Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer
Abstract
:1. Introduction
2. Results and Discussion
2.1. Specific Gravity
2.2. Water Absorption
2.3. Aggregate Impact Value (AIV)
2.4. X-ray Diffraction (XRD)
2.5. Scanning Electron Microscope (SEM)
2.6. Fourier Transform Infrared
3. Experimental Section
3.1. Source Materials and Treatment
3.1.1. LUSI Mud
Component | Al2O3 | SiO2 | K2O | TiO2 | Fe2O3 | CaO | MnO | SO3 | V2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
LUSI mud (%) | 14.60 | 40.00 | 4.28 | 1.75 | 23.25 | 5.46 | 0.34 | 0.88 | 0.06 | 9.38 |
3.1.2. Alkaline Activator
3.2. ALGA Preparation
NaOH Molarity (M) | The Mass of the NaOH Pallet to Be Dissolved in One Litre (1 L) Distilled Water (g) |
---|---|
6 | 240 |
8 | 320 |
10 | 400 |
12 | 480 |
14 | 560 |
16 | 640 |
Ratio of LM/AA | Ratio of Na2SiO3/NaOH | Mass of LUSI Mud (g) | Mass of Na2SiO3 (g) | Mass of NaOH (g) |
---|---|---|---|---|
1.7 | 0.2 | 1511 | 333 | 556 |
0.4 | 485 | 404 | ||
0.6 | 571 | 317 | ||
0.8 | 627 | 261 | ||
1.0 | 667 | 222 | ||
1.8 | 0.2 | 1543 | 321 | 536 |
0.4 | 468 | 390 | ||
0.6 | 551 | 306 | ||
0.8 | 605 | 252 | ||
1.0 | 643 | 214 | ||
1.9 | 0.2 | 1572 | 310 | 517 |
0.4 | 451 | 376 | ||
0.6 | 532 | 296 | ||
0.8 | 584 | 243 | ||
1.0 | 621 | 207 |
3.3. Mixing, Palletizing and Sintering Process
3.4. Testing Methods
3.4.1. Specific Gravity
3.4.2. Water Absorption
3.4.3. Aggregate Impact Value (AIV)
3.4.4. X-ray Diffraction (XRD)
3.4.5. Scanning Electron Microscope (SEM)
3.4.6. Fourier Transform Infrared (FTIR)
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brantas, L.; Volcano, S.M. Lapindo Brantas Social Impact Report; Jakarta Scout Check (JSC): Sidoarjo, Surabaya, Indonesia, 2014. [Google Scholar]
- Davies, R.J.; Swarbrick, R.E.; Evans, R.J.; Huuse, M. Birth of a mud volcano: East. java, 29 May 2006. GSA Today 2007, Volume 17, 4–9. [Google Scholar]
- Mazzini, A.; Svensen, H.; Akhmanov, G.G.; Aloisi, G.; Planke, S.; Malthe-Sørenssen, A.; Istadi, B. Triggering and dynamic evolution of the LUSI mud volcano, Indonesia. Earth Planet. Sci. Lett. 2007, 261, 375–388. [Google Scholar] [CrossRef]
- Davies, R.; Brumm, M.; Manga, M.; Rubiandini, R.; Swarbrick, R.; Tingay, M. The East Java mud volcano (2006–present): An earthquake or drilling trigger? Earth Planet. Sci. Lett. 2008, 272, 627–638. [Google Scholar] [CrossRef]
- Cryanoski, D. Volcano gets choke chains to slow mud. Nature 2007, 45, 470. [Google Scholar] [CrossRef]
- Plumlee, G.S.; Casadevall, T.J.; Casadevall, T.J.; Wibowo, H.T.; Rosenbauer, R.J.; Johnson, C.A.; Breit, G.N. Preliminary Analytical Results for a Mud Sample Collected from the LUSI Mud Volcano, Sidoarjo, East Java, Indonesia; U.S. Geological Survey: Reston, VA, USA, 2008; pp. 1–26.
