A Review of the Effect of Diet on Cardiovascular Calcification
Abstract
:1. Introduction
2. Fatty Acids
3. Carbohydrates
4. Protein
5. Minerals
5.1. Calcium
5.2. Phosphorus
5.3. Magnesium
6. Vitamin D
7. Vitamin K
8. Antioxidants
8.1. Vitamin A and Carotenoids
8.2. Vitamin C
8.3. Vitamin E
8.4. Flavonoids and Polyphenols
8.5. Other Antioxidants
9. B Vitamins and Homocysteine
10. Discussion
Macro/Micro-Nutrient | Recommended Intake | Recommended Serum Level | Source |
---|---|---|---|
Trans fats; [18,29] | Avoid | N/A | Hydrogenated oils, spreads, processed foods, heated PUFAs |
Long chain ω3 fats; [21,22,26,27,28,30] | High intake | N/A | Oily fish |
Sugars; [31,32,33,34,35,36,37,38,39,40,41] | Avoid | Low glucose, mid-range insulin | Sugar, sweets, drinks, fruit juice |
Calcium; [47,53,54,55] | 800 mg/day beneficial provided no CKD or hyper-parathyroidism | N/A | Dairy products, fish, legumes, grains, vegetables |
Inorganic phosphorus; [57,61,62] | Avoid | N/A | Preservatives, colas |
Magnesium; [70,71,72,73] | ≥380 mg/day | N/A | Vegetables, nuts, seeds, fruits, grains, legumes, fish, dairy foods |
Vitamin D; [88,89,90,91,92,94,95] | N/A | ≥75 nmol/L | Sunlight, egg yolk, offal, oily fish, shellfish, fortified foods |
Vitamin K (phylloquinone); [103,104,110] | Beneficial at 500 μg/day | N/A | Vegetables, supplements |
Vitamin E (α-tocopherol); [126] | Avoid | N/A | Supplements |
Epigallocatechin gallate (EGCG); [139] | Beneficial | N/A | Green tea |
Resveratrol; [140,145] | Beneficial | N/A | Red wine, red grape juice |
Homocysteine; [156,157,158,159,161,162] | N/A | ≤12 μmol/L | N/A |
Folate; [161] | Beneficial | >39.4 nmol/L | Green leafy vegetables, wholegrains, nuts, fortified cereals |
11. Conclusions
Author Contributions
Conflicts of Interest
References
- Nicoll, R.; Henein, M. Arterial and valvular calcification: A systemic diffuse disease. ICF J. 2013, 1, 19–24. [Google Scholar]
- Nicoll, R.; Henein, M.Y. Arterial calcification: Friend or foe. Int. J. Cardiol. 2013, 167, 322–327. [Google Scholar] [CrossRef] [PubMed]
- Rennenberg, R.J.M.W.; Kessels, A.G.H.; Schurgers, J.L.; van Engelshoven, J.M.A.; de Leeuw, P.W.; Kroon, A.A. Vascular calcification as a marker of increased cardiovascular risk: A meta-analysis. Vasc. Health Risk Manag. 2009, 5, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Detrano, R.; Guerci, A.D.; Carr, J.J.; Bild, D.E.; Burke, G.; Folsom, A.R.; Liu, K.; Shea, S.; Szklo, M.; Bluemke, D.A.; et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N. Engl. J. Med. 2008, 358, 1336–1345. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, R.; Henein, M. Extensive coronary calcification: A clinically unrecognised condition. Curr. Vasc. Pharmacol. 2010, 8, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.; Bakker, M.; den Ruijter, H.M.; Bots, M.L. Added value of CAC in risk stratification for cardiovascular events: A systematic review. Eur. J. Clin. Investig. 2012, 42, 110–116. [Google Scholar] [CrossRef]
- Möhlenkamp, S.; Lehmann, N.; Greenland, P.; Moebus, S.; Kälsch, H.; Schmermund, A.; Dragano, N.; Stang, A.; Siegrist, J.; Mann, K.; et al. Coronary artery calcium score improves cardiovascular risk prediction in persons without indication for statin therapy. Atherosclerosis 2011, 215, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, C.M.; Cary, N.R.; Metcalfe, J.C.; Weissberg, P.L. High espression of genes for calcification-regulating proteins in human atherosclerotic plaque. J. Clin. Investig. 1994, 93, 2393–2402. [Google Scholar] [CrossRef] [PubMed]
- Schmid, K.; McSharry, W.O.; Pameijer, C.H.; Binette, J.P. Chemical and physicochemical studies on the mineral deposits of the human atherosclerotic aorta. Atherosclerosis 1980, 37, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Min, H.; Morony, S.; Sarosi, I.; Dunstan, C.R.; Capparelli, C.; Scully, S.; Van, G.; Kaufman, S.; Kostenuik, P.J.; Lacey, D.L.; et al. Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J. Exp. Med. 2000, 192, 463–474. [Google Scholar] [CrossRef]
- Lomashvili, K.; Garg, P.; O’Neill, W.C. Chemical and hormonal determinants of vascular calcification in vitro. Kidney Int. 2006, 69, 1464–1470. [Google Scholar] [PubMed]
- Henein, M.; Owen, A. Statins moderate coronary atheroma but not coronary calcification: Results from meta-analyses. Scand. Cardiovasc. J. 2010, 44, 3. [Google Scholar] [CrossRef]
- Rossebø, A.B.; Pedersen, T.R.; Boman, K.; Brudi, P.; Chambers, J.B.; Egstrup, K.; Gerdts, E.; Gohlke-Bärwolf, C.; Holme, I.; Kesäniemi, Y.A.; et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N. Engl. J. Med. 2008, 359, 1343–1356. [Google Scholar] [CrossRef] [PubMed]
- Jensky, N.E.; Criqui, M.H.; Wright, M.C.; Wassel, C.L.; Brody, S.A.; Allison, M.A. Blood pressure and vascular calcification. Hypertension 2010, 55, 990–997. [Google Scholar] [CrossRef] [PubMed]
- Pletcher, M.J.; Sibley, C.T.; Pignone, M.; Vittinghoff, E.; Greenland, P. Interpretation of the coronary artery calcium score in combination with conventional cardiovascular risk factors: The Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2013, 128, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Park, H.A.; Lee, J.S.; Kuller, L.H. Relationship between premenopausal dietary intake and postmenopausal subclinical atherosclerosis. Atherosclerosis 2006, 186, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Snell-Bergeon, J.K.; Chartier-Logan, C.; Maahs, D.M.; Ogden, L.G.; Hokanson, J.E.; Kinney, G.L.; Eckel, R.H.; Ehrlich, J.; Rewers, M. Adults with type 1 diabetes eat a high-fat atherogenic diet that is associated with coronary artery calcium. Diabetologia 2009, 52, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.K.; Lee, S.M.; Kim, S.E.; Kim, K.H.; Lee, S.Y.; Bae, H.R.; Han, J.Y.; Park, Y.; An, W.S. Association between vascular calcification scores on plain radiographs and fatty acid contents of erythrocyte membrane in hemodialysis patients. J. Ren. Nutr. 2012, 22, 58–66. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Liu, K.; Daviglus, M.L.; Mayer-Davis, E.; Jenny, N.S.; Jiang, R.; Ouyang, P.; Steffen, L.M.; Siscovick, D.; Wu, C.; et al. Intakes of long-chain n-3 polyunsaturated fatty acids and fish in relation to measurements of subclinical atherosclerosis. Am. J. Clin. Nutr. 2008, 88, 1111–1118. [Google Scholar] [PubMed]
