Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Properties of Water Extractable Organic Matter (WEOM)
2.2. Parallel Factor Analysis (PARAFAC) Derived Components
2.3. Interaction of Fluorescent Components with Cu(II) and Eu(III)
PARAFAC Component | CM (μmol/L) | log KM | CL (μmol/L) | f (%) | R2 |
---|---|---|---|---|---|
fulvic-like | CCu of 0 to 80 | 5.66 | 12.7 | 69.3 | 0.982 |
humic-like | 5.49 | 14.8 | 71.6 | 0.978 | |
microbial humic-like | 5.53 | 16.8 | 59.6 | 0.981 | |
protein-like | 5.94 | 5.35 | 45.0 | 0.975 | |
fulvic-like | CCu of 0 to 80 with CEu of 20 | 5.40 | 11.4 | 36.2 | 0.891 |
humic-like | 5.38 | 13.7 | 45.9 | 0.910 | |
microbial humic-like | 5.15 | 12.9 | 27.5 | 0.840 | |
protein-like | 5.77 | 3.31 | 21.7 | 0.937 | |
fulvic-like | CEu of 0 to 60 | 5.81 | 10.9 | 67.2 | 0.990 |
humic-like | 5.58 | 14.5 | 70.3 | 0.990 | |
microbial humic-like | 5.76 | 13.1 | 63.8 | 0.994 | |
protein-like | 5.26 | 22.8 | 38.7 | 0.964 | |
fulvic-like | CEu of 0 to 60 with CCu of 10 | 5.47 | 9.15 | 48.3 | 0.962 |
humic-like | 5.48 | 11.4 | 54.1 | 0.968 | |
microbial humic-like | 5.58 | 9.67 | 44.9 | 0.966 | |
protein-like | Not modeled |
2.4. Competitive Reactions between Cu(II) and Eu(III) with WEOM
3. Experimental Section
3.1. Soil Sampling and WEOM Extraction
3.2. Fluorescence Quenching Titration
3.3. Competitive Reactions
3.4. Fluorescence EEM Determination and PARAFAC Modeling
3.5. Complexation Modeling
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marsac, R.; Davranche, M.; Gruau, G.; Dia, A.; Pédrot, M.; le Coz-Bouhnik, M.; Briant, N. Effects of Fe competition on REE binding to humic acid: Origin of REE pattern variability in organic waters. Chem. Geol. 2013, 342, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Tipping, E. Humic ion-binding model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquat. Geochem. 1998, 4, 3–48. [Google Scholar] [CrossRef]
- Milne, C.J.; Kinniburgh, D.G.; van Riemsdijk, W.H.; Tipping, E. Generic NICA-donnan model parameters for metal-ion binding by humic substances. Environ. Sci. Technol. 2003, 37, 958–971. [Google Scholar] [CrossRef] [PubMed]
- Gasper, J.D.; Aiken, G.R.; Ryan, J.N. A critical review of three methods used for the measurement of mercury (Hg2+)-dissolved organic matter stability constants. Appl. Geochem. 2007, 22, 1583–1597. [Google Scholar] [CrossRef]
- Aiken, G.R.; Hsu-Kim, H.; Ryan, J.N. Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ. Sci. Technol. 2011, 45, 3196–3201. [Google Scholar] [CrossRef] [PubMed]
- Li, W.H.; Sheng, G.P.; Liu, X.W.; Yu, H.Q. Characterizing the extracellular and intracellular fluorescent products of activated sludge in a sequencing batch reactor. Water Res. 2008, 42, 3173–3181. [Google Scholar] [CrossRef] [PubMed]
- Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 1997, 38, 149–171. [Google Scholar] [CrossRef]
- Andersen, C.M.; Bro, R. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom. 2003, 17, 200–215. [Google Scholar] [CrossRef]
- Erich, M.S.; Plante, A.F.; Fernández, J.M.; Mallory, E.B.; Ohno, T. Effects of profile depth and management on the composition of labile and total soil organic matter. Soil Sci. Soc. Am. J. 2012, 76, 408. [Google Scholar] [CrossRef]
- Yu, G.H.; Wu, M.J.; Wei, G.R.; Luo, Y.H.; Ran, W.; Wang, B.R.; Zhang, J.C.; Shen, Q.R. Binding of organic ligands with Al(III) in dissolved organic matter from soil: Implications for soil organic carbon storage. Environ. Sci. Technol. 2012, 46, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.K.L.; Boyer, T.H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review. Environ. Sci. Technol. 2012, 46, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.A.M.; Taylor, J.H.; Bieroza, M.; Zhang, H.; Davison, W. Improving and testing geochemical speciation predictions of metal ions in natural waters. Water Res. 2014, 67, 276–291. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T.; Amirbahman, A.; Bro, R. Parallel factor analysis of excitation-emission matrix fluorescence spectra of water soluble soil organic matter as basis for the determination of conditional metal binding parameters. Environ. Sci. Technol. 2008, 42, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.S.; Adriano, D.C.; Kunhikrishnan, A.; James, T.; McDowell, R.; Senesi, N. Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Adv. Agron. 2011, 110, 1–75. [Google Scholar]
