Clinical Genetic Aspects of Autism Spectrum Disorders
Abstract
:1. Introduction
1.1. Autism as a Neuro-Genetic Disorder
1.1.1. Indisputable Evidence of the Genetic Basis of Autism Spectrum Disorders (ASDs)
1.1.2. Why Then Is the Genetic Basis of ASDs Still Debated?
1.2. Multifactorial Inheritance
- Clear genetic variability exists yet no uni-factorial mode of inheritance can be identified
- Family studies indicate an increased risk for near relatives to be affected
- Complicated pathophysiology or morphogenetic processes are involved
- Biologic influences of environmental factors
- An increased recurrence risk in close relatives as compared to the general population frequency
- A non-linear decrease in frequency with increasing distance of relationship—typically no increased recurrence rates are seen beyond 3rd degree relatives
- The recurrence risk increases with the number of affected individuals
- There is an increased risk with increased severity of the condition
- There is an increased risk if person(s) affected are of the “rarer” gender. (In ASD a distinct gender bias of a 3- to 4-fold rate of affected males has been noted)
2. Discussion
2.1. Epidemiology/Population Genetics
2.1.1. Recurrence Risk
2.1.2. Heritability
2.1.3. Sex Bias (Occurrence Gender)
2.1.4. Proband Gender Effect (Recurrence)
2.1.5. Reproductive Stoppage and Birth Order
2.1.6. Parental Age Effects
Parameter | Value | Comments |
---|---|---|
Recurrence risk | 10%–20% | Value increased based on newer studies |
Relative recurrence ratio | ||
Monozygotic twins | 150 | |
Dizygotic twins | 8 | |
Full siblings | 7–10 | |
Heritability | 0.7–0.9 | One recent study estimate of 0.5 |
Occurrence gender | 4–5× higher in males | Few studies have not seen this |
Proband gender effect | 2× increase if female | Recent studies differ on this effect |
Paternal age | Increased | One recent study saw a higher occurrence in younger fathers |
Reproductive curtailment (stoppage) | Appears to be real phenomenon | |
Birth order | Decreased in later sibs | To be confirmed |
2.2. Genetic Loci and ASDs
2.2.1. Linkage
2.2.2. Cytogenetics
2.2.3. Fluorescent-in Situ-Hybridization (FISH)
2.2.4. Chromosomal Microarray (CMA)
Copy Number Variant | Incidence in Cohorts with ASDs | Eponym | Other Key Features (besides ASD) |
---|---|---|---|
1q21.1 del | 1% | None | Congenital heart disease (30%) |
2q22.3 del dup | <1% | Mowat-Wilson | Hirschprung disease, epilepsy, facial dysmorphisms |
16p11.2 del/dup | 1% | None | |
17p11.2 dup | <1% | Potocki-Lupski | Hypotonia, slow growth, epilepsy |
22q11.2 del | <1% | DiGeorge/Shprintzen | Multiple congenital anomalies |
22q13.3 del | 1% | Phelan-McDermid | Hypotonia, accelerated growth |
2.2.5. Key ASD Loci
2.3. Clinical Genetic Evaluation of ASD
- (1)
- Genetic counseling—including providing recurrence risk information
- (2)
- Counseling regarding the natural history of the condition
- (3)
- Anticipation of a later associated co-morbid condition
- (4)
- Prevention of secondary disorders
- (5)
- Availability of prenatal diagnosis
- (6)
- Access to public support systems
- (7)
- Access to syndrome-specific support groups
- (8)
- The reassurance of knowing “Why” in reliving the stress of the unknown
- (9)
- The possibility of a specific treatment strategy—should one be available or developed in the future