- Sekikawa, A.; Curb, J.D.; Ueshima, H.; Lee, S.Y.; Bae, H.R.; Han, J.Y.; Park, Y.; An, W.S. Marine-derived n-3 fatty acids and atherosclerosis in Japanese, Japanese-American, and white men. J. Am. Coll. Cardiol. 2008, 52, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Sekikawa, A.; Miura, K.; Lee, S.; Fujiyoshi, A.; Edmundowicz, D.; Kadowaki, T. Long chain n-3 polyunsaturated fatty acids and incidence rate of coronary artery calcification in Japanese men in Japan and white men in the USA: Population based prospective cohort study. Heart 2014, 100, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Ueeda, M.; Doumei, T.; Takaya, Y.; Shinohata, R.; Katayama, Y.; Ohnishi, N.; Takaishi, A.; Miyoshi, T.; Hirohata, S.; Kusachi, S. Serum n-3 polyunsaturated fatty acid levels correlate with the extent of coronary plaques and calcifications in patients with acute myocardial infarction. Circ. J. 2008, 72, 1836–1843. [Google Scholar] [CrossRef] [PubMed]
- Heine-Bröring, R.C.; Brouwer, I.A.; Proença, R.V.; van Rooij, F.J.; Hofman, A.; Oudkerk, M.; Witteman, J.C.; Geleijnse, J.M. Intake of fish and marine n-3 fatty acids in relatio.n to coronary calcification: The Rotterdam Study. Am. J. Clin. Nutr. 2010, 91, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
- Drolet, M.C.; Couet, J.; Arsenault, M. Development of aortic valve sclerosis or stenosis in rabbits: Role of cholesterol and calcium. J. Heart Valve Dis. 2008, 17, 381–387. [Google Scholar] [PubMed]
- Birt, D.F.; Pour, P.M. Interaction of dietary fat and protein in spontaneous diseases of Syrian golden hamsters. J. Natl. Cancer Inst. 1985, 75, 127–133. [Google Scholar] [PubMed]
- Burgess, N.A.; Reynolds, T.M.; Williams, N.; Pathy, A.; Smith, S. Evaluation of four animal models of intrarenal calcium deposition and assessment of the influence of dietary supplementation with essential fatty acids on calcification. Urol. Res. 1995, 23, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Kanai, S.; Uto, K.; Honda, K.; Hagiwara, N.; Oda, H. Eicosapentaenoic acid reduces warfarin-induced arterial calcification in rats. Atherosclerosis 2011, 215, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Schlemmer, C.K.; Coetzer, H.; Claassen, N.; Kruger, M.C.; Rademeyer, C.; van Jaarsveld, L.; Smuts, C.M. Ectopic calcification of rat aortas and kidneys is reduced with n-3 fatty acid supplementation. Prostaglandins Leukot Essent Fatty Acids 1998, 59, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Kummerow, F.A.; Zhou, Q.; Mahfouz, M.M. Effect of trans fatty acids on calcium influx into human arterial endothelial cells. Am. J. Clin. Nutr. 1999, 70, 832–838. [Google Scholar] [PubMed]
- Abedin, M.; Lim, J.; Tang, T.B.; Park, D.; Demer, L.L.; Tintut, Y. n-3 Fatty acids inhibit vascular calcification via the p38-mitogen-activated protein kinase and peroxisome proliferator-activated receptor-γ pathways. Circ. Res. 2006, 98, 727–729. [Google Scholar] [CrossRef] [PubMed]
- Lutsey, P.L.; Jacobs, D.R., Jr.; Kori, S.; Mayer-Davis, E.; Shea, S.; Steffen, L.M.; Szklo, M.; Tracy, R. Whole grain intake and its cross-sectional association with obesity, insulin resistance, inflammation, diabetes and subclinical CVD: The MESA Study. Br. J. Nutr. 2007, 98, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, R.; Sigvaldason, H.; Thorgeirsson, G.; Sigfússon, N. Predominance of aortic calcification as an atherosclerotic manifestation in women: The Reykjavik Study. J. Clin. Epidemiol. 1996, 49, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Van Gils, M.J.; Bodde, M.C.; Cremers, L.G.; Dippel, D.W.; van der Lugt, A. Determinants of calcification growth in atherosclerotic carotid arteries: A serial multi-detector CT angiography study. Atherosclerosis 2013, 227, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Meigs, J.B.; Larson, M.G.; D’Agostino, R.B.; Levy, D.; Clouse, M.E.; Nathan, D.M.; Wilson, P.W.; O’Donnell, C.J. Coronary artery calcification in type 2 diabetes and insulin resistance: The framingham offspring study. Diabetes Care 2002, 25, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Kronmal, R.A.; McClelland, R.L.; Detrano, R.; Shea, S.; Lima, J.A.; Cushman, M.; Bild, D.E.; Burke, G.L. Risk factors for the progression of coronary artery calcification in asymptomatic subjects: Results from the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 2007, 115, 2722–2730. [Google Scholar] [CrossRef] [PubMed]
- Barascuk, N.; Ganz, M.; Nielsen, M.; Register, T.C.; Rasmussen, L.M.; Karsdal, M.A.; Christiansen, C. Abdominal aortic calcification quantified by the Morphological Atherosclerotic Calcification Distribution (MACD) index is associated with features of the metabolic syndrome. BMC Cardiovasc. Disord. 2011, 11, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schauer, I.E.; Snell-Bergeon, J.K.; Bergman, B.C.; Maahs, D.M.; Kretowski, A.; Eckel, R.H.; Rewers, M. Insulin resistance, defective insulin-mediated fatty acid suppression, and coronary artery calcification in subjects with and without type 1 diabetes: The CACTI study. Diabetes 2011, 60, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Moebus, S.; Stang, A.; Möhlenkamp, S.; Dragano, N.; Schmermund, A.; Slomiany, U.; Hoffmann, B.; Bauer, M.; Broecker-Preuss, M.; Mann, K.; et al. Association of impaired fasting glucose and coronary artery calcification as a marker of subclinical atherosclerosis in a population-based cohort—Results of the Heinz Nixdorf Recall Study. Diabetologia 2009, 52, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Fukui, M.; Tomiyasu, K.; Akabame, S.; Nakano, K.; Hasegawa, G.; Oda, Y.; Nakamura, N. U-shaped relationship between insulin level and coronary artery calcification (CAC). J. Atheroscler. Thromb. 2010, 17, 1033–1040. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhong, H.; Liang, J.Y.; Fu, P.; Luo, Z.J.; Zhou, L.; Gou, R.; Huang, J. Effect of high glucose levels on the calcification of vascular smooth muscle cells by inducing osteoblastic differentiation and intracellular calcium deposition via BMP-2/Cbfα-1 pathway. J. Zhejiang Univ. Sci. B 2010, 11, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.B.; Zhang, J.; Cai, Y.; Teng, X.; Duan, X.H.; Song, J.Q.; Du, J.; Tang, C.S.; Qi, Y.F. Insulin resistance induces medial artery calcification in fructose-fed rats. Exp. Biol. Med. (Maywood) 2012, 237, 50–57. [Google Scholar] [CrossRef]
