Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Added Black Bean Seed Coat Extract on Baking Performance and Bread Features
Attribute | Control Bread (CN) | Bread with 0.5% Black Bean Extract (BBE) |
---|---|---|
Baking Properties | ||
Dough Water absorption (%) | 70.13 ± 4.0 | 70.01 ± 3.1 |
Dough Mixing time (min) | 4.79 ± 0.2 | 4.86 ± 0.2 |
Proof height (cm) | 8.2 ± 0.1 | 8.2 ± 0.1 |
Bread height (cm) | 8.4 ± 0.4 | 8.2 ± 0.1 |
Oven spring 1 (cm) | 0.2 ± 0.3 | 0.0 ± 0.1 |
Bread weight (g) | 151.5 ± 1.2 | 151.7 ± 2.5 |
Bread volume (cm3) | 660.0 ± 38.5 | 673.3 ± 16.3 |
Apparent density (g/cm3) | 0.229 ± 0.0 | 0.225 ± 0.0 |
Crumb Color | ||
a* | 4.45 ± 0.51 | 2.81 ± 0.46 † |
b* | 20.39 ± 0.77 | 10.55 ± 0.46 † |
L* | 62.20 ± 2.09 | 52.42 ± 1.78 † |
Bread Crumb Texture Parameters 4 | ||
Cohesiveness (%) | 87.0 ± 6.00 | 85.0 ± 5.00 |
Hardness (kg) | 0.30 ± 0.25 | 0.27 ± 0.26 |
Chewiness | 0.25 ± 0.19 | 0.22 ± 0.20 |
Sensory Analyses 2 | ||
Color | 3.28 ± 1.02 | 4.32 ± 1.00 † |
Texture | 3.81 ± 1.10 | 3.74 ± 1.08 |
Flavor | 4.81 ± 1.23 | 4.83 ± 1.23 |
Odor | 3.89 ± 1.47 | 4.01 ± 1.12 |
Overall acceptability | 4.99 ± 1.02 | 4.97 ± 1.13 |
2.2. Quantification of Bioactive Compounds on Bread and Enzymatic Digested Samples
Bioactive Compounds in FDE 1 | Bread | Enzymatically Digested Bread | ||
---|---|---|---|---|
Percentage of Retention % | BBE 2 mg/100 g·DW 3 | Percentage of Retention % | BBE 2 mg/100 g·DW 3 | |
Anthocyanin | ||||
(mg cyanindin-3-glucoside equiv/100 g·DW 3) | 80.01 ± 1.20 | 31.28 ± 2.32 | 0.00 | ND |
Flavonoids | ||||
Myricetin-3-O-glucoside | 89.21 ± 1.10 | 6.27 ± 1.23 | 88.17 ± 1.13 | 1.90 ± 0.02 |
Quercetin-3-O-glucoside | 90.00 ± 1.10 | 56.10 ± 3.33 | 88.97 ± 1.21 | 16.28 ± 1.04 |
Kaempferol-3-O-glucoside | 88.34 ± 0.41 | 0.396 ± 0.10 | 88.30 ± 0.50 | 0.12 ± 0.00 |
Saponins 4 | ||||
Phaseoside I | 90.20 ± 1.19 | 0.083 ± 0.06 | 0.00 | ND * |
Soyasaponin Af | 91.87 ± 1.01 | 0.687 ± 0.28 | 49.32 ± 1.02 | 0.356 ± 0.40 * |
Deacetyl soyasaponin Af | 88.31 ± 2.14 | 0.103 ± 0.04 | 0.00 | ND * |
Soyasaponin Ba | 89.97 ± 1.16 | 0.156 ± 0.04 | 0.00 | ND * |
Soyasaponin αg | 91.01 ± 1.87 | 0.630 ± 0.09 | 48.42 ± 1.98 | 0.323 ± 0.07 * |
Soyasaponin βg | 89.71 ± 1.00 | 0.201 ± 0.03 | 49.41 ± 1.19 | 0.102 ± 0.03 * |
2.3. Antiproliferative Activity of BBE against Colon Cancer Cells
3. Experimental Section
3.1. Black Bean Seed Coat Extract
3.2. Bread Making
3.3. Texture and Color of Bread Crumb
3.4. Sensory Analyses
3.5. In Vitro Digestion of Bread
3.6. Sample Preparation for Quantification of Bioactive Compounds
3.7. Quantification of Bioactive Compounds in Extract, Bread and Enzymatically Digested Bread
3.8. Effect of Enzyme Digested Bread Samples on Proliferative Activity of Colon Cancer Cells
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Van Duijnhoven, F.J.B.; Mesquita, H.B.; Calligaro, M.; Jenab, M.; Pischon, T.; Jansen, E.; Frohlich, J.; Ayyobi, A.; Overvad, K.; Toft-Petersen, A.P.; et al. Blood lipid and lipoprotein concentrations and colorectal cancer risk in the european prospective investigation into cancer and nutrition. Gut 2011, 60, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Dziki, D.; Rózyło, R.; Gawlik-Dziki, U.; Świeca, M. Current trends in the enhancement of antioxidant activity of wheat bread by the addition of plant materials rich in phenolic compounds. Trends Food Sci. Technol. 2014, 40, 48–61. [Google Scholar] [CrossRef]
- Biney, K.; Beta, T. Phenolic profile and carbohydrate digestibility of durum spaghetti enriched with buckwheat flour and bran. Food Sci. Technol. 2014, 57, 569–579. [Google Scholar]