- Hardjito, D.; Antoni; Wibowo, G.M.; Christianto, D. Pozzolanic activity assessment of LUSI (Lumpur SIdoarjo) mud in semi high volume pozzolanic mortar. Materials 2012, 5, 1654–1660. [Google Scholar] [CrossRef]
- Davidovits, J. Geopolymer, Green Chemistry and Sustainable Development Solutions; Institute Geopolymer: Saint-Quentin, France, 2005. [Google Scholar]
- Palomo, A.; Grutzek, M.W.; Blanco, M.T. Alkali-activated fly ashes. A cement for the future. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Januarti, J.E.; Triwulan, M. The usage of porong mud as a construction materials. In Proceedings of the National Conference, Surabaya, Indonesia, 15 July 2006.
- Nuruddin, M.F.; Bayuaji, R.; Masilamani, M.B.; Biyanto, T.R. Sidoarjo mud: A potential cement replacement material. Civ. Eng. Dimens. 2010, 12, 18–22. [Google Scholar]
- Alengaram, U.J.; Hilmi, M.; Mohd Zamin, J.; Shirazi, S.M. Effect of aggregate size and proportion on strength properties of palm kernel shell concrete. Int. J. Phys. Sci. 2010, 5, 1848–1856. [Google Scholar]
- Almir, S.; Francis Rodrigues de, S.; Wilson Nunes dos, S.; Alexsandro, M.Z.; Fernando do, C.R.A. Lightweight composite concrete produced with water treatment sludge and sawdust: Thermal properties and potential application. Constr. Build. Mater. 2010, 24, 2446–2453. [Google Scholar] [CrossRef]
- Rowles, M.; O’Connor, B. Chemical optimization of the compressive strength of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite. J. Mater. Chem. 2003, 13, 1161–1165. [Google Scholar] [CrossRef]
- Lemougna, P.N.; MacKenzie, K.J.D.; Chinje Melo, U.F. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceram. Int. 2011, 37, 3011–3018. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, Z.; Zhu, H.; Chen, Y. Geopolymerization process of alkali-metakaolinite characterized by isothermal calometry. Thermochim. Acta 2009, 493, 49–54. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G.; Sagoe-Crentsil, K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cem. Concr. Res. 2007, 37, 1583–1589. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Ruscher, C.H.; Mielcarek, E.; Lutz, W.; Ritzmann, A.; Kriven, W.M. Weakening of alkali-activated metakaolin during aging investigated by the molybdate method and infrared absorption spectroscopy. J. Am. Ceram. Soc. 2010, 93, 2585–2590. [Google Scholar] [CrossRef]
- Eun Oh, J.; Clark, S.M.; Monteiro, P.J.M. Determination of the bulk modulus of hydroxycancrinite, a possible zeolitic precursor in geopolymers, by high-pressure synchrotron X-ray diffraction. Cem. Concr. Compos. 2011, 33, 1014–1019. [Google Scholar] [CrossRef]
- Eun Oh, J.; Moon, J.; Mancio, M.; Clark, S.M.; Monteiro, P.J.M. Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2∙2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers. Cem. Concr. Res. 2011, 41, 107–112. [Google Scholar] [CrossRef]
- Soto, F.; Dhakal, M.; Kupwade-Patil, K.; Mainardi, D.S.; N.Allouche, E. Examination of precursors in fly ash for development of an engineered geopolymer concrete. In Proceedings of the 2013 World of Coal Ash Conference, Lexington, KY, USA, 22–25 April 2013.