- Chonan, O.; Takahashi, R.; Yasui, H.; Watanuki, M. Effects of β-1–4 linked galactooligosaccharides on use of magnesium and calcification of the kidney and heart in rats fed excess dietary phosphorus and calcium. Biosci. Biotechnol. Biochem. 1996, 60, 1735–1737. [Google Scholar] [CrossRef] [PubMed]
- Sterck, J.G.; Ritskes-Hoitinga, J.; Beynen, A.C. Inhibitory effect of high protein intake on nephrocalcinosis in female rats. Br. J. Nutr. 1992, 67, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Gigliotti, J.C.; Smith, A.L.; Jaczynski, J.; Tou, J.C. Consumption of krill protein concentrate prevents early renal injury and nephrocalcinosis in female Sprague-Dawley rats. Urol. Res. 2011, 39, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.F.; Huang, T.P.; Moorthy, A.V. Effects of low-protein diet on experimental diabetic neuropathy in the rat. J. Lab. Clin. Med. 1985, 106, 589–597. [Google Scholar] [PubMed]
- Brown, E.M. Role of the calcium-sensing receptor in extracellular calcium homeostasis. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.K.; Bolland, M.J.; van Pelt, N.C.; Horne, A.M.; Mason, B.H.; Ames, R.W.; Grey, A.B.; Ruygrok, P.N.; Gamble, G.D.; Reid, I.R. Relationships between vascular calcification, calcium metabolism, bone density, and fractures. J. Bone Miner Res. 2010, 25, 2777–2785. [Google Scholar] [CrossRef] [PubMed]
- Samelson, E.J.; Booth, S.L.; Fox, C.S.; Tucker, K.L.; Wang, T.J.; Hoffmann, U.; Cupples, L.A.; O’Donnell, C.J.; Kiel, D.P. Calcium intake is not associated with increased coronary artery calcification: The Framingham Study. Am. J. Clin. Nutr. 2012, 96, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Spence, L.A.; Weaver, C.M. Calcium intake, vascular calcification, and vascular disease. Nutr. Rev. 2013, 71, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Yoon, J.W.; Kim, K.W.; Lee, E.J.; Lee, W.; Cho, S.H.; Shin, C.S. Increased dietary calcium intake is not associated with coronary artery calcification. Int. J. Cardiol. 2012, 157, 429–431. [Google Scholar] [CrossRef] [PubMed]
- Kwak, S.M.; Kim, J.S.; Choi, Y.; Chang, Y.; Kwon, M.J.; Jung, J.G.; Jeong, C.; Ahn, J.; Kim, H.S.; Shin, H.; et al. Dietary intake of calcium and phosphorus and serum concentration in relation to the risk of coronary artery calcification in asymptomatic adults. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1763–1769. [Google Scholar] [CrossRef] [PubMed]
- Raffield, L.M.; Agarwal, S.; Cox, A.J.; Hsu, F.C.; Carr, J.J.; Freedman, B.I.; Xu, J.; Bowden, D.W.; Vitolins, M.Z. Cross-sectional analysis of calcium intake for associations with vascular calcification and mortality in individuals with type 2 diabetes from the Diabetes Heart Study. Am. J. Clin. Nutr. 2014, 100, 1029–1035. [Google Scholar] [CrossRef] [PubMed]
- Agata, U.; Park, J.H.; Hattori, S.; Iimura, Y.; Ezawa, I.; Akimoto, T.; Omi, N. The effect of different amounts of calcium intake on bone metabolism and arterial calcification in ovariectomised rats. J. Nutr. Sci. Vitaminol. (Tokyo) 2013, 59, 29–36. [Google Scholar] [CrossRef]
- Hsu, H.H.; Culley, N.C. Effects of dietary calcium on atherosclerosis, aortic calcification, and icterus in rabbits fed a supplemental cholesterol diet. Lipids Health Dis. 2006, 5, 16. [Google Scholar] [CrossRef] [PubMed]
- Moe, S.M.; Chen, N.X.; Newman, C.L.; Gattone, V.H., 2nd.; Organ, J.M.; Chen, X.; Allen, M.R. A comparison of calcium to zoledronic acid for improvement of cortical bone in an animal model of CKD. J. Bone Miner. Res. 2014, 29, 902–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancela, A.L.; Santos, R.D.; Titan, S.M.; Goldenstein, P.T.; Rochitte, C.E.; Lemos, P.A.; dos Reis, L.M.; Graciolli, F.G.; Jorgetti, V.; Moysés, R.M. Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS ONE 2012, 7, e36883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linefsky, J.P.; O’Brien, K.D.; Katz, R.; de Boer, I.H.; Barasch, E.; Jenny, N.S.; Siscovick, D.S.; Kestenbaum, B. Association of serum phosphate levels with aortic valve sclerosis and annular calcification: The cardiovascular health study. J. Am. Coll. Cardiol. 2011, 58, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, K.J.; Chang, H.J.; Cho, I.; Kim, Y.J.; Choi, B.W.; Rhee, Y.; Lim, S.K.; Yang, W.I.; Shim, C.Y.; et al. Impact of serum calcium and phosphate on coronary atherosclerosis detected by cardiac computed tomography. Eur. Heart J. 2012, 33, 2873–2881. [Google Scholar] [CrossRef] [PubMed]
- Civitelli, R.; Ziambaras, K. Calcium and phosphate homeostasis: Concerted interplay of new regulators. J. Endocrinol. Investig. 2011, 34, 3–7. [Google Scholar] [CrossRef]
- Calvo, M.S.; Uribarri, J. Public Health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am. J. Clin. Nutr. 2013. [Google Scholar] [CrossRef]
- Linefsky, J.P.; O’Brien, K.D.; Sachs, M.; Katz, R.; Eng, J.; Michos, E.D.; Budoff, M.J.; de Boer, I.; Kestenbaum, B. Serum phosphate is associated with aortic valve calcification in the Multi-ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2014, 233, 331–337. [Google Scholar] [CrossRef] [PubMed]
- McCarty, M.F.; DiNicolantonio, J.J. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives. Nutrition 2014, 30, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, K.R.; Short, R.A. Longitudinal relationships among coronary artery calcification, serum phosphorus, and kidney function. Clin. J. Am. Soc. Nephrol. 2009, 4, 1968–1973. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.P.; Rajamannan, N.M.; Lopes, J.B.; Caparbo, V.F.; Takayama, L.; Kuroishi, M.E.; Oliveira, I.S.; Menezes, P.R.; Scazufca, M.; Bonfá, E.; et al. Serum phosphate and hip bone mineral density as additional factors for high vascular calcification scores in a community-dwelling: The São Paulo Ageing & Health Study (SPAH). Bone 2013, 52, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Razzaque, M.S. Phosphate toxicity and vascular mineralization. Contrib. Nephrol. 2013, 180, 74–85. [Google Scholar] [PubMed]