- Reynoso-Camacho, R.; Guerrero-Villanueva, G.; Figueroa, J.D.; Gallegos-Corona, M.A.; Mendoza, S.; Loarca-Piña, G.; Ramos-Gomez, M. Anticarcinogenic effect of corn tortilla against 1,2-Dimethylhydrazine (DMH)-induced colon carcinogenesis in sprague-dawley rats. Plant Foods Hum. Nutr. 2015, 70, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Wikman-Larhed, A.; Artursson, P. Co-cultures of human intestinal goblet (HT29-H) and absorptive (Caco-2) cells for studies of drug and peptide absorption. Eur. J. Pharm. Sci. 1995, 3, 171–183. [Google Scholar] [CrossRef]
- Kakiuchi, Y.; Tsuji, S.; Tsujii, M.; Murata, H.; Kawai, N.; Yasumaru, M.; Kimura, A.; Komori, M.; Irie, T.; Miyoshi, E.; et al. Cyclooxygenase-2 activity altered the cell-surface carbohydrate antigens on colon cancer cells and enhanced liver metastasis. Cancer Res. 2002, 62, 1567–1572. [Google Scholar] [PubMed]
- Guajardo-Flores, D.; Serna-Saldívar, S.O.; Gutiérrez-Uribe, J.A. Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem. 2013, 141, 1497–1503. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Tai, W.C.S.; Hsiao, W.L.W. Dietary saponins from four popular herbal tea exert prebiotic-like effects on gut microbiota in C57BL/6 mice. J. Funct. Foods 2015, 17, 892–902. [Google Scholar] [CrossRef]
- Yao, Y.; Yang, X.; Shi, Z.; Ren, G. Anti-Inflammatory activity of saponins from quinoa (Chenopodium quinoa Willd.) seeds in lipopolysaccharide-stimulated RAW 264.7 Macrophages Cells. J. Food Sci. 2014, 79, H1018–H1023. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Santoscoy, R.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Effect of flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors. Plant Foods Hum. Nutr. 2013, 68, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Harnack, L.J.; Scrafford, C.G.; Mink, P.J.; Barraj, L.M.; Jacobs, D.R. Dietary flavonoids and flavonoid-rich foods are not associated with risk of type 2 diabetes in postmenopausal women. J. Nutr. 2006, 136, 3039–3045. [Google Scholar] [PubMed]
- Lu, Y.; Zhang, C.; Bucheli, P.; Wei, D. Citrus flavonoids in fruit and traditional Chinese medicinal food ingredients in China. Plant Foods Hum. Nutr. 2006, 61, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Ciz, M.; Denev, P.; Kratchanova, M.; Vasicek, O.; Ambrozova, G.; Lojek, A. Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid. Med. Cell. Longev. 2012. [Google Scholar] [CrossRef] [PubMed]
- Aherne, S.A.; O’Brien, M.N. Dietary flavonols: Chemistry, food content, and metabolism. Nutrition 2002, 18, 75–81. [Google Scholar] [CrossRef]
- Pitura, K. Evaluation of the Antioxidant Activity of Extracts and Flavonol Glycosides Isolated from the Seed Coats of Coloured Beans (Phaseolus vulgaris L.). Master’s Thesis, University of Manitoba, Winnipeg, MB, Candada, 2011. [Google Scholar]
- Ranilla, L.G.; Genovese, M.I.; Lajolo, F.M. Polyphenols and antioxidant capacity of seed coat and cotyledon from Brazilian and peruvian bean cultivars (Phaseolus vulgaris L.). J. Agric. Food Chem 2007, 55, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.J.; Chang, S.K.C. Total phenolic content and antioxidant properties of eclipse black beans (Phaseolus vulgaris L.) as affected by processing methods. J. Food Sci. 2008, 73, H19–H27. [Google Scholar] [CrossRef] [PubMed]
- Chávez-Santoscoy, R.A.; Tovar, A.R.; Serna-Saldivar, S.O.; Torres, N.; Gutiérrez-Uribe, J.A. Conjugated and free sterols from black bean (Phaseolus vulgaris L.) seed coats as cholesterol micelle disruptors and their effect on lipid metabolism and cholesterol transport in rat primary hepatocytes. Genes Nutr. 2014, 9, 367. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Santoscoy, R.A.; Gutierrez-Uribe, J.A.; Granados, O.; Torre-Villalvazo, I.; Serna-Saldivar, S.O.; Torres, N.; Palacios-González, B.; Tovar, A.R. Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. Br. J. Nutr. 2014, 112, 886–899. [Google Scholar] [CrossRef] [PubMed]
