Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates
Abstract
:1. Introduction
2. Results and Discussion
2.1. XRD Results
2.2. FTIR and EDX Results
Element | HA | 10% La-HA | 20% La-HA | 30% La-HA | ||||
---|---|---|---|---|---|---|---|---|
wt % | At % | wt % | At % | wt % | At % | wt % | At % | |
P | 8.92 | 8.26 | 8.42 | 7.40 | 7.14 | 6.72 | 7.95 | 7.93 |
Ca | 21.06 | 15.11 | 8.03 | 5.47 | 8.53 | 6.22 | 6.29 | 4.86 |
La | 0 | 0 | 5.43 | 1.06 | 9.81 | 2.06 | 25.61 | 5.70 |
Ti | 40.93 | 24.47 | 41.37 | 23.48 | 41.84 | 25.43 | 26.98 | 17.39 |
O | 29.08 | 52.16 | 36.75 | 62.58 | 32.67 | 59.57 | 33.16 | 64.11 |
2.3. Morphology of Coating Surface
2.4. Bonding Strengths of the Coating Layers
2.5. Degradation of Coatings
2.6. Cell Proliferation Assay
2.7. Alkaline Phosphatase (ALP) Activity Assay and Cellular Morphology
3. Experimental Section
3.1. Preparation of the Ti Substrate Samples
3.2. Preparation of La-HA Sols
3.3. Preparation of La-HA Coatings
3.4. Characterization of La-HA Coatings
3.5. Bonding Strengths of Coatings
3.6. Degradation Evaluation in Vitro
3.7. Cell Culture
3.8. Cell Proliferation Assay
3.9. Alkaline Phosphatase (ALP) Activity Assay
3.10. Cellular Morphology Imaging
3.11. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Alves, S.A.; Bayon, R.; Igartua, A.; de Viteri, V.S.; Rocha, L.A. Tribocorrosion behaviour of anodic titanium oxide films produced by plasma electrolytic oxidation for dental implants. Lubr. Sci. 2014, 26, 500–513. [Google Scholar] [CrossRef]
- Diz, P.; Scully, C.; Sanz, M. Dental implants in the medically compromised patient. J. Dent. 2013, 41, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Steigenga, J.T.; al-Shammari, K.F.; Nociti, F.H.; Misch, C.E.; Wang, H.L. Dental implant design and its relationship to long-term implant success. Implant Dent. 2003, 12, 306–317. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Navarrete, R.; Raines, A.L.; Hyzy, S.L.; Park, J.H.; Hutton, D.L.; Cochran, D.L.; Boyan, B.D.; Schwartz, Z. Osteoblast maturation and new bone formation in response to titanium implant surface features are reduced with age. J. Bone Miner. Res. 2012, 27, 1773–1783. [Google Scholar] [CrossRef] [PubMed]
- Sakka, S.; Baroudi, K.; Nassani, M.Z. Factors associated with early and late failure of dental implants. J. Investig. Clin. Dent. 2012, 3, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Ahmed, R.; Shakir, I.; Ibrahim, W.A.W.; Hussain, R. Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 2014, 49, 1461–1475. [Google Scholar] [CrossRef]
- Tang, R.; Hass, M.; Wu, W.; Gulde, S.; Nancollas, G.H. Constant composition dissolution of mixed phases. II. Selective dissolution of calcium phosphates. J. Colloid Interface Sci. 2003, 260, 379–384. [Google Scholar] [CrossRef]
- Porter, A.E.; Botelho, C.M.; Lopes, M.A.; Santos, J.D.; Best, S.M.; Bonfield, W. Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo. J. Biomed. Mater. Res. Part A 2004, 69, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.G.; Xu, K.W.; Zhao, X.Y.; Han, Y. Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 2005, 26, 4073–4083. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.G.; Xu, K.W.; Yue, J.; Zhao, X.Y.; Han, Y. pH value evolution of a novel Sr-containing calcium phosphate cement pastes and cytotoxicities of their hardened bodies. J. Inorg. Mater. 2005, 20, 1159–1166. [Google Scholar]
- Guo, D.; Xu, K.; Han, Y. The influence of Sr doses on the in vitro biocompatibility and in vivo degradability of single-phase Sr-incorporated HAP cement. J. Biomed. Mater. Res. Part A 2008, 86, 947–958. [Google Scholar]
- Fujimori, E.; Hayashi, T.; Inagaki, K.; Haraguchi, H. Determination of lanthanum and rare earth elements in bovine whole blood reference material by ICP-MS after coprecipitation preconcentration with heme-iron as coprecipitant. Fresenius’ J. Anal. Chem. 1999, 363, 277–282. [Google Scholar] [CrossRef]