- Nishizawa, Y.; Jono, S.; Ishimura, E.; Shioi, A. Hyperphosphatemia and vascular calcification in end-stage renal disease. J. Ren. Nutr. 2005, 15, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Yamada, S.; Tokumoto, M.; Tatsumoto, N.; Taniguchi, M.; Noguchi, H.; Nakano, T.; Masutani, K.; Ooboshi, H.; Tsuruya, K.; Kitazono, T. Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. Am. J. Physiol. Ren. Physiol. 2014, 306, F1418–F1428. [Google Scholar] [CrossRef]
- Louvet, L.; Buchel, J.; Steppan, S.; Passlick-Deetjen, J.; Massy, Z.A. Magnesium prevents phosphate-induced calcification in human aortic vascular smooth muscle cells. Nephrol. Dial Transplant. 2014, 28, 869–878. [Google Scholar] [CrossRef]
- Bonjour, J.P.; Gue’guen, L.; Palacios, C.; Shearer, M.J.; Weaver, C.M. Minerals and vitamins in bone health: The potential value of dietary enhancement. Br. J. Nutr. 2009, 101, 1581–1596. [Google Scholar] [CrossRef] [PubMed]
- Hruby, A.; O’Donnell, C.J.; Jacques, P.F.; Meigs, J.B.; Hoffmann, U.; McKeown, N.M. Magnesium intake is inversely associated with coronary artery calcification: The framingham heart study. JACC Cardiovasc. Imaging 2014, 7, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Ishimura, E.; Okuno, S.; Kitatani, K.; Tsuchida, T.; Yamakawa, T.; Shioi, A.; Inaba, M.; Nishizawa, Y. Significant association between the presence of peripheral vascular calcification and lower serum magnesium in hemodialysis patients. Clin. Nephrol. 2007, 68, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Meema, H.E.; Oreopoulos, D.G.; Rapoport, A. Serum magnesium level and arterial calcification in end-stage renal disease. Kidney Int. 1987, 32, 388–394. [Google Scholar] [CrossRef] [PubMed]
- Tzanakis, I.; Virvidakis, K.; Tsomi, A.; Mantakas, E.; Girousis, N.; Karefyllakis, N.; Papadaki, A.; Kallivretakis, N.; Mountokalakis, T. Intra- and extracellular magnesium levels and atheromatosis in haemodialysis patients. Magnes. Res. 2004, 17, 102–108. [Google Scholar] [PubMed]
- Salem, S.; Bruck, H.; Bahlmann, F.H.; Peter, M.; Passlick-Deetjen, J.; Kretschmer, A.; Steppan, S.; Volsek, M.; Kribben, A.; Nierhaus, M.; et al. Relationship between magnesium and clinical biomarkers on inhibition of vascular calcification. Am. J. Nephrol. 2012, 35, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Planells, E.; Llopis, J.; Perán, F.; Aranda, P. Changes in tissue calcium and phosphorus content and plasma concentrations of parathyroid hormone and calcitonin after long-term magnesium deficiency in rats. J. Am. Coll. Nutr. 1995, 14, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Pen, J.X.; Li, L.; Wang, X.; Zhang, Y.H.; Li, X.F.; Wu, S.Y. The effect of the magnesium supplementation on vascular calcification in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2012, 28, 20–23. [Google Scholar] [PubMed]
- Nagase, N.; Saijo, Y.; Nitta, H.; Tamura, Y.; Orino, S.; Akaike, Y.; Mori, H. Myocardial disorders caused by magnesium deficiency in diabetic KK mice. Magnesium 1989, 8, 307–315. [Google Scholar] [PubMed]
- Adamczyk, A.; Stolarz-Skrzypek, K.; Wesołowska, A.; Czarnecka, D. Vitamin D and vitamin D receptor activators in treatment of hypertension and cardiovascular disease. Cardiovasc. Hematol. Disord. Drug Targets 2014, 14, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.G.; Hanrath, M.A.; Morris, H.A.; Atkins, G.J.; Anderson, P.H. The local production of 1,25(OH)2D3 promotes osteoblast and osteocyte maturation. J. Steroid Biochem. Mol. Biol. 2013, 144, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Leiben, L.; Masuyama, R.; Torrekens, S.; van Looveren, R.; Schrooten, J.; Baatsen, P.; Lafage-Proust, M.-H.; Dresselaers, T.; Jian, Q.F.; Bonewald, L.F.; et al. Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralisation. J. Clin. Investig. 2012, 122, 1803–1815. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.H.; Jin, J.S.; Yi, D.W.; Son, S.M. Bone morphogenetic protein-7 inhibits vascular calcification induced by high vitamin D in mice. Tohoku J. Exp. Med. 2010, 221, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.T.; Chen, S.R.; Wu, X.Q.; Wang, T.Q.; Chen, J.W.; Li, J.; Bao, L.P.; Huang, H.Q.; Liu, P.Q. Hypercholesterolemia accelerates vascular calcification induced by excessive vitamin D via oxidative stress. Calcif. Tissue Int. 2006, 79, 326–339. [Google Scholar] [CrossRef] [PubMed]
- Ellam, T.; Hameed, A.; Ul Haque, R.; Muthana, M.; Wilkie, M.; Francis, S.E.; Chico, T.J. Vitamin D deficiency and exogenous vitamin D excess similarly increase diffuse atherosclerotic calcification in apolipoprotein e knockout mice. PLoS ONE 2014, 9, e88767. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Brandsch, C.; Kühne, H.; Thiele, A.; Hirche, F.; Stangl, G.I. Vitamin D receptor deficiency and low vitamin D diet stimulate aortic calcification and osteogenic key factor expression in mice. PLoS ONE 2012, 7, e35316. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, N.; Brandsch, C.; Schutkowski, A.; Hirche, F.; Stangl, G.I. Dietary vitamin D inadequacy accelerates calcification and osteoblast-like cell formation in the vascular system of LDL receptor knockout and wild-type mice. J. Nutr. 2014, 144, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Michos, E.D.; Streeten, E.A.; Ryan, K.A.; Rampersaud, E.; Peyser, P.A.; Bielak, L.F.; Shuldiner, A.R.; Mitchell, B.D.; Post, W. Serum 25-hydroxyvitamin d levels are not associated with subclinical vascular disease or C-reactive protein in the old order amish. Calcif. Tissue Int. 2009, 84, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.D.; Cong, E.; Kepley, A.; di Tullio, M.R.; Rundek, T.; Homma, S.; Lee, J.A.; Liu, R.; Young, P.; Zhang, C.; et al. Association between serum 25-hydroxyvitamin d level and subclinical cardiovascular disease in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2014, 99, 671–680. [Google Scholar] [CrossRef] [PubMed]
- De Boer, I.H.; Kestenbaum, B.; Shoben, A.B.; Michos, E.D.; Sarnak, M.J.; Siscovick, D.S. 25-Hydroxyvitamin D levels inversely associate with risk for developing coronary artery calcification. J. Am. Soc. Nephrol. 2009, 20, 1805–1812. [Google Scholar] [CrossRef] [PubMed]
