Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzyme Immobilization
2.2. Effect of Temperature and pH on Enzyme Activity
2.3. Long-Term Thermal Stability of the Immobilized Enzyme
2.4. GOS Production Using the Free and Immobilized Enzymes
2.5. Reusability of Nanoparticles for Recoupling
3. Experimental Section
3.1. Preparation of Magnetic Nanoparticles
3.2. Preparation of Magnetic Fe3O4-CS and Fe3O4-CS-THP Nanoparticles
3.3. Enzyme Immobilization
3.4. Assays of β-Galactosidase Activity
3.5. High-Performance Liquid Chromatography (HPLC) Analyses
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yanahira, S.; Kobayashi, T.; Suguri, T.; Nakakoshi, M.; Miura, S.; Ishikawa, H.; Nakajima, I. Formation of oligosaccharides from lactose by Bacillus circulans β-galactosidase. Biosci. Biotechnol. Biochem. 1995, 59, 1021–1026. [Google Scholar] [CrossRef] [PubMed]
- Husain, Q. β-galactosidase and their potential applications: A review. Crit. Rev. Biotechnol. 2010, 30, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Park, A.R.; Oh, D.K. Galactooligosaccharide production using microbial β-galactosidase: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; de-Santi, M.S.S.; Pastore, G.M. Production and characterization of β-galactosidase from Aspergillus oryzae. J. Food. Sci. 1979, 44, 100–103. [Google Scholar] [CrossRef]
- Cheng, T.C.; Duan, K.J.; Sheu, D.C. Application of tris(hydroxymethyl)phosphine as a coupling agent for β-galactosidase immobilized on chitosan to produce galactooligosaccharides. J. Chem. Technol. Biotechnol. 2006, 81, 233–236. [Google Scholar] [CrossRef]
- Chen, C.W.; Ou-Yand, C.C.; Yeh, C.W. Synthesis of galactooligosaccharides and transgalactosylation modeling in reverse micelles. Enzym. Microb. Technol. 2003, 33, 497–507. [Google Scholar] [CrossRef]
- Zhou, Q.Z.K.; Chen, X.D. Effects of temperature and pH on the catalytic activity of the immobilized β-galactosidase from Kluyveromyces lactis. Biochem. Eng. J. 2001, 9, 33–40. [Google Scholar] [CrossRef]
- Boon, M.A.; Janssen, A.E.M.; Riet, K. Effect of temperature and enzyme origin on the enzymatic synthesis of oligosaccharides. Enzym. Microb. Technol. 2000, 26, 271–281. [Google Scholar] [CrossRef]
- Maischberger, T.; Nguyen, T.H.; Sukyai, P.; Kittl, R.; Riva, S.; Ludwig, R.; Haltrich, D. Production of lactose-free galactooligosaccharide mixtures: Comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Carbohydr. Res. 2008, 343, 2140–2147. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.L.; Lee, B.H.; Lacroix, C. Immobilization of β-galactosidase from Thermus aquaticus YT-1 for oligosaccharides synthesis. Biotechnol. Lett. 1995, 9, 601–606. [Google Scholar]
- Ji, E.S.; Park, N.; Oh, D. Galactooligosaccharide production by a thermostable recombinant β-galactosidase from Thermotoga maritima. World J. Microbiol. Biotechnol. 2005, 21, 759–764. [Google Scholar] [CrossRef]
- Dwevedi, A.; Kayatha, A.M. Optimal immobilization of β-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresour. Technol. 2009, 100, 2667–2675. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.; Pant, H.; Jain, R.; Khare, S.K. Galactooligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem. 2006, 97, 426–430. [Google Scholar] [CrossRef]
- El-Gindy, A. Production, partial purification and some properties of β-galactosidase from Aspergillus carbonarius. Folia Microbiol. 2003, 48, 581–584. [Google Scholar] [CrossRef]
- Hronska, H.; Rosenberg, M.; Grosová, Z. Milk lactose hydrolysis by β-galactosidase immobilized in polyvinylalcohol hydrogel. New Biotechnol. 2009, 25, 13–16. [Google Scholar] [CrossRef]
- Mariotti, M.P.; Yamanaka, H.; Araujo, A.R.; Trevisan, H.C. Hydrolysis of whey lactose by immobilized β-galactosidase. Braz. Arch. Biol. Technol. 2008, 51, 1233–1240. [Google Scholar] [CrossRef]
- Grosova, Z.; Rosenberg, M.; Rebros, M. Perspectives and applications of immobilized β-galactosidase in food industry-a review. Czech J. Food Sci. 2008, 26, 1–14. [Google Scholar]
- Sheu, D.C.; Li, S.Y.; Duan, K.J.; Chen, C.W. Production of galactooligosaccharides by β-galactosidase immobilized on glutaraldehyde-treated chitosan beads. Biotechnol. Tech. 1998, 12, 273–276. [Google Scholar] [CrossRef]
- Shin, H.J.; Yang, J.W. Continuous production of galactooligosaccharides from lactose by Bullera singularis β-galactosidase immobilized in chitosan beads. Process Biochem. 1998, 33, 787–792. [Google Scholar] [CrossRef]
- Halling, P.J.; Dunnill, P. Magnetic supports for immobilized enzymes and bioaffinity adsorbents. Enzym. Microb. Technol. 1980, 2, 2–10. [Google Scholar] [CrossRef]