- Bawadi, H.A.; Bansode, R.R.; Trappey, A.; Truax, R.E.; Losso, J.N. Inhibition of Caco-2 colon, MCF-7 and Hs578T breast, and DU 145 prostatic cancer cell proliferation by water-soluble black bean condensed tannins. Cancer Lett. 2005, 218, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Świeca, M.; Sęczyk, Ł.; Gawlik-Dziki, U.; Dziki, D.; Kawamori, T.; Lubet, R.; Steele, V.E.; Kelloff, G.J.; Kaskey, R.B.; Rao, C.V.; et al. Bread enriched with quinoa leaves—The influence of protein-phenolics interactions on the nutritional and antioxidant quality. Food Chem. 2014, 162, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Bryszewska, M.A.; Ambroziak, W.; Langford, N.J.; Baxter, M.J.; Colyer, A.; Lewis, D.J. The effect of consumption of selenium enriched rye/wheat sourdough bread on the body’s selenium status. Plant Foods Hum. Nutr. 2007, 62, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Udani, J.K.; Singh, B.B.; Barrett, M.L.; Preuss, H.G. Lowering the glycemic index of white bread using a white bean extract. Nutr. J. 2009, 8, 52. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Estrada, B.A.; Lazo-Vélez, M.A.; Nava-Valdez, Y.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Improvement of dietary fiber, ferulic acid and calcium contents in pan bread enriched with nejayote food additive from white maize (Zea mays). J. Cereal Sci. 2014, 60, 264–269. [Google Scholar] [CrossRef]
- Wrolstad, R. Anthocyanin pigments—Bioactivity and coloring properties. J. Food Sci. 2004, 69, C429–C425. [Google Scholar] [CrossRef]
- Barros, F.; Awika, J.; Rooney, L. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J. Agric. Food Chem. 2012, 60, 11609–11617. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-Y.; Plahar, M.A.; Hung, Y.-C.; McWatters, K.H.; Eun, J.-B. Effect of saponins on the foam/flow properties of paste and physical characteristics of akara made from decorticated black-eyed cowpeas. J. Sci. Food Agric. 2005, 85, 1845–1851. [Google Scholar] [CrossRef]
- Serventi, L.; Chitchumroonchokchai, C.; Riedl, K.M.; Kerem, Z.; Berhow, M.A.; Vodovotz, Y.; Schwartz, S.J.; Failla, M.L. Saponins from soy and chickpea: Stability during beadmaking and in vitro bioaccessibility. J. Agric. Food Chem. 2013, 61, 6703–6710. [Google Scholar] [CrossRef] [PubMed]
- Redan, B.W.; Vinson, J.A.; Coco, M.G. Effect of thermal processing on free and total phenolics in nine varieties of common beans. Int. J. Food Sci. Nutr. 2013, 64, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Sivam, A.S.; Sun-Waterhouse, D.; Waterhouse, G.I.N.; Quek, S.; Perera, C.O. Physicochemical properties of bread dough and finished bread with added pectin fiber and phenolic antioxidants. J. Food Sci. 2011, 76, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Han, H.-M.; Koh, B.K. Antioxidant activity of hard wheat flour, dough and bread prepared using various processes with the addition of different phenolic acids. J. Sci. Food Agric. 2011, 91, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Arauza, J.C.; Jesús, J.; Paz, O.; Mendoza, S.R.; Elena, R.; Guerra, S.; María, L.; Paz, T.; Jaqueline, D.; González, P.; et al. Biofunctional activity of tortillas and bars enhanced with nopal. Preliminary assessment of functional effect after intake on the oxidative status in healthy volunteers. Chem. Cent. J. 2011, 5, 10. [Google Scholar] [CrossRef] [PubMed]
- Shipp, J. Food applications and physiological effects of anthocyanins as functional food ingredients. Open Food Sci. J. 2010, 4, 7–22. [Google Scholar] [CrossRef]
- Chávez-Santoscoy, R.A.; Gutiérrez-Uribe, J.A.; Serna-Saldivar, S.O.; Perez-Carrillo, E. Production of maize tortillas and cookies from nixtamalized flour enriched with anthocyanins, flavonoids and saponins extracted from black bean (Phaseolus vulgaris) seed coats. Food Chem. 2016, 192, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Ivanovski, B.; Seetharaman, K.; Duizer, L.M. Development of soy-based bread with acceptable sensory properties. J. Food Sci. 2012, 77, S71–S76. [Google Scholar] [CrossRef] [PubMed]