- García-Canton, C.; Bosch, E.; Ramírez, A.; Gonzalez, Y.; Auyanet, I.; Guerra, R.; Perez, M.A.; Fernández, E.; Toledo, A.; Lago, M.; et al. Vascular calcification and 25-hydroxyvitamin D levels in non-dialysis patients with chronic kidney disease stages 4 and 5. Nephrol. Dial.Transplant. 2011, 26, 2250–2256. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Kim, H.Y.; Gu, S.W.; Kim, H.J.; Yang, D.H. 25-hydroxyvitamin D levels and vascular calcification in predialysis and dialysis patients with chronic kidney disease. Kidney Blood Press Res. 2012, 35, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Young, K.A.; Snell-Bergeon, J.K.; Naik, R.G.; Hokanson, J.E.; Tarullo, D.; Gottlieb, P.A.; Garg, S.K.; Rewers, M. Vitamin D deficiency and coronary artery calcification in subjects with type 1 diabetes. Diabetes Care 2011, 34, 454–458. [Google Scholar] [CrossRef] [PubMed]
- Dishmon, D.A.; Dotson, J.L.; Munir, A.; Nelson, M.D.; Bhattacharya, S.K.D.; Cruz, I.A.; Davis, R.C.; Weber, K.T. Hypovitaminosis D and valvular calcification in patients with dilated cardiomyopathy. Am. J. Med. Sci. 2009, 337, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Arad, Y.; Spadaro, L.A.; Roth, M.; Scordo, J.; Goodman, K.; Sherman, S.; Lerner, G.; Newstein, D.; Guerci, A.D. Serum concentration of calcium, 1,25 vitamin D and parathyroid hormone are not correlated with coronary calcifications. An electron beam computed tomography study. Coron. Artery Dis. 1998, 9, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.E.; Abrolat, M.L.; Malone, L.L.; Hoeg, J.M.; Doherty, T.; Detrano, R.; Demer, L.L. Active serum vitamin D levels are inversely correlated with coronary calcification. Circulation 1997, 96, 1755–1760. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, K. Study on vascular calcification in patients on continuous ambulatory peritoneal dialysis (CAPD): Special reference to active vitamin D (VD) treatment. Nihon Jinzo Gakkai Shi 1993, 35, 1171–1180. [Google Scholar] [PubMed]
- Allison, M.A.; Carr, J.J.; Langer, R.D.; Cochrane, B.B.; Hendrix, S.L.; Hsia, J.; Hunt, J.R.; Lewis, C.E.; Margolis, K.L.; Robinson, J.G.; et al. Calcium/vitamin D supplementation and coronary artery calcification in the Women’s Health Initiative. Menopause 2010, 17, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Hsia, J.; Heiss, G.; Ren, H.; Allison, M.; Dolan, N.C.; Greenland, P.; Heckbert, S.R.; Johnson, K.C.; Manson, J.E.; Sidney, S.; et al. Calcium/vitamin D supplementation and cardiovascular events. Circulation 2007, 115, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Pearson, D.A. Bone health and osteoporosis: The role of vitamin K and potential antagonism by anticoagulants. Nutr. Clin. Pract. 2007, 22, 517–544. [Google Scholar] [CrossRef] [PubMed]
- Palaniswamy, C.; Aronow, W.S.; Sekhri, A.; Adapa, S.; Ahn, C.; Singh, T.; Malhotra, B.; Lerner, R. Warfarin use and prevalence of coronary artery calcification assessed by multislice computed tomography. Am. J. Ther. 2012, 21, 148–151. [Google Scholar] [CrossRef]
- Schurgers, L.J.; Joosen, I.A.; Laufer, E.M.; Chatrou, M.L.; Herfs, M.; Winkens, M.H.; Westenfeld, R.; Veulemans, V.; Krueger, T.; Shanahan, C.M.; et al. Vitamin K-antagonists accelerate atherosclerotic calcification and induce a vulnerable plaque phenotype. PLoS ONE 2012, 7, e43229. [Google Scholar] [CrossRef] [PubMed]
- Lerner, R.G.; Aronow, W.S.; Sekhri, A.; Palaniswamy, C.; Ahn, C.; Singh, T.; Sandhu, R.; McClung, J.A. Warfarin use and the risk of valvular calcification. J. Thromb. Haemost. 2009, 7, 2023–2027. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Tripepi, G.; Noale, M.; Plebani, M.; Zaninotto, M.; Piccoli, A.; Naso, A.; Miozzo, D.; Giannini, S.; Avolio, M.; et al. Prevalence of vertebral fractures, vascular calcifications, and mortality in warfarin treated hemodialysis patients. Curr. Vasc. Pharmacol. 2013, in press. [Google Scholar]
- Beulens, J.W.; Bots, M.L.; Atsma, F.; Bartelink, M.L.; Prokop, M.; Geleijnse, J.M.; Witteman, J.C.; Grobbee, D.E.; van der Schouw, Y.T. High dietary menaquinone intake is associated with reduced coronary calcification. Atherosclerosis 2009, 203, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Geleijnse, J.M.; Vermeer, C.; Grobbee, D.E.; Schurgers, L.J.; Knapen, M.H.; van der Meer, I.M.; Hofman, A.; Witteman, J.C. Dietary intake of menaquinone is associated with a reduced risk of coronary heart disease: The Rotterdam Study. J. Nutr. 2004, 134, 3100–3105. [Google Scholar] [PubMed]
- Shea, M.K.; Booth, S.L.; Miller, M.E.; Burke, G.L.; Chen, H.; Cushman, M.; Tracy, R.P.; Kritchevsky, S.B. Association between circulating vitamin K1 and coronary calcium progression in community-dwelling adults: The Multi-Ethnic Study of Atherosclerosis. Am. J. Clin. Nutr. 2013, 98, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Fusaro, M.; Noale, M.; Viola, V.; Galli, F.; Tripepi, G.; Vajente, N.; Plebani, M.; Zaninotto, M.; Guglielmi, G.; Miotto, D.; et al. Vitamin K, vertebral fractures, vascular calcifications, and mortality: VItamin K Italian (VIKI) dialysis study. J. Bone Miner. Res. 2012, 27, 2271–2278. [Google Scholar] [CrossRef]
- Dalmeijer, G.W.; van der Schouw, Y.T.; Vermeer, C.; Magdeleyns, E.J.; Schurgers, L.J. Circulating matrix Gla protein is associated with coronary artery calcification and vitamin K status in healthy women. J. Nutr. Biochem. 2013, 24, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Dalmeijer, G.W.; van der Schouw, Y.T.; Booth, S.L; de Jong, P.A.; Beulens, J.W. Phylloquinone concentrations and the risk of vascular calcification in healthy women. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Pilkey, R.M.; Morton, A.R.; Boffa, M.B.; Noordhof, C.; Day, A.G.; Su, Y.; Miller, L.M.; Koschinsky, M.L.; Booth, S.L. Subclinical vitamin K deficiency in hemodialysis patients. Am. J. Kidney Dis. 2007, 49, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; O’Donnell, C.J.; Hoffmann, U.; Dallal, G.E.; Dawson-Hughes, B.; Ordovas, J.M.; Price, P.A.; Williamson, M.K.; Booth, S.L. Vitamin K supplementation and progression of coronary artery calcium in older men and women. Am. J. Clin. Nutr. 2009, 89, 1799–1807. [Google Scholar] [CrossRef] [PubMed]