2.3.1. Role of Dysmorphology/Clinical Genetics
22q11.2 Deletions (Including DiGeorge and Shprintzen Syndromes) |
---|
CHARGE syndrome |
Fragile X syndrome |
Opitz FG syndrome |
Prader Willi/Angelman syndrome |
PTEN associated disorders |
Rett syndrome |
Smith-Magenis syndrome |
Sotos syndrome |
Thick scalp hair |
Lateral extension of the eyebrows |
Sloped forehead with prominent brow |
Infraorbital hypoplasia |
Prominent pre-maxilla |
Short columella |
Prominent (broad) nasal root |
Thickened ala nasae |
Prominent philtral ridges |
Small ears |
2.3.2. Guidelines for the Clinical Genetic Evaluation of ASD
2.3.3. What about Unknowns?
- (1)
- Mutations in non-coding DNA
- (2)
- Epigenetic disorders including those fitting a MEGDI model—mixed genetics/epigenetics
- (3)
- Multiple contributing loci
- (4)
- Complex gene x gene interactions
- (5)
- Snippets
2.4. Metabolic and Mitochondrial Disorders
3. Conclusions
Conflicts of Interest
References
- Folstein, S.E.; Piven, J. Etiology of autism: Genetic influences. Pediatrics 1991, 87, 767–773. [Google Scholar] [PubMed]
- Schaefer, G.B.; Lutz, R.E. Diagnostic yield in the clinical genetic evaluation of autism spectrum disorders. Genet. Med. 2006, 8, 549–556. [Google Scholar] [PubMed]
- Schaefer, G.B.; Mendelsohn, N.J. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet. Med. 2008, 10, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Sandin, S.; Lichtenstein, P.; Kuja-Halkola, R.; Larsson, H.; Hultman, C.M.; Reichenberg, A. The familial risk of autism. JAMA 2014, 311, 1770–1777. [Google Scholar] [CrossRef] [PubMed]
- Gronborg, T.K.; Schendel, D.E.; Parner, E.T. Recurrence of autism spectrum disorders in full- and half-siblings and trends over time: A population-based cohort study. JAMA Pediatr. 2013, 167, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Risch, N.; Hoffmann, T.J.; Anderson, M.; Croen, L.A.; Grether, J.K.; Windham, G.C. Familial recurrence of autism spectrum disorder: Evaluating genetic and environmental contributions. Am. J. Psychiatry 2014, 171, 1206–1213. [Google Scholar] [CrossRef] [PubMed]
- Constantino, J.N.; Todorov, A.; Hilton, C.; Law, P.; Zhang, Y.; Molloy, E.; Fitzgerald, R.; Geschwind, D. Autism recurrence in half siblings: Strong support for genetic mechanisms of transmission in ASD. Mol. Psychiatry 2013, 18, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Jensen, C.M.; Steinhausen, H.C.; Lauritsen, M.B. Time trends over 16 years in incidence-rates of autism spectrum disorders across the lifespan based on nationwide Danish register data. J. Autism Dev. Disord. 2014, 44, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, M. Autism diagnoses in the US rise by 30%, CDC reports. BMJ 2014. [Google Scholar] [CrossRef] [PubMed]
- Kahler, S.G. Increasing incidence of autism and genetics. Personal Communication, 2014. [Google Scholar]
- Schaefer, G.B.; Thompson, J.N. Medical Genetics: An Integrated Approach; McGraw Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Schaefer, G.B.; Mendelsohn, N.J.; Professional Practice Guideline Committee. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders: 2013 Guideline revisions. Genet. Med. 2013, 15, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Constantino, J.N.; Zhang, Y.; Frazier, T.; Abbacchi, A.M.; Law, P. Sibling recurrence and the genetic epidemiology of autism. Am. J. Psychiatry 2010, 167, 1349–1356. [Google Scholar] [CrossRef] [PubMed]
- Ozonoff, S.; Young, G.S.; Carter, A.; Messinger, D.; Yirmiya, N.; Zwaigenbaum, L.; Bryson, S.; Carver, L.J.; Constantino, J.N.; Dobkins, K.; et al. Recurrence risk for autism spectrum disorders: A baby siblings research consortium study. Pediatrics 2011, 128, e488–e495. [Google Scholar] [CrossRef] [PubMed]