- Kim, J.; Grate, J.W.; Wang, P. Nanostructures for enzyme stabilization. Chem. Eng. Sci. 2006, 61, 1017–1026. [Google Scholar] [CrossRef]
- Andrade, L.H.; Rebelo, L.P.; Netto, C.; Toma, H.E. Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized by different methodologies on superparamagnetic nanoparticles. J. Mol. Catal. B Enzym. 2010, 66, 55–62. [Google Scholar] [CrossRef]
- Kuroiwa, T.; Noguchi, Y.; Nakajima, M.; Sato, S.; Mukataka, S.; Ichikawa, S. Production of chitosan oligosaccharides using chitosanase immobilized on amylose-coated magnetic nanoparticles. Process Biochem. 2008, 43, 62–69. [Google Scholar] [CrossRef]
- Kuan, I.C.; Wu, J.C.; Lee, S.L.; Tsai, C.W.; Chuang, C.A.; Yu, C.Y. Stabilization of d-amino acid oxidase from Rhodosporidium toruloides by encapsulation in polyallylamine-mediated biomimetic silica. Biochem. Eng. J. 2010, 49, 408–413. [Google Scholar] [CrossRef]
- Pan, C.; Hu, B.; Li, W.; Sun, Y.; Ye, H.; Zeng, X. Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. J. Mol. Catal. B Enzym. 2009, 61, 208–215. [Google Scholar] [CrossRef]
- Chen, S.C.; Sheu, D.C.; Duan, K.J. Production of fructooligosaccharides using β-fructofuranosidase immobilized onto chitosan-coated magnetic nanoparticles. J. Taiwan Inst. Chem. Eng. 2014, 45, 1105–1110. [Google Scholar] [CrossRef]
- Krajewska, B. Application of chitin- and chitosan-based materials for enzyme immobilizations: A review. Enzym. Microb. Technol. 2004, 35, 126–139. [Google Scholar] [CrossRef]
- Klein, M.P.; Nunes, M.R.; Rodrigues, R.C.; Benvenutti, E.V.; Costa, T.M.H.; Hertz, P.F.; Ninow, J.L. Effect of the support size on the properties of β-galactosidase immobilized on chitosan: Advantages and disadvantages of macro and nanoparticles. Biomacromolecules 2012, 13, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Biro, E.; Nemeth, A.S.; Sisak, C.; Feczko, T.; Gyenis, J. Preparation of chitosan particles suitable for enzyme immobilization. J. Biochem. Biophys. Methods 2008, 70, 1240–1246. [Google Scholar] [CrossRef] [PubMed]
- Walt, D.R.; Agayn, V.I. The chemistry of enzyme and protein immobilization with glutaraldehyde. Trends Anal. Chem. 1994, 13, 425–430. [Google Scholar] [CrossRef]
- Oswald, P.R.; Evans, R.A.; Henderson, W.; Daniel, R.M.; Fee, C.J. Properties of a thermostable β-glucosidase immobilized using tris(hydroxymethyl) phosphine as a highly effective coupling agent. Enzym. Microb. Technol. 1998, 23, 14–19. [Google Scholar]
- Chen, D.H.; Liao, M.H. Preparation and characterization of YADH-bound magnetic nanoparticles. J. Mol. Cata. B Enzym. 2002, 16, 283–291. [Google Scholar] [CrossRef]
- Ghandoor, H.E.; Zidan, H.M.; Khalil, M.M.H.; Ismail, M.I.M. Synthesis and some physical properties of magnetitite (Fe3O4) Nanoparticles. Int. J. Electrochem. Sci. 2012, 7, 5734–5745. [Google Scholar]
- Kawashima, Y.; Handa, T.; Kasai, A.; Takenaka, H.; Lin, S.Y. The effect of thickness and hardness of the coating film on the drug release rate of theophylline granules coated with chitosan-sodium tripolyphosphate complex. Chem. Pharm. Bull. 1985, 33, 2469–2474. [Google Scholar] [CrossRef] [PubMed]
- Martinek, K.; Klibanov, A.M.; Goldmacher, V.S.; Berezin, I.V. The principles of enzyme stabilization I. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochim. Biophys. Acta 1977, 485, 1–12. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, G.; Li, Y.; Liu, X.; Hou, P. Reversible immobilization of glucoamylase onto magnetic chitosan nanocarriers. Appl. Microbiol. Biotechnol. 2013, 97, 681–692. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.T.; Kuo, P.C.; Yao, Y.D.; Tsai, E.H. Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by coprecipitation technique. IEEE Trans. Magn. 2001, 37, 2651–2653. [Google Scholar] [CrossRef]
- Marion, M.; Bradford, M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-C.; Duan, K.-J. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent. Int. J. Mol. Sci. 2015, 16, 12499-12512. https://doi.org/10.3390/ijms160612499
Chen S-C, Duan K-J. Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent. International Journal of Molecular Sciences. 2015; 16(6):12499-12512. https://doi.org/10.3390/ijms160612499
Chicago/Turabian StyleChen, Su-Ching, and Kow-Jen Duan. 2015. "Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent" International Journal of Molecular Sciences 16, no. 6: 12499-12512. https://doi.org/10.3390/ijms160612499
APA StyleChen, S. -C., & Duan, K. -J. (2015). Production of Galactooligosaccharides Using β-Galactosidase Immobilized on Chitosan-Coated Magnetic Nanoparticles with Tris(hydroxymethyl)phosphine as an Optional Coupling Agent. International Journal of Molecular Sciences, 16(6), 12499-12512. https://doi.org/10.3390/ijms160612499