- Guigue, J.; Mathieu, O.; Leveque, J.; Mounier, S.; Laffont, R.; Maron, P.A.; Navarro, N.; Chateau, C.; Amiotte-Suchet, P.; Lucas, Y. A comparison of extraction procedures for water-extractable organic matter in soils. Eur. J. Soil Sci. 2014, 65, 520–530. [Google Scholar] [CrossRef]
- Gaetke, L. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [CrossRef]
- Epstein, L.; Bassein, S. Pesticide applications of copper on perennial crops in California, 1993 to 1998. J. Environ. Qual. 2001, 30, 1844–1847. [Google Scholar] [CrossRef] [PubMed]
- Bolan, N.; Adriano, D.; Mahimairaja, S. Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit. Rev. Environ. Sci. Technol. 2004, 34, 291–338. [Google Scholar] [CrossRef]
- Heijerick, D.G.; van Sprang, P.A.; van Hyfte, A.D. Ambient copper concentrations in agricultural and natural european soils: An overview. Environ. Toxicol. Chem. 2006, 25, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z. Global rare earth resources and scenarios of future rare earth industry. J. Rare Earths 2011, 29, 1–6. [Google Scholar] [CrossRef]
- Hu, Z.; Richter, H.; Sparovek, G.; Schnug, E. Physiological and biochemical effects of rare earth elements on plants and their agricultural significance: A review. J. Plant Nutr. 2004, 27, 183–220. [Google Scholar] [CrossRef]
- He, M.L.; Wehr, U.; Rambeck, W.A. Effect of low doses of dietary rare earth elements on growth performance of broilers. J. Anim. Physiol. Anim. Nutr. 2010, 94, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.H.; Huang, X.H.; Zhou, Q. Effects of rare earth elements on the distribution of mineral elements and heavy metals in horseradish. Chemosphere 2008, 73, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Zhao, R.X.; Zhao, W.J.; Fu, R.Y.; Guo, J.Y.; Bi, N.; Zhang, J. Effects of arbuscular mycorrhizal fungi on maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) grown in rare earth elements of mine tailings. Appl. Soil Ecol. 2013, 72, 85–92. [Google Scholar] [CrossRef]
- Brioschi, L.; Steinmann, M.; Lucot, E.; Pierret, M.C.; Stille, P.; Prunier, J.; Badot, P.M. Transfer of rare earth elements (REE) from natural soil to plant systems: Implications for the environmental availability of anthropogenic REE. Plant Soil 2013, 366, 143–163. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of marine and terrestrial dom in seawater using excitation emission matrix spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Chen, M.; Price, R.M.; Yamashita, Y.; Jaffé, R. Comparative study of dissolved organic matter from groundwater and surface water in the florida coastal everglades using multi-dimensional spectrofluorometry combined with multivariate statistics. Appl. Geochem. 2010, 25, 872–880. [Google Scholar] [CrossRef]
- Hunt, J.F.; Ohno, T. Characterization of fresh and decomposed dissolved organic matter using excitation-emission matrix fluorescence spectroscopy and multiway analysis. J. Agric. Food Chem. 2007, 55, 2121–2128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; van Dijk, M.A.; Liu, M.; Zhu, G.; Qin, B. The contribution of phytoplankton degradation to chromophoric dissolved organic matter (CDOM) in eutrophic shallow lakes: Field and experimental evidence. Water Res. 2009, 43, 4685–4697. [Google Scholar] [CrossRef] [PubMed]
- Beggs, K.M.; Summers, R.S. Character and chlorine reactivity of dissolved organic matter from a mountain pine beetle impacted watershed. Environ. Sci. Technol. 2011, 45, 5717–5724. [Google Scholar] [CrossRef] [PubMed]
- Plaza, C.; Brunetti, G.; Senesi, N.; Polo, A. Molecular and quantitative analysis of metal ion binding to humic acids from sewage sludge and sludge-amended soils by fluorescence spectroscopy. Environ. Sci. Technol. 2006, 40, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, D.; Plaza, C.; Senesi, N.; Polo, A. Detection of copper(II) and zinc(II) binding to humic acids from pig slurry and amended soils by fluorescence spectroscopy. Environ. Pollut. 2006, 143, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Jaffe, R. Characterizing the interactions between trace metals and dissolved organic matter using excitation-emission matrix and parallel factor analysis. Environ. Sci. Technol. 2008, 42, 7374–7379. [Google Scholar] [CrossRef] [PubMed]