- McCabe, K.M.; Booth, S.L.; Fu, X.; Shobeiri, N.; Pang, J.J.; Adams, M.A.; Holden, R.M. Dietary vitamin K and therapeutic warfarin alter the susceptibility to vascular calcification in experimental chronic kidney disease. Kidney Int. 2013, 83, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Schurgers, L.J.; Spronk, H.M.; Skepper, J.N.; Hackeng, T.M.; Shanahan, C.M.; Vermeer, C.; Weissberg, P.L.; Proudfoot, D. Post-translational modifications regulate matrix Gla protein function: Importance for inhibition of vascular smooth muscle cell calcification. J. Thromb. Haemost. 2007, 5, 2503–2511. [Google Scholar] [CrossRef] [PubMed]
- Spronk, H.M.; Soute, B.A.; Schurgers, L.J.; Thijssen, H.H.; de Mey, J.G.; Vermeer, C. Tissue-specific utilization of menaquinone-4 results in the prevention of arterial calcification in warfarin-treated rats. J. Vasc. Res. 2003, 40, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Cranenburg, E.C.; Brandenburg, V.M.; Vermeer, C.; Stenger, M.; Mühlenbruch, G.; Mahnken, A.H.; Gladziwa, U.; Ketteler, M.; Schurgers, L.J. Uncarboxylated matrix Gla protein (ucMGP) is associated with coronary artery calcification in haemodialysis patients. Thromb. Haemost. 2009, 101, 359–366. [Google Scholar] [PubMed]
- Liabeuf, S.; Olivier, B.; Vemeer, C.; Theuwissen, E.; Magdeleyns, E.; Aubert, C.E.; Brazier, M.; Mentaverri, R.; Hartemann, A.; Massy, Z.A. Vascular calcification in patients with type 2 diabetes: The involvement of matrix Gla protein. Cardiovasc. Diabetol. 2014, 13, 85. [Google Scholar] [CrossRef] [PubMed]
- Shea, M.K.; O’Donnell, C.J.; Vermeer, C.; Magdeleyns, E.J.; Crosier, M.D.; Gundberg, C.M.; Ordovas, J.M.; Kritchevsky, S.B.; Booth, S.L. Circulating uncarboxylated matrix Gla protein is associated with vitamin K nutritional status, but not coronary artery calcium, in older adults. J. Nutr. 2011, 141, 1529–1534. [Google Scholar] [CrossRef] [PubMed]
- Hirasaka, N.; Liang, X.M.; Mune, M. Atherosclerosis and vascular calcification in hemodialysis patients. Clin. Calcium. 2004, 14, 85–90. [Google Scholar] [PubMed]
- Chavan, S.N.; More, U.; Mulgund, S.; Saxena, V.; Sontakke, A.N. Effect of supplementation of vitamin C and E on oxidative stress in osteoporosis. Indian J. Clin. Biochem. 2007, 22, 101–105. [Google Scholar] [CrossRef]
- Ahmadi, N.; Tsimikas, S.; Hajsadeghi, F.; Saeed, A.; Nabavi, V.; Bevinal, M.A.; Kadakia, J.; Flores, F.; Ebrahimi, R.; Budoff, M.J. Relation of oxidative biomarkers, vascular dysfunction, and progression of coronary artery calcium. Am. J. Cardiol. 2010, 105, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Ohara, M.; Suzuki, T.; Ouchi, M.; Suzuki, K.; Hashimoto, M.; Saigusa, T.; Aoyama, J.; Nakano, H.; Oba, K. Aortic arch calcification detectable on chest X-ray films is associated with plasma diacron-reactive oxygen metabolites in patients with type 2 diabetes but without cardiovascular disease. J. Nippon. Med. Sch. 2013, 80, 410–419. [Google Scholar] [PubMed]
- Liberman, M.; Bassi, E.; Martinatti, M.K.; Lario, F.C.; Wosniak, J.; Pomerantzeff, P.M.; Laurindo, F.R. Oxidant generation predominates around calcifying foci and enhances progression of aortic valve calcification. Atheroscler. Thromb. Vasc. Biol. 2008, 28, 463–470. [Google Scholar] [CrossRef]
- Muteliefu, G.; Enomoto, A.; Niwa, T. Indoxyl sulfate promotes proliferation of human aortic smooth muscle cells by inducing oxidative stress. J. Ren. Nutr. 2009, 19, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Mody, N.; Parhami, F.; Sarafian, T.A.; Demer, L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 2001, 31, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Valabhji, J.; McColl, A.J.; Richmond, W.; Schachter, M.; Rubens, M.B.; Elkeles, R.S. Total antioxidant status and coronary artery calcification in type 1 diabetes. Diabetes Care 2001, 24, 1608–1613. [Google Scholar] [CrossRef] [PubMed]
- Conaway, H.H.; Henning, P.; Lerner, U.H. Vitamin A metabolism, action and role in skeletal homeostasis. Endocr. Rev. 2013, 34, 766–797. [Google Scholar] [CrossRef] [PubMed]
- Hatzigeorgiou, C.; Taylor, A.J.; Feuerstein, I.M.; Bautista, L.; O’Malley, P.G. Antioxidant vitamin intake and subclinical coronary atherosclerosis. Prev. Cardiol. 2006, 9, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, D.; Khan, U.I.; Zeb, I.; Manson, J.E.; Miller, V.; Hodis, H.N.; Budoff, M.J.; Merriam, G.R.; Harman, S.M.; et al. Associations between retinol-binding protein 4 and cardiometabolic risk factors and subclinical atherosclerosis in recently postmenopausal women: Cross-sectional analyses from the KEEPS Study. Cardiovasc. Diabetol. 2012, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Huk, D.J.; Hammond, H.L.; Kegechika, H.; Lincoln, J. Increased dietary intake of vitamin A promotes aortic valve calcification in vivo. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 285–293. [Google Scholar] [CrossRef] [PubMed]
- McQuillan, B.M.; Hung, J.; Beilby, J.P.; Nido, M.; Thompson, P.L. Antioxidant vitamins and the risk of carotid atherosclerosis. The Perth Carotid Ultrasound Disease Assessment study (CUDAS). J. Am. Coll. Cardiol. 2001, 38, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Klipstein-Grobusch, K.; Launer, L.J.; Geleijnse, J.M.; Boeing, H.; Hofman, A.; Witteman, J.C. Serum carotenoids and atherosclerosis. The Rotterdam Study. Atherosclerosis 2000, 148, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Nieves, J.W. Osteoporosis: The role of micronutrients. Am. J. Clin. Nutr. 2005, 81, 1232S–1239S. [Google Scholar] [PubMed]
- Arad, Y.; Spadaro, L.A.; Roth, M.; Newstein, D.; Guerci, A.D. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: The St. Francis Heart Study randomized clinical trial. J. Am. Coll. Cardiol. 2005, 46, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Takata, T.; Ikeda, M.; Kodama, H.; Kitagawa, N. Treatment of pseudoxanthoma elasticum with tocopherol acetate and ascorbic acid. Pediatr. Dermatol. 2007, 24, 424–425. [Google Scholar] [CrossRef] [PubMed]
- Vasudev, S.C.; Chandy, T.; Sharma, C.P. Glutaraldehyde treated bovine pericardium: Changes in calcification due to vitamins and platelet inhibitors. Artif. Organs. 1997, 21, 1007–1013. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, B.B.; Sundaram, C.; Prasad, S.; Kannappan, R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol. 2010, 80, 1613–1631. [Google Scholar] [CrossRef] [PubMed]