- Werling, D.M.; Geschwind, D.H. Recurrence rates provide evidence for sex-differential, familial genetic liability for autism spectrum disorders in multiplex families and twins. Mol. Autism 2015, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.L.; Warnell, F.; Johnson, M.; Hames, A.; Pearce, M.S.; McConachie, H.; Parr, J.R. Evidence for ASD recurrence rates and reproductive stoppage from large UK ASD research family databases. Autism Res. 2015, 8, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Jacquemont, S.; Coe, B.P.; Hersch, M.; Duyzend, M.H.; Krumm, N.; Bergmann, S.; Beckmann, J.S.; Rosenfeld, J.A.; Eichler, E.E. A higher mutational burden in females supports a “female protective model” in neurodevelopmental disorders. Am. J. Hum. Genet. 2014, 94, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Ritvo, E.R.; Jorde, L.B.; Mason-Brothers, A.; Freeman, B.J.; Pingree, C.; Jones, M.B.; McMahon, W.M.; Petersen, P.B.; Jenson, W.R.; Mo, A. The UCLA-University of Utah epidemiologic survey of autism: Recurrence risk estimates and genetic counseling. Am. J. Psychiatry 1989, 146, 1032–1036. [Google Scholar] [PubMed]
- Messinger, D.S.; Young, G.S.; Webb, S.J.; Ozonoff, S.; Bryson, S.E.; Carter, A.; Carver, L.; Charman, T.; Chawarska, K.; Curtin, S.; et al. Early sex differences are not autism-specific: A Baby Siblings Research Consortium (BSRC) study. Mol. Autism 2015, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Frazier, T.W.; Youngstrom, E.A.; Hardan, A.Y.; Georgiades, S.; Constantino, J.N.; Eng, C. Quantitative autism symptom patterns recapitulate differential mechanisms of genetic transmission in single and multiple incidence families. Mol. Autism 2015, 6, 58. [Google Scholar] [CrossRef] [PubMed]
- Grønborg, T.K.; Hansen, S.N.; Nielsen, S.V.; Skytthe, A.; Parner, E.T. Stoppage in Autism Spectrum Disorders. J. Autism Dev. Disord. 2015, 45, 3509–3519. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, T.J.; Windham, G.C.; Anderson, M.; Croen, L.A.; Grether, J.K.; Risch, N. Evidence of reproductive stoppage in families with autism spectrum disorder: A large, population-based cohort study. JAMA Psychiatry 2014, 71, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Durkin, M.S.; Maenner, M.J.; Newschaffer, C.J.; Lee, L.C.; Cunniff, C.M.; Daniels, J.L.; Kirby, R.S.; Leavitt, L.; Miller, L.; Zahorodny, W.; et al. Advanced parental age and the risk of autism spectrum disorder. Am. J. Epidemiol. 2008, 168, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, G.B.; Bodensteiner, J.B. Evaluation of the child with idiopathic mental retardation. Pediatr. Clin. N. Am. 1992, 39, 929–943. [Google Scholar]
- Moeschler, J.B.; Shevell, M.; Committee on Genetics. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics 2014, 134, e903–e918. [Google Scholar] [CrossRef] [PubMed]
- Hallmayer, J.; Hebert, J.M.; Spiker, D.; Lotspeich, L.; McMahon, W.M.; Peterse, P.B.; Nicholas, P.; Pingree, C.; Lin, A.A.; Cavalli-Sforza, L.L.; et al. Autism and the X chromosome: Multipoint sib-pair analysis. Arch. Gen. Psychiatry 1996, 53, 985–989. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.S. Cytogenetic abnormalities and fragile-X syndrome in Autism Spectrum Disorder. BMC Med. Genet. 2005, 6, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shevell, M.I.; Majnemer, A.; Rosenbaum, P.; Abrahamowicz, M. Etiologic yield of autistic spectrum disorders: A prospective study. J. Child Neurol. 2001, 16, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Weidmer-Mikhail, E.; Sheldon, S.; Ghaziuddin, M. Chromosomes in autism and related pervasive developmental disorders: A cytogenetic study. J. Intellect. Disabil. Res. 1998, 42, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.P.; Myers, S.M. Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120, 1183–1215. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.T.; Scherer, S.W. Autism spectrum disorder in the genetics clinic: A review. Clin. Genet. 2013, 83, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.L.; Jones, M.C.; del Campo, M. Smith’s Recognizable Patterns of Human Malformations, 7th ed.; Elsevier, Saunders: Philadelphia, PA, USA, 2013. [Google Scholar]
- Miles, J.H.; Hillman, R.E. Value of a clinical morphology examination in autism. Am. J. Med. Genet. 2000, 91, 245–253. [Google Scholar] [CrossRef]