- Criado, M.; Fernandez-Jimenez, A.; de la Torre, A.G.; Aranda, M.A.G.; Palomo, A. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 2007, 37, 671–679. [Google Scholar] [CrossRef]
- Alvarez-Ayuso, E.; Querol, X.; Plana, F.; ALastuey, A.; Moreno, N.; Izquierdo, M. Environmental, physical, and structural characterization of geopolymer matrixes synthesized from coal (Co-) combustion fly ashes. J. Hazard. Mater. 2008, 154, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Sun, H.; Li, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010, 40, 1341–1349. [Google Scholar] [CrossRef]
- Temuujin, J.; van Riessen, A. Effect of fly ash preliminary calcination on the properties of geopolymer. J. Hazard. Mater. 2009, 164, 634–639. [Google Scholar] [CrossRef] [PubMed]
- Davidovits, J. Geopolymer Chemistry and Applications, 3rd ed.; Institute Geopolymer: Saint-Quentin, France, 2011. [Google Scholar]
- Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. The role of inorganic polymer technology in the development of “green concrete”. Cem. Concr. Res. 2007, 37, 1590–1597. [Google Scholar] [CrossRef]
- Panias, D.; Giannopoulou, I.P.; Perraki, T. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf. A Physicochem. Eng. Asp. 2007, 301, 246–254. [Google Scholar] [CrossRef]
- Lee, W.K.W.; van Deventer, J.S.J. The effect of ionic contaminants on the early-age properties of alkali-activated fly ash-based cements. Cem. Concr. Res. 2002, 32, 577–584. [Google Scholar] [CrossRef]
- Al Bakri, A.M.M.; Hussin, K.; Bnhussain, M.; Ismail, K.N.; Yahya, Z.; Razak, R.A. Fly ash-based geopolymer lightweight concrete using foaming agent. Int. J. Mol. Sci. 2012, 13, 7186–7198. [Google Scholar] [CrossRef] [PubMed]
- Verdolotti, L.; Iannace, S.; Lavorgna, M.; Lamanna, R. Geopolymerization reaction to consolidate incoherent pozzolanic soil. J. Mater. Sci. 2008, 43, 865–873. [Google Scholar] [CrossRef]
- ASTM C618–92a. In Standard Specification for Fly Ash and Raw or Calcinated Natural Pozzoland for Use as Mineral Admixture in Portland Cement Concrete; American Standard for Testing Materials. Annual book of ASTM Standards; ASTM International: West Conshohocken, PA, USA, 1994.
- Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V. On The development of fly ash-based geopolymer concrete. ACI Mater. J. 2004, 101, 467–472. [Google Scholar]
- Rangan, B.V. Low-calcium fly-ash-based geopolymer concrete. In Faculty of Engineering; Curtin University of Technology: Perth, Australia, 2008; pp. 1–19. [Google Scholar]
- Rafiza, A.R.; Mohd Mustafa, A.A.; Kamarudin, H.; Khairul Nizar, I.; Djwantoro, H.; Zarina, Y. Mechanical properties of artificial lightweight geopolymer aggregate (ALGA) concrete using volcano mud with various sintering temperature. Appl. Mech. Mater. 2015, 754, 279–283. [Google Scholar]
- Mustafa Al Bakri, A.M.; Kamarudin, H.; BinHussain, M.; Khairul Nizar, I.; Zarina, Y.; Rafiza, A.R. The effect of curing temperature on physical and chemical properties of geopolymers. Phys. Proced. 2011, 22, 286–291. [Google Scholar] [CrossRef]
- Kockal, N.U. Effects of Lightweight Fly Ash Aggregate Properties on the Performance of Lightweight Concretes. Ph.D. Thesis, Bogazici University, Istanbul, Turkey, 2008. [Google Scholar]
- ASTM C 140–03. In American Society for Testing and Material. Standard Test Method for Sampling and Testing Concrete Masonry Units and Related Units; ASTM International: West Conshohocken, PA, USA, 2000.
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Razak, R.A.; Abdullah, M.M.A.B.; Hussin, K.; Ismail, K.N.; Hardjito, D.; Yahya, Z. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer. Int. J. Mol. Sci. 2015, 16, 11629-11647. https://doi.org/10.3390/ijms160511629
Razak RA, Abdullah MMAB, Hussin K, Ismail KN, Hardjito D, Yahya Z. Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer. International Journal of Molecular Sciences. 2015; 16(5):11629-11647. https://doi.org/10.3390/ijms160511629
Chicago/Turabian StyleRazak, Rafiza Abdul, Mohd Mustafa Al Bakri Abdullah, Kamarudin Hussin, Khairul Nizar Ismail, Djwantoro Hardjito, and Zarina Yahya. 2015. "Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer" International Journal of Molecular Sciences 16, no. 5: 11629-11647. https://doi.org/10.3390/ijms160511629
APA StyleRazak, R. A., Abdullah, M. M. A. B., Hussin, K., Ismail, K. N., Hardjito, D., & Yahya, Z. (2015). Optimization of NaOH Molarity, LUSI Mud/Alkaline Activator, and Na2SiO3/NaOH Ratio to Produce Lightweight Aggregate-Based Geopolymer. International Journal of Molecular Sciences, 16(5), 11629-11647. https://doi.org/10.3390/ijms160511629