- Naina Mohamed, I.; Borhanuddin, B.; Shuid, A.N.; Mohd Fozi, N.F. Vitamin E and bone structural changes: An evidence-based review. Evid. Based Complement. Alternat. Med. 2012, 2012, 250584. [Google Scholar] [CrossRef] [PubMed]
- Vogt, M.T.; San Valentin, R.; Forrest, K.Y.; Nevitt, M.C.; Cauley, J.A. Bone mineral density and aortic calcification: the Study of Osteoporotic Fractures. J. Am. Geriatr. Soc. 1997, 45, 140–145. [Google Scholar] [PubMed]
- Van Woudenbergh, G.J.; Vliegenthart, R.; van Rooij, F.J.; Hofman, A.; Oudkerk, M.; Witteman, J.C.; Geleijnse, J.M. Coffee consumption and coronary calcification: The Rotterdam Coronary Calcification Study. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1018–1023. [Google Scholar]
- Rehman, H.; Krishnasamy, Y.; Haque, K.; Thurman, R.G.; Lemasters, J.J.; Schnellmann, R.G.; Zhong, Z. Green tea polyphenols stimulate mitochondrial biogenesis and improve renal function after chronic cyclosporin a treatment in rats. PLoS ONE 2013, 38, e65029. [Google Scholar] [CrossRef]
- Beazley, K.E.; Lima, F.; Borras, T.; Nurminskaya, M. Attenuation of chondrogenic transformation in vascular smooth muscle by dietary quercetin in the MGP-deficient mouse model. PLoS ONE 2013, 8, e76210. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, W.; Sun, G.; Wei, X.; Yi, D. Calcification resistance of procyanidin-treated decellularized porcine aortic valves in vivo. Heart Surg. Forum. 2009, 12, E24–E29. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.C.; Hsieh, C.L.; Ker, Y.B.; Wang, H.Y.; Chen, K.C.; Peng, R.Y. Selected nutraceutic screening by therapeutic effects on doxorubicin-induced chronic kidney disease. Mol. Nutr. Food Res. 2012, 56, 1541–1558. [Google Scholar] [CrossRef] [PubMed]
- Nicoll, R.; Henein, M.Y. Alcohol and the heart. Alcohol. Clin. Exp. Res. 2011, 35, 1737–1738. [Google Scholar] [CrossRef] [PubMed]
- Vliegenthart, R.; Oei, H.H.; van den Elzen, A.P.; van Rooij, F.J.; Hofman, A.; Oudkerk, M.; Witteman, J.C. Alcohol consumption and coronary calcification in general population. Arch. Intern. Med. 2004, 164, 2355–2660. [Google Scholar] [CrossRef] [PubMed]
- Tomayko, E.J.; Cachia, A.J.; Chung, H.R.; Wilund, K.R. Resveratrol supplementation reduces aortic atherosclerosis and calcification and attenuates loss of aerobic capacity in a mouse model of uremia. J. Med. Food 2014, 17, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Shin, H.I.; Lim, H.S.; Lee, T.Y.; Lee, K.; Jeong, D. α-Lipoic acid attenuates coxsackievirus B3-induced ectopic calcification in heart, pancreas, and lung. Biochem. Biophys. Res. Commun. 2013, 432, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Bassi, E.; Liberman, M.; Martinatti, M.K.; Bortolotto, L.A.; Leurindo, F.R. Lipoic acid, but not tempol, preserves vascular compliance and decreases medial calcification in a model of elastocalcinosis. Braz. J. Med. Biol. Res. 2014, 47, 119–127. [Google Scholar] [PubMed]
- Ivanovski, O.; Nikolov, I.G.; Drueke, B.T.; Massy, A.Z. Atherosclerosis and vascular calcification in uraemia—A new experimental model. Prilozi 2007, 28, 11–24. [Google Scholar] [PubMed]
- Muteliefu, G.; Shimizu, H.; Enomoto, A.; Nishijima, F.; Takahashi, M.; Niwa, T. Indoxyl sulfate promotes vascular smooth muscle cell senescence with upregulation of p53, p21 and prelamin A through oxidative stress. Am. J. Physiol. Cell Physiol. 2012, 303, C126–C134. [Google Scholar] [CrossRef] [PubMed]
- Nakahara, T.; Sato, H.; Shimizu, T.; Tanaka, T.; Matsui, H.; Kawai-Kowase, K.; Sato, M.; Iso., T.; Arai, M.; Kurabayashi, M. Fibroblast growth factor-2 induces osteogenic differentiation through a Runx2 activation in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 2010, 394, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Stanger, O.; Herrmann, W.; Pietrzik, K.; Fowler, B.; Geisel, J.; Dierkes, J.; Weger, M. DACH-LIGA Homocystein (German, Austrian and Swiss Homocysteine Society): Consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins in cardiovascular and thrombotic diseases: Guidelines and recommendations. Clin. Chem. Lab. Med. 2003, 41, 1392–1403. [Google Scholar] [PubMed]
- Clarke, R.; Halsey, J.; Lewington, S.; Lonn, E.; Armitage, J.; Manson, J.E.; Bønaa, K.H.; Spence, J.D.; Nygård, O.; Jamison., R.; et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37,485 individuals. Arch. Intern. Med. 2010, 170, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Clarke, R. Lowering blood homocysteine with folic acid-based supplements: Meta-analysis of randomised trials. Indian Heart J. 2000, 52, S59–S64. [Google Scholar] [PubMed]
- Homocysteine Lowering Trialists’ Collaboration. Dose-dependent effects of folic acid on blood concentrations of homocysteine: A meta-analysis of the randomized trials. Am. J. Clin. Nutr. 2005, 82, 806–812. [Google Scholar]
- Ebbing, M.; Bønaa, K.H.; Arnesen, E.; Ueland, P.M.; Nordrehaug, J.E.; Rasmussen, K.; Njølstad, I.; Nilsen, D.W.; Refsum, H.; Tverdal, A.; et al. Combined analyses and extended follow-up of two randomized controlled homocysteine-lowering B-vitamin trials. J. Intern. Med. 2010, 268, 367–382. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, A.B.; Sarwar, A.; Rosen, B.D.; Nasir, K. Measuring subclinical atherosclerosis: Is homocysteine relevant? Clin. Chem. Lab. Med. 2007, 45, 1667–1677. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.J.; Kim, B.S.; Kang, J.H. Plasma homocysteine and coronary artery calcification in Korean men. Eur. J. Prev. Cardiol. 2014, 22, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Jia, X.; Gao, J.; Mou, W.; Tong, H.; Wen, X.; Tian, Y. Association of serum homocysteine levels with the severity and calcification of coronary atherosclerotic plaques detected by coronary CT angiography. Int. Angiol. 2014, 33, 316–323. [Google Scholar] [PubMed]
- Van Campenhout, A.; Moran, C.S.; Parr, A.; Clancy, P.; Rush, C.; Jakubowski, H.; Golledge, J. Role of homocysteine in aortic calcification and osteogenic cell differentiation. Atherosclerosis 2009, 202, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Bozbas, H.; Yildirir, A.; Atar, I.; Pirat, B.; Eroglu, S.; Aydinalp, A.; Ozin, B.; Muderrisoglu, H. Effects of serum levels of novel atherosclerotic risk factors on aortic valve calcification. J. Heart Valve Dis. 2007, 16, 387–393. [Google Scholar] [PubMed]