- Terashima, M.; Nagao, S.; Iwatsuki, T.; Fujitake, N.; Seida, Y.; Iijima, K.; Yoshikawa, H. Europium-binding abilities of dissolved humic substances isolated from deep groundwater in Horonobe area, Hokkaido, Japan. J. Nucl. Sci. Technol. 2012, 49, 804–815. [Google Scholar] [CrossRef]
- Konstantinou, M.; Kolokassidou, K.; Pashalidis, I. Studies on the interaction of olive cake and its hydrophylic extracts with polyvalent metal ions (Cu(II), Eu(III)) in aqueous solutions. J. Hazard. Mater. 2009, 166, 1169–1173. [Google Scholar] [CrossRef] [PubMed]
- Luster, J.; Lloyd, T.; Sposito, G.; Fry, I.V. Multi-wavelength molecular fluorescence spectrometry for quantitative characterization of copper(II) and aluminum(III) complexation by dissolved organic matter. Environ. Sci. Technol. 1996, 30, 1565–1574. [Google Scholar] [CrossRef]
- Evangelou, V.P.; Marsi, M.; Chappell, M.A. Potentiometric-spectroscopic evaluation of metal-ion complexes by humic fractions extracted from corn tissue. Spectrochim. Acta A 2002, 58, 2159–2175. [Google Scholar] [CrossRef]
- Pan, B.; Qiu, M.; Wu, M.; Zhang, D.; Peng, H.; Wu, D.; Xing, B. The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction. Environ. Pollut. 2012, 161, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.S.; Rhee, S.W.; Lee, B.H.; Moon, C.H. Metal binding sites and partial structures of soil fulvic and humic acids compared: Aided by Eu(III) luminescence spectroscopy and DEPT/QUAT 13C NMR pulse techniques. Org. Geochem. 1996, 24, 523–529. [Google Scholar] [CrossRef]
- Lukman, S.; Saito, T.; Aoyagi, N.; Kimura, T.; Nagasaki, S. Speciation of Eu3+ bound to humic substances by time-resolved laser fluorescence spectroscopy (TRLFS) and parallel factor analysis (PARAFAC). Geochim. Cosmochim. Acta 2012, 88, 199–215. [Google Scholar] [CrossRef]
- Milne, C.J.; Kinniburgh, D.G.; Tipping, E. Generic NICA-donnan model parameters for proton binding by humic substances. Environ. Sci. Technol. 2001, 35, 2049–2059. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Wu, F.; Liu, C.; Wang, F.; Li, W.; Yue, L.; Guo, Q. Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). Appl. Geochem. 2007, 22, 1668–1679. [Google Scholar] [CrossRef]
- Maie, N.; Scully, N.M.; Pisani, O.; Jaffe, R. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res. 2007, 41, 563–570. [Google Scholar] [CrossRef] [PubMed]
- Marang, L.; Reiller, P.E.; Eidner, S.; Kumke, M.U.; Benedetti, M.F. Combining spectroscopic and potentiometric approaches to characterize competitive binding to humic substances. Environ. Sci. Technol. 2008, 42, 5094–5098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Liu, X.; Wang, M.; Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 2013, 55, 26–37. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr-Meth. 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Ryan, D.K.; Weber, J.H. Fluorescence quenching titration for determination of complexing capacities and stability-constants of fulvic-acid. Anal. Chem. 1982, 54, 986–990. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, J.; Han, L.; Song, J.; Chen, M. Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis. Int. J. Mol. Sci. 2015, 16, 14464-14476. https://doi.org/10.3390/ijms160714464
Wei J, Han L, Song J, Chen M. Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis. International Journal of Molecular Sciences. 2015; 16(7):14464-14476. https://doi.org/10.3390/ijms160714464
Chicago/Turabian StyleWei, Jing, Lu Han, Jing Song, and Mengfang Chen. 2015. "Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis" International Journal of Molecular Sciences 16, no. 7: 14464-14476. https://doi.org/10.3390/ijms160714464
APA StyleWei, J., Han, L., Song, J., & Chen, M. (2015). Evaluation of the Interactions between Water Extractable Soil Organic Matter and Metal Cations (Cu(II), Eu(III)) Using Excitation-Emission Matrix Combined with Parallel Factor Analysis. International Journal of Molecular Sciences, 16(7), 14464-14476. https://doi.org/10.3390/ijms160714464