobility/high-resolution MS detection. J. Lipid Res. 2014, 55, 1772–1783. [Google Scholar] [CrossRef] [PubMed]
- Churchwell, M.I.; Twaddle, N.C.; Meeker, L.R.; Doerge, D.R. Improving LC-MS sensitivity through increases in chromatographic performance: Comparisons of UPLC-ES/MS/MS to HPLC-ES/MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 825, 134–143. [Google Scholar] [CrossRef]
- Plumb, R.S.; Johnson, K.A.; Rainville, P.; Smith, B.W.; Wilson, I.D.; Castro-Perez, J.M.; Nicholson, J.K. UPLC/MS(E): A new approach for generating molecular fragment information for biomarker structure elucidation. Rapid Commun. Mass Spectrom. 2006, 20, 1989–1994. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.E. UPLC™: An introduction and review. J. Liquid Chromatogr. Relat. Technol. 2005, 28, 1253–1263. [Google Scholar] [CrossRef]
- Jones, M.D.; Rainville, P.D.; Isaac, G.; Wilson, I.D.; Smith, N.W.; Plumb, R.S. Ultra high resolution SFC-MS as a high throughput platform for metabolic phenotyping: Application to metabolic profiling of rat and dog bile. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 966, 200–207. [Google Scholar]
- Novakova, L.; Chocholous, P.; Solich, P. Ultra-fast separation of estrogen steroids using subcritical fluid chromatography on sub-2-micron particles. Talanta 2014, 121, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Cajka, T.; Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 2014, 61, 192–206. [Google Scholar] [CrossRef]
- Lee, J.W.; Nagai, T.; Gotoh, N.; Fukusaki, E.; Bamba, T. Profiling of regioisomeric triacylglycerols in edible oils by supercritical fluid chromatography/tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 966, 193–199. [Google Scholar] [CrossRef]
- Lee, J.W.; Nishiumi, S.; Yoshida, M.; Fukusaki, E.; Bamba, T. Simultaneous profiling of polar lipids by supercritical fluid chromatography/tandem mass spectrometry with methylation. J. Chromatogr. A 2013, 1279, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Bamba, T.; Lee, J.W.; Matsubara, A.; Fukusaki, E. Metabolic profiling of lipids by supercritical fluid chromatography/mass spectrometry. J. Chromatogr. A 2012, 1250, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Paglia, G.; Angel, P.; Williams, J.P.; Richardson, K.; Olivos, H.J.; Thompson, J.W.; Menikarachchi, L.; Lai, S.; Walsh, C.; Moseley, A.; et al. Ion mobility-derived collision cross section as an additional measure for lipid fingerprinting and identification. Anal. Chem. 2015, 87, 1137–1144. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Astarita, G.; Ollero, M. Lipidomics: An Evolving Discipline in Molecular Sciences. Int. J. Mol. Sci. 2015, 16, 7748-7752. https://doi.org/10.3390/ijms16047748
Astarita G, Ollero M. Lipidomics: An Evolving Discipline in Molecular Sciences. International Journal of Molecular Sciences. 2015; 16(4):7748-7752. https://doi.org/10.3390/ijms16047748
Chicago/Turabian StyleAstarita, Giuseppe, and Mario Ollero. 2015. "Lipidomics: An Evolving Discipline in Molecular Sciences" International Journal of Molecular Sciences 16, no. 4: 7748-7752. https://doi.org/10.3390/ijms16047748
APA StyleAstarita, G., & Ollero, M. (2015). Lipidomics: An Evolving Discipline in Molecular Sciences. International Journal of Molecular Sciences, 16(4), 7748-7752. https://doi.org/10.3390/ijms16047748