- Wong, V.C.; Fung, C.K.; Wong, P.T. Use of dysmorphology for subgroup classification on autism spectrum disorder in Chinese children. J. Autism Dev. Disord. 2014, 44, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, I.T.; Frias, J.L.; Cantu, E.S.; Lafer, C.Z.; Flannery, D.B.; Graham, J.G., Jr. Association of pigmentary anomalies with chromosomal and genetic mosaicism and chimerism. Am. J. Hum. Genet. 1989, 45, 193–205. [Google Scholar] [PubMed]
- Guo, X.; Tu, W.J.; Shi, X.D. Tuberous sclerosis complex in autism. Iran J. Pediatr. 2012, 22, 408–411. [Google Scholar] [PubMed]
- Biesecker, L.G.; Spinner, N.B. A genomic view of mosaicism and human disease. Nat. Rev. Genet. 2013, 14, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Hoffbuhr, K.; Devaney, J.M.; LaFleur, B.; Sirianni, N.; Scacheri, C.; Giron, J.; Schuett, J.; Innis, J.; Marino, M.; Philippart, M.; et al. MeCP2 mutations in children with and without the phenotype of Rett syndrome. Neurology 2001, 56, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, M.A.; Westerlund, J.; Anderlid, B.M.; Gillber, C.; Fernell, E. First-degree relatives of young children with autism spectrum disorders: Some gender aspects. Res. Dev. Disabil. 2012, 33, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Moreno-De-Luca, D.; SGENE Consortium. Deletion 17q12 is a recurrent copy number variant that confers high risk of autism and schizophrenia. Am. J. Hum. Genet. 2010, 87, 618–630. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, G.B. Personal Communication of unpublished data, 2015.
- Schaefer, G.B.; Mendelsohn, N.J. Clinical genetics evaluation in identifying the etiology of autism spectrum disorders. Genet. Med. 2008, 10, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.G.; Dasouki, M.J.; Zhou, X.P.; Talebizadeh, Z.; Brown, M.; Takahashi, T.N.; Miles, J.H.; Wang, C.H.; Stratton, R.; Pilarski, R.; et al. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 2005, 42, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.H.; Yuen, R.K.; Jin, X.; Wang, M.; Chen, N.; Wu, X.; Ju, J.; Mei, J.; Shi, Y.; He, M.; et al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing. Am. J. Hum. Genet. 2013, 93, 249–263. [Google Scholar] [CrossRef] [PubMed]
- Tammimies, K.; Marshall, C.R.; Walker, S.; Kaur, G.; Thiruvahindrapuram, B.; Lionel, A.C.; Yuen, R.K.; Uddin, M.; Roberts, W.; Weksberg, R.; et al. Molecular diagnostic yield of chromosomal microarray analysis and whole-exome sequencing in children with Autism Spectrum Disorder. JAMA 2015, 314, 895–903. [Google Scholar] [CrossRef] [PubMed]
- Yuen, R.K.; Thiruvahindrapuram, B.; Merico, D.; Walker, S.; Tammimies, K.; Hoang, N.; Chrysler, C.; Nalpathamkalam, T.; Pellecchia, G.; Liu, Y.; et al. Whole-genome sequencing of quartet families with autism spectrum disorder. Nat. Med. 2015, 21, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Haas, R.H. Autism and mitochondrial disease. Dev. Disabil. Res. Rev. 2010, 16, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Page, T. Metabolic approaches to the treatment of autism spectrum disorders. J. Autism Dev. Disord. 2000, 30, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Zecavati, N.; Spence, S.J. Neurometabolic disorders and dysfunction in autism spectrum disorders. Curr. Neurol. Neurosci. Rep. 2009, 9, 129–136. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schaefer, G.B. Clinical Genetic Aspects of Autism Spectrum Disorders. Int. J. Mol. Sci. 2016, 17, 180. https://doi.org/10.3390/ijms17020180
Schaefer GB. Clinical Genetic Aspects of Autism Spectrum Disorders. International Journal of Molecular Sciences. 2016; 17(2):180. https://doi.org/10.3390/ijms17020180
Chicago/Turabian StyleSchaefer, G. Bradley. 2016. "Clinical Genetic Aspects of Autism Spectrum Disorders" International Journal of Molecular Sciences 17, no. 2: 180. https://doi.org/10.3390/ijms17020180
APA StyleSchaefer, G. B. (2016). Clinical Genetic Aspects of Autism Spectrum Disorders. International Journal of Molecular Sciences, 17(2), 180. https://doi.org/10.3390/ijms17020180