- Mayer, I.; Layani, J.; Givan, A.; Gaft, M.; Blanc, P. La ions in precipitated hydroxyapatites. J. Inorg. Biochem. 1999, 73, 221–226. [Google Scholar] [CrossRef]
- Serret, A.; Cabanas, M.V.; Vallet-Regi, M. Stabilization of calcium oxyapatites with lanthanum(III)-created anionic vacancies. Chem. Mater. 2000, 12, 3836–3841. [Google Scholar] [CrossRef]
- Shin-Ike, M.; Tsutsui, J.; Tanaka, A.; Murayama, S.; Fujita, A. Attempts to improve the strength of sintered lanthanum-containing hydroxyapatites. Shika Igaku J. Osaka Odontol. Soc. 1989, 52, 854–861. [Google Scholar]
- Tanaka, A.; Nishimura, Y.; Sakaki, T.; Fujita, A.; Shin-Ike, T. Histologic evaluation of tissue response to sintered lanthanum-containing hydroxyapatites subcutaneously implanted in rats. J. Osaka Dent. Univ. 1989, 23, 111–120. [Google Scholar] [PubMed]
- Fernandez-Gavarron, F.; Huque, T.; Rabinowitz, J.L.; Brand, J.G. Incorporation of 140-lanthanum into bones, teeth and hydroxyapatite. Bone Miner. 1988, 3, 283–291. [Google Scholar] [PubMed]
- Zhang, J.C.; Xu, S.J.; Wang, K.; Yu, S.F. Effects of the rare earth ions on bone resorbing function of rabbit mature osteoclasts in vitro. Chin. Sci. Bull. 2003, 48, 2170–2175. [Google Scholar] [CrossRef]
- Liu, T.J.; Wang, Y.; Li, S.P. Preparation and Characterization of Lanthanum-substituted Nano-hydroxyapatite by Sol-gel Method. J. Wuhan Univ. Technol. 2009, 31, 8–10. [Google Scholar]
- Guo, D.G.; Wang, A.H.; Han, Y.; Xu, K.W. Characterization, physicochemical properties and biocompatibility of La-incorporated apatites. Acta Biomater. 2009, 5, 3512–3523. [Google Scholar] [CrossRef] [PubMed]
- Bouhaouss, A.; Laghzizil, A.; Bensaoud, A.; Ferhat, M.; Lorent, G.; Livage, J. Mechanism of ionic conduction in oxy and hydroxyapatite structures. Int. J. Inorg. Mater. 2001, 3, 743–747. [Google Scholar] [CrossRef]
- Panda, R.N.; Hsieh, M.F.; Chung, R.J.; Chin, T.S. FTIR, XRD, SEM and solid state NMR investigations of carbonate-containing hydroxyapatite nano-particles synthesized by hydroxide-gel technique. J. Phys. Chem. Solid 2003, 64, 193–199. [Google Scholar] [CrossRef]
- Ramaglia, L.; Capece, G.; Spigna, G.D.; Bruno, M.; Buonocore, N.; Postiglione, L. Effects of titanium surface topography on morphology and in vitro activity of. Minerva Stomatol. 2013, 62, 267–280. [Google Scholar] [PubMed]
- Dettin, M.; Herath, T.; Gambaretto, R.; Iucci, G.; Battocchio, C.; Bagno, A.; Ghezzo, F.; di Bello, C.; Polzonetti, G.; di Silvio, L. Assessment of novel chemical strategies for covalent attachment of adhesive. J. Biomed. Mater. Res. A 2009, 91, 463–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Wu, Y.; Xie, J.P.; Lu, G.; Dong, X.M.; Yu, H.W. Sol-Gel Derived Titania/Hydroxyapatite Layer on Titanium Substrate. Appl. Mech. Mater. 2012, 117–119, 332–334. [Google Scholar] [CrossRef]
- Tabassum, A.; Walboomers, F.; Wolke, J.G.C.; Meijer, G.J.; Jansen, J.A. The influence of surface roughness on the displacement of osteogenic bone particles during placement of titanium screw-type implants. Clin. Implant Dent. Res. 2011, 13, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Rosa, A.L.; Beloti, M.M. Rat bone marrow cell response to titanium and titanium alloy with different surface roughness. Clin. Oral Implant. Res. 2003, 14, 43–49. [Google Scholar] [CrossRef]
- Cai, K.Y.; Bossert, J.; Jandt, K.D. Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloid Surf. B Biointerfaces 2006, 49, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Mendonca, G.; Mendonca, D.B.S.; Simoes, L.G.P.; Araujo, A.L.; Leite, E.R.; Duarte, W.R.; Aragao, F.J.L.; Cooper, L.F. The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 2009, 30, 4053–4062. [Google Scholar] [CrossRef] [PubMed]
- Kwok, C.T.; Wong, P.K.; Cheng, F.T.; Man, H.C. Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Appl. Surf. Sci. 2009, 255, 6736–6744. [Google Scholar] [CrossRef]