- Park, M.V.D.Z.; Neigh, A.M.; Vermeulen, J.P.; de la Fonteyne, L.J.J.; Verharen, H.W.; Briedé, J.J.; van Loveren, H.; de Jong, W.H. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 2011, 32, 9810–9817. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; He, X.; Liu, R.H. Phytochemicals of black bean seed coats: Isolation, structure elucidation, and their antiproliferative and antioxidative activities. J. Agric. Food Chem. 2007, 55, 6044–6051. [Google Scholar] [CrossRef] [PubMed]
- Bermudezsoto, M.; Tomasbarberan, F.; Garciaconesa, M. Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem. 2007, 102, 865–874. [Google Scholar] [CrossRef]
- Stahl, L.; Miller, K.B.; Apgar, J.; Sweigart, D.S.; Stuart, D.A.; McHale, N.; Ou, B.; Kondo, M.; Hurst, W.J. Preservation of cocoa antioxidant activity, total polyphenols, flavan-3-ols, and procyanidin content in foods prepared with cocoa powder. J. Food Sci. 2009, 74, C456–C461. [Google Scholar] [CrossRef] [PubMed]
- Guajardo-Flores, D.; García-Patiño, M.; Serna-Guerrero, D.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O. Characterization and quantification of saponins and flavonoids in sprouts, seed coats and cotyledons of germinated black beans. Food Chem. 2012, 134, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Jiménez, A.K.; Reynoso-Camacho, R.; Mendoza-Díaz, S.; Loarca-Piña, G. Functional and technological potential of dehydrated Phaseolus vulgaris L. flours. Food Chem. 2014, 161, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Soto, M.U.; Powers, J.R.; Alldredge, J.R. Effect of mixing time, freeze-drying and baking on phenolics, anthocyanins and antioxidant capacity of raspberry juice during processing of muffins. J. Sci. Food Agric. 2012, 92, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- Segev, A.; Badani, H.; Galili, L.; Hovav, R.; Kapulnik, Y.; Shomer, I.; Galili, S. Effects of baking. roasting and frying on total polyphenols and antioxidant activity in colored chickpea seeds. Food Nutr. Sci. 2012, 3, 369–376. [Google Scholar] [CrossRef]
- Oomah, B.D.; Kotzeva, L.; Allen, M.; Bassinello, P.Z. Microwave and micronization treatments affect dehulling characteristics and bioactive contents of dry beans (Phaseolus vulgaris L.). J. Sci. Food Agric. 2014, 94, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, E.-S.M.E.; Hucl, P. Composition and stability of anthocyanins in blue-grained wheat. J. Agric. Food Chem. 2003, 51, 2174–2180. [Google Scholar] [CrossRef] [PubMed]
- Vallejo, F.; Gil-Izquierdo, A.; Pérez-Vicente, A.; García-Viguera, C. In vitro gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C. J. Agric. Food Chem. 2004, 52, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Andrade, C.; Conde-Aguilera, J.A.; Haro, A.; Pastoriza de la Cueva, S.; Rufián-Henares, J.A. A combined procedure to evaluate the global antioxidant response of bread. J. Cereal Sci. 2010, 52, 239–246. [Google Scholar] [CrossRef]
- Kong, H.; Wang, M.; Venema, K.; Maathuis, A.; van der Heijden, R.; van der Greef, J.; Xu, G.; Hankemeier, T. Bioconversion of red ginseng saponins in the gastro-intestinal tract in vitro model studied by high-performance liquid chromatography-high resolution Fourier transform ion cyclotron resonance mass spectrometry. J. Chromatogr. A 2009, 11, 2195–2203. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, M.-S.; Kim, C.-T.; Kim, I.-H.; Kim, Y. Ginsenoside Rg3 reduces lipid accumulation with AMP-activated protein kinase (AMPK) activation in HepG2 cells. Int. J. Mol. Sci. 2012, 13, 5729–5739. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.-H.; Song, K.-H.; Woo, J.