- Held, C.; Sumner, G.; Sheridan, P.; McQueen, M.; Smith, S.; Dagenais, G.; Yusuf, S.; Lonn, E. Correlations between plasma homocysteine and folate concentrations and carotid atherosclerosis in high-risk individuals: Baseline data from the Homocysteine and Atherosclerosis Reduction Trial (HART). Vasc. Med. 2008, 13, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, M.L.; Nasir, K.; Blumenthal, R.S.; Park, R.; Aziz, D.C.; Budoff, M.J. Plasma homocysteine predicts progression of atherosclerosis. Atherosclerosis 2005, 181, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Corrao, S.; Miranda, I.; Ruocco, C.; Manzi, S.; Elefante, R.; Brancaccio, D.; Cozzolino, M.; Biondi, M.L.; Andreucci, V.E. Progression of coronary artery calcification in predialysis patients. Am. J. Nephrol. 2007, 27, 152–158. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Reilly, M.; Yang, W.; Chen, J.; Go, A.S.; Lash, J.P.; Rahman, M.; DeFilippi, C.; Gadegbeku, C.; Kanthety, R.; et al. Risk factors for coronary artery calcium among patients with chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study). Am. J. Cardiol. 2012, 110, 1735–1741. [Google Scholar] [CrossRef] [PubMed]
- Petrović, D.; Obrenović, R.; Stojimirović, B. Risk factors for aortic valve calcification in patients on regular hemodialysis. Int. J. Artif. Organs. 2009, 32, 173–179. [Google Scholar] [PubMed]
- Hodis, H.N.; Mack, W.J.; Dustin, L.; Mahrer, P.R.; Azen, S.P.; Detrano, R.; Selhub, J.; Alaupovic, P.; Liu, C.R.; Liu, C.H.; et al. High-dose B vitamin supplementation and progression of subclinical atherosclerosis: A randomized controlled trial. Stroke 2009, 40, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Budoff, M.J.; Ahmadi, N.; Gul, K.M.; Liu, S.T.; Flores, F.R.; Tiano, J.; Takasu, J.; Miller, E.; Tsimikas, S. Aged garlic extract supplemented with B vitamins, folic acid and l-arginine retards the progression of subclinical atherosclerosis: A randomized clinical trial. Prev. Med. 2009, 49, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, N.; Nabavi, V.; Hajsadeghi, F.; Zeb, I.; Flores, F.; Ebrahimi, R.; Budoff, M. Aged garlic extract with supplement is associated with increase in brown adipose, decrease in white adipose tissue and predict lack of progression in coronary atherosclerosis. Int. J. Cardiol. 2013, 168, 2310–2314. [Google Scholar] [CrossRef] [PubMed]
- Demer, L.L. Vascular calcification and osteoporosis: Inflammatory responses to oxidised lipids. Int. J. Epidemiol. 2002, 31, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Maziere, C.; Salle, V.; Gomila, C.; Maziere, J.C. Oxidised low density lipoprotein increases RANKL level in human vascular cells. Involvement of oxidative stress. Biochem. Biophys. Res. Commun. 2013, 440, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Hofbauer, L.C.; Brueck, C.C.; Shanahan, C.M.; Schoppet, M.; Dobnig, H. Vascular calcification and osteoporosis—From clinical observation towards molecular understanding. Osteoporos. Int. 2007, 18, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Karagiannis, A.; Kakafika, A.I.; Tziomalos, K.; Athyros, V.G.; Mikhailidis, D.P. Atherosclerosis and osteoporosis: Age-dependent degenerative processes or related entities. Osteoporosis Int. 2009, 20, 197–207. [Google Scholar] [CrossRef]
- Fukami, K.; Yamagishi, S.I.; Okuda, S. Role of AGEs-RAGE system in cardiovascular disease. Curr. Pharm. Des. 2013, 20, 2395–2402. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.Y.; Chen, X.Q.; Wang, X.; Cao, H.; Liu, S.W. Advanced glycation end products promote human aortic smooth muscle cell calcification in vitro via activating NF-κB and down-regulating IGF1R expression. Acta Pharmacol. Sin. 2013, 34, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Ren, X.; Jiang, Y.; Jin, H.; Liu, N.; Li, J. Advanced glycation end products accelerate rat vascular calcification through RAGE/oxidative stress. BMC Cardiovasc. Disord. 2013, 13, 13. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, T.; Okada, Y.; Tanikawa, R.; Tanaka, Y. Advanced glycation end products induce calcification of vascular smooth muscle cells through RAGE/p38 MAPK. J. Vasc. Res. 2009, 46, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhao, J.; Xu, J.; Jiang, W.; Tang, C.S.; Qi, Y.F. Effects of taurine and homocysteine on calcium homeostasis and hydrogen peroxide and superoxide anions in rat myocardial mitochondria. Clin. Exp. Pharmacol. Physiol. 2004, 31, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, H.; Jin, H.; Ebin, Z.; Brodsky, S.; Goligorsky, M.S. Effects of homocysteine on endothelial nitric oxide production. Am. J. Physiol. Renal. Physiol. 2000, 279, F671–F678. [Google Scholar] [PubMed]
- Yang, Y.; Yu, F.; Li, J.X.; Tang, C.S.; Li, C.Y. Promoting effect of hyperhomocysteinemia on vascular calcification in rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 2004, 20, 333–336. [Google Scholar] [PubMed]
- Vervoort, L.M.; Ronden, J.E.; Thijssen, H.H. The potent antioxidant activity of the vitamin K cycle in microsomal lipid peroxidation. Biochem. Pharmacol. 1999, 54, 871–876. [Google Scholar] [CrossRef]
- Hiruma, Y.; Nakahama, K.; Fujita, H.; Morita, I. Vitamin K2 and geranylgeraniol, its side chain component, inhibited osteoclast formation in a different manner. Biochem. Biophys. Res. Commun. 2004, 314, 24–30. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nicoll, R.; Howard, J.M.; Henein, M.Y. A Review of the Effect of Diet on Cardiovascular Calcification. Int. J. Mol. Sci. 2015, 16, 8861-8883. https://doi.org/10.3390/ijms16048861
Nicoll R, Howard JM, Henein MY. A Review of the Effect of Diet on Cardiovascular Calcification. International Journal of Molecular Sciences. 2015; 16(4):8861-8883. https://doi.org/10.3390/ijms16048861
Chicago/Turabian StyleNicoll, Rachel, John McLaren Howard, and Michael Y. Henein. 2015. "A Review of the Effect of Diet on Cardiovascular Calcification" International Journal of Molecular Sciences 16, no. 4: 8861-8883. https://doi.org/10.3390/ijms16048861
APA StyleNicoll, R., Howard, J. M., & Henein, M. Y. (2015). A Review of the Effect of Diet on Cardiovascular Calcification. International Journal of Molecular Sciences, 16(4), 8861-8883. https://doi.org/10.3390/ijms16048861