- Farnoush, H.; Mohandesi, J.A.; Fatmehsari, D.H.; Moztarzadeh, F. Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti-6Al-4V substrates. Ceram. Int. 2012, 38, 4885–4893. [Google Scholar] [CrossRef]
- Farnoush, H.; Sadeghi, A.; Bastami, A.A.; Moztarzadeh, F.; Mohandesi, J.A. An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition. Ceram. Int. 2013, 39, 1477–1483. [Google Scholar] [CrossRef]
- Shen, S.B.; Cai, S.; Xu, G.H.; Zhao, H.; Niu, S.X.; Zhang, R.Y. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy. J. Mech. Behav. Biomed. 2015, 45, 166–174. [Google Scholar] [CrossRef] [PubMed]
- Ding, S.J.; Ju, C.P.; Lin, J.H. Immersion behavior of RF magnetron-assisted sputtered hydroxyapatite/titanium coatings in simulated body fluid. J. Biomed. Mater. Res. 1999, 47, 551–563. [Google Scholar] [CrossRef]
- Warme, B.A.; Epstein, N.J.; Trindade, M.C.D.; Miyanishi, K.; Ma, T.; Saket, R.R.; Regula, D.; Goodman, S.B.; Smith, R.L. Proinflammatory mediator expression in a novel murine model of titanium-particle-induced intramedullary inflammation. J. Biomed. Mater. Res. B 2004, 71, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Lee, S.H.; Kim, H.W.; Kong, Y.M.; Kim, H.E. Fluoridated apatite coatings on titanium obtained by electron-beam deposition. Biomaterials 2005, 26, 3843–3851. [Google Scholar] [CrossRef] [PubMed]
- Geesink, R.G.; de Groot, K.; Klein, C.P. Bonding of bone to apatite-coated implants. J. Bone Jt. Surg. Br. 1988, 70, 17–22. [Google Scholar]
- LeGeros, R.Z. Biodegradation and bioresorption of calcium phosphate ceramics. Clin. Mater. 1993, 14, 65–88. [Google Scholar] [CrossRef]
- Hamdi, M.; Ide-Ektessabi, A. Dissolution behavior of simultaneous vapor deposited calcium phosphate coatings in vitro. Mater. Sci. Eng. C 2007, 27, 670–674. [Google Scholar] [CrossRef]
- Murugan, R.; Ramakrishna, S. Production of ultra-fine bioresorbable carbonated hydroxyapatite. Acta Biomater. 2006, 2, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Dorozhkin, S.V. Bioceramics of calcium orthophosphates. Biomaterials 2010, 31, 1465–1485. [Google Scholar] [CrossRef] [PubMed]
- Kheradmandfard, M.; Fathi, M.H.; Ahangarian, M.; Zahrani, E.M. In vitro bioactivity evaluation of magnesium-substituted fluorapatite nanopowders. Ceram. Int. 2012, 38, 169–175. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Wang, G.; Liu, X.; Wang, S.; Yang, M. the dual-effects of LaCl3 on the proliferation, osteogenic differentiation, and Mineralization of MC3T3-E1 cells. Biol. Trace Elem. Res. 2012, 150, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lou, W.; Wang, Q.; Ma, J.; Xu, H.; Bai, Q.; Liu, C.; Liu, J. Sol-gel-derived hydroxyapatite-carbon nanotube/titania coatings on titanium substrates. Int. J. Mol. Sci. 2012, 13, 5242–5253. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.J.; Gu, Z.Y.; Zheng, Y.N.; Zhang, X.; Guo, J.; Wu, G. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis. PLoS ONE 2013, 8, e78198. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, W.; Dong, Y.; Zhang, H.; Jin, Y.; Hu, X.; Ma, J.; Liu, J.; Wu, G. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates. Int. J. Mol. Sci. 2015, 16, 21070-21086. https://doi.org/10.3390/ijms160921070
Lou W, Dong Y, Zhang H, Jin Y, Hu X, Ma J, Liu J, Wu G. Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates. International Journal of Molecular Sciences. 2015; 16(9):21070-21086. https://doi.org/10.3390/ijms160921070
Chicago/Turabian StyleLou, Weiwei, Yiwen Dong, Hualin Zhang, Yifan Jin, Xiaohui Hu, Jianfeng Ma, Jinsong Liu, and Gang Wu. 2015. "Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates" International Journal of Molecular Sciences 16, no. 9: 21070-21086. https://doi.org/10.3390/ijms160921070
APA StyleLou, W., Dong, Y., Zhang, H., Jin, Y., Hu, X., Ma, J., Liu, J., & Wu, G. (2015). Preparation and Characterization of Lanthanum-Incorporated Hydroxyapatite Coatings on Titanium Substrates. International Journal of Molecular Sciences, 16(9), 21070-21086. https://doi.org/10.3390/ijms160921070