-K.; Park, M.H.; Rhee, M.H.; Choi, C.; Oh, S.H. Ginsenoside Rp1 from panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells. Plant Foods Hum. Nutr. 2011, 66, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Fernández, X.; Reynoso-Camacho, R.; Castaño-Tostado, E.; García-Gasca, T.; González de Mejía, E.; Guzmán-Maldonado, S.H.; Elizondo, G.; Yousef, G.; Lila, M.; Loarca-Pina, G. Antiradical capacity and induction of apoptosis on HeLa cells by a Phaseolus vulgaris extract. Plant Foods Hum. Nutr. 2008, 63, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Glei, M.; Kirmse, A.; Habermann, N.; Persin, C.; Pool-Zobel, B.L. Bread enriched with green coffee extract has chemoprotective and antigenotoxic activities in human cells. Nutr. Cancer 2006, 56, 182–192. [Google Scholar] [CrossRef] [PubMed]
- Mojica, L.; Meyer, A.; Berhow, M.A.; de Mejía, E.G. Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Res. Int. 2015, 69, 38–48. [Google Scholar] [CrossRef]
- Kermani, F.S. Lower Concentrations of blueberry polyphenolic-rich extract differentially alter HepG2 cell proliferation and expression of genes related to cell-cycle, oxidation and epigenetic machinery. J. Nutr. Disord. Ther. 2012, 3, 1–10. [Google Scholar] [CrossRef]
- Lopez-Martinez, L.X.; Parkin, K.L.; Garcia, H.S. Phase II-inducing, polyphenols content and antioxidant capacity of corn (Zea mays L.) from phenotypes of white, blue, red and purple colors processed into masa and tortillas. Plant Foods Hum. Nutr. 2011, 66, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Scheepens, A.; Tan, K.; Paxton, J.W. Improving the oral bioavailability of beneficial polyphenols through designed synergies. Genes Nutr. 2010, 5, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Silberberg, M.; Morand, C.; Mathevon, T.; Besson, C.; Manach, C.; Scalbert, A.; Remesy, C. The bioavailability of polyphenols is highly governed by the capacity of the intestine and of the liver to secrete conjugated metabolites. Eur. J. Nutr. 2006, 45, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Lazo-Vélez, M.A.; Chuck-Hernandez, C.; Serna-Saldívar, S.O. Evaluation of the functionality of five different soybean proteins in yeast-leavened pan breads. J. Cereal Sci. 2015, 64, 63–69. [Google Scholar] [CrossRef]
- AACC International. Approved Methods of the American Association of Cereal Chemists, 10th ed.; The Association of AACC: Paul, MN, USA, 2000. [Google Scholar]
- Watts, B. Métodos Sensoriales Básicos Para la Evaluación de Alimentos; Centro Internacional de Investigaciones Para el Desarrollo: Ottawa, AB, Candada, 1992; p. 171. [Google Scholar]
- Pasini, G.; Simonato, B.; Giannattasio, M.; Peruffo, A.D.B.; Curioni, A. Modifications of wheat flour proteins during in vitro digestion of bread dough, crumb, and crust: An electrophoretic and immunological study. J. Agric. Food Chem. 2001, 49, 2254–2261. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chávez-Santoscoy, R.A.; Lazo-Vélez, M.A.; Serna-Sáldivar, S.O.; Gutiérrez-Uribe, J.A. Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread. Int. J. Mol. Sci. 2016, 17, 222. https://doi.org/10.3390/ijms17020222
Chávez-Santoscoy RA, Lazo-Vélez MA, Serna-Sáldivar SO, Gutiérrez-Uribe JA. Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread. International Journal of Molecular Sciences. 2016; 17(2):222. https://doi.org/10.3390/ijms17020222
Chicago/Turabian StyleChávez-Santoscoy, Rocio A., Marco A. Lazo-Vélez, Sergio O. Serna-Sáldivar, and Janet A. Gutiérrez-Uribe. 2016. "Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread" International Journal of Molecular Sciences 17, no. 2: 222. https://doi.org/10.3390/ijms17020222
APA StyleChávez-Santoscoy, R. A., Lazo-Vélez, M. A., Serna-Sáldivar, S. O., & Gutiérrez-Uribe, J. A. (2016). Delivery of Flavonoids and Saponins from Black Bean (Phaseolus vulgaris) Seed Coats Incorporated into Whole Wheat Bread. International Journal of Molecular Sciences, 17(2), 222. https://doi.org/10.3390/ijms17020222