Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification
Abstract
:1. Introduction
2. Results and Discussion
2.1. Statistical Evaluation of the Experimental Results
- X1: Methanol/oil molar ratio: 9:1 (Superior level), 6:1 (Central level), 3:1 (Inferior level)
- X2: Catalyst/oil ratio (wt %): 1.5 (Superior level), 1 (Central level), 0.5 (Inferior level)
- X3: Reaction time: 10 (Superior level), 5 (Central level), 1 (Inferior level).
2.2. The Effect of Methanol/Oil Molar Ratio
2.3. The Effect of Catalyst/Oil Ratio
2.4. The Effect of Reaction Time
2.5. Fatty Acid Profile in FAME Samples
2.6. Properties of Methyl Esters
3. Materials and Methods
3.1. Materials
3.2. Experimental Procedure
3.3. Analysis of Fatty Acid Methyl Ester (FAME) Content
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- OPEC. Available online: http://www.opec.org (accessed on 16 August 2015).
- Singh, B.; Guldhe, A.; Rawat, I.; Bux, F. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev. 2014, 29, 216–245. [Google Scholar] [CrossRef]
- Leite, G.B.; Abdelaziz, A.E.; Hallenbeck, P.C. Algal biofuels: Challenges and opportunities. Bioresour. Technol. 2013, 145, 134–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, G.; Chen, F.; Wei, D.; Zhang, X.; Chen, G. Biodiesel production by microalgal biotechnology. Appl. Energy 2010, 87, 38–46. [Google Scholar] [CrossRef]
- Goto, S.; Oguma, M.; Chollacoop, N. Biodiesel fuel quality. Benchmarking of biodiesel fuel standardization in East Asia Working Group. In EAS-ERIA Biodiesel Fuel Trade Handbook; ERIA: Jakarta, Indonesia, 2010; pp. 27–62. [Google Scholar]
- Gopinath, A.; Puhan, S.; Nagarajan, G. Effect of biodiesel structural configuration on its ignition quality. Energy Environ. 2010, 1, 295–306. [Google Scholar]
- Knothe, G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Technol. 2005, 86, 1059–1070. [Google Scholar] [CrossRef]
- Gouveria, L. Microalgae as a feedstock for biofuels. In SpringerBriefs in Microbiology; Springer: Berlin, Germany, 2011. [Google Scholar]
- Feng, X.; Walker, T.H.; Bridges, W.C.; Thornton, C.; Gopalakrishnan, K. Biomass and lipid production of Chlorella protothecoides under heterotrophic cultivation on a mixed waste substrate of brewer fermentation and crude glycerol. Bioresour. Technol. 2014, 166, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Miao, X.; Wu, Q. High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J. Biotechnol. 2006, 126, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Zhai, Y.; Ding, Y.; Wu, Q. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl. Energy 2010, 87, 756–761. [Google Scholar] [CrossRef]
- Cerón-García, M.C.; Macías-Sánchez, M.D.; Sánchez-Mirón, A.; García-Camacho, F.; Molina-Grima, E. A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Appl. Energy 2013, 103, 341–349. [Google Scholar] [CrossRef]
- Özçimen, D. Microwave-assisted fatty acid methyl ester production from hazelnut oil. J. Biobased Mater. Bioenergy 2013, 7, 449–456. [Google Scholar] [CrossRef]
- Özçimen, D.; Yücel, S. Novel methods in biodiesel production. In Proceedings of the Biofuel’s Engineering Process Technology, Dos Santos Bernardes, MA, USA, 1 August 2011; InTech: CRijeka, Crotia, 2011; pp. 353–384. [Google Scholar]
- Özçimen, D.; Gülyurt, M.Ö.; İnan, B. Algal biorefinery for biodiesel production. In Biodiesel-Feedstocks, Production and Applications; Fang, Z., Ed.; InTech: CRijeka, Crotia, 2012; pp. 22–58. [Google Scholar]
- Groisman, Y.; Gedanken, A. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. J. Phys. Chem. C 2008, 112, 8802–8808. [Google Scholar] [CrossRef]
- Patil, P.D.; Gude, V.G.; Mannarswamy, A.; Cooke, P.; Nirmalakhandan, N.; Lammers, P.; Deng, S. Comparison of direct transesterification of algal biomass under supercritical methanol and microwave irradiation conditions. Fuel 2012, 97, 822–831. [Google Scholar] [CrossRef]
- Koberg, M.; Cohen, M.; Ben-Amotz, A.; Gedanken, A. Bio-diesel production directly from the microalgae biomass of nannochloropsis by microwave and ultrasound radiation. Bioresour. Technol. 2011, 102, 4265–4269. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Hu, W.; Pei, H.; Jiang, L.; Song, M.; Mu, R. In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energy Convers. Manag. 2015, 90, 41–46. [Google Scholar] [CrossRef]
- Patil, P.D.; Gude, V.G.; Mannarswamy, A.; Cooke, P.; Munson-McGee, S.; Nirmalakhandan, N.; Lameers, P.; Deng, S. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology. Bioresour. Technol. 2011, 102, 1399–1405. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Guerra, E.; Gude, V.G.; Mondala, A.; Holmes, W.; Hernandez, R. Microwave and ultrasound enhanced extractive-transesterification of algal lipids. Appl. Energy 2014, 129, 354–363. [Google Scholar] [CrossRef]
- Huang, J.; Xia, J.; Jiang, W.; Li, Y.; Li, J. Biodiesel production from microalgae oil catalyzed by a recombinant lipase. Bioresour. Technol. 2014, 180, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Macías-Sánchez, M.D.; Robles-Medina, A.; Hita-Peña, E.; Jiménez-Callejón, M.J.; Estéban-Cerdán, L.; González-Moreno, P.A.; Molina-Grima, E. Biodiesel production from wet microalgal biomass by direct transesterification. Fuel 2015, 150, 14–20. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F.; Martínez, G.; Sánchez, N.; González, C.G. Synthesis and characterization of biodiesel obtained from castor oil transesterification. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’11), Madrid, Spain, 13–15 April 2010.
- Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Mantegna, S.; Cravotto, G. Biodiesel production in a novel continuous flow microwave reactor. Renew. Energy 2015, 83, 25–29. [Google Scholar] [CrossRef]
- Choedkiatsakul, I.; Ngaosuwan, K.; Assabumrungrat, S.; Tabasso, S.; Cravotto, G. Integrated flow reactor that combines high-shear mixing and microwave irradiation for biodiesel production. Biomass Bioenergy 2015, 77, 186–191. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, S.C.; Chen, C.E.; Yang, P.M.; Jhang, S.R. Rapid Jatropha-biodiesel production assisted by a microwave system and a sodium amide catalyst. Fuel 2014, 135, 435–442. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, G.R.; Chandrashekar, N. Microwave assisted alkali-catalyzed transesterification of Pongamia pinnata seed oil for biodiesel production. Bioresour. Technol. 2011, 102, 6617–6620. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, M.C.; Lin, C.C.; Chang, Y.H. Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel 2011, 90, 1963–1967. [Google Scholar] [CrossRef]
- Kim, D.; Choi, J.; Kim, G.J.; Seol, S.K.; Ha, Y.; Vijayan, M.; Jung, S.; Kim, B.H.; Lee, G.D.; Park, S.S. Microwave-accelerated energy-efficient esterification of free fatty acid with a heterogeneous catalyst. Bioresour. Technol. 2011, 102, 3639–3641. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Huang, R.; Li, T.; Zhou, J.; Cen, K. Biodiesel from wet microalgae: Extraction with hexane after the microwave-assisted transesterification of lipids. Bioresour. Technol. 2014, 170, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Talebi, A.F.; Mohtashami, S.K.; Tabatabaei, M.; Tohidfar, M.; Bagheri, A.; Zeinalabedini, M.; Mirzaei, H.; Mirzajanzadeh, M.; Shafaroudi, S.; Bakhtiari, S. Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Res. 2013, 2, 258–267. [Google Scholar] [CrossRef]
- Song, M.; Pei, H.; Hu, W.; Ma, G. Evaluation of the potential of 10 microalgal strains for biodiesel production. Bioresour. Technol. 2013, 141, 245–251. [Google Scholar] [CrossRef] [PubMed]
Experimental Number | Methanol:Oil Molar Ratio | Catalyst Oil Ratio (wt %) | Time (Min) | X1 | X2 | X3 | Total Area (uV.Min) | Total Area (%) * |
---|---|---|---|---|---|---|---|---|
1 | 3:1 | 0.5 | 1 | −1 | −1 | −1 | 241.72 | 66.15 |
2 | 10 | −1 | −1 | 1 | 278.71 | 76.27 | ||
3 | 1.5 | 1 | −1 | 1 | −1 | 317.7 | 86.94 | |
4 | 10 | −1 | 1 | 1 | 350.26 | 95.86 | ||
5 | 6:1 | 1 | 5 | 0 | 0 | 0 | 320.68 | 87.76 |
6 | 9:1 | 0.5 | 1 | 1 | −1 | −1 | 303.15 | 82.96 |
7 | 10 | 1 | −1 | 1 | 321.72 | 88.04 | ||
8 | 1.5 | 1 | 1 | 1 | −1 | 331.57 | 90.74 | |
9 | 10 | 1 | 1 | 1 | 363.45 | 99.47 |
Experimental Number | Methanol:Oil Molar Ratio | Catalyst Oil Ratio (wt %) | Time (Min) | X1 | X2 | X3 | C16 = 0 | C18 = 1 | C18 = 2 | C18 = 3 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 3:1 | 0.5 | 1 | −1 | −1 | −1 | 3.82 | 48.243 | 16.45 | 4.79 |
2 | 10 | −1 | −1 | 1 | 3.997 | 49.827 | 17.36 | 5.065 | ||
3 | 1.5 | 1 | −1 | 1 | −1 | 4.142 | 50.75 | 17.51 | 5.131 | |
4 | 10 | −1 | 1 | 1 | 4.24 | 52.42 | 18.33 | 5.33 | ||
5 | 6:1 | 1 | 5 | 0 | 0 | 0 | 4.143 | 50.833 | 17.77 | 5.235 |
6 | 9:1 | 0.5 | 1 | 1 | −1 | −1 | 3.998 | 50.53 | 17.47 | 4.7 |
7 | 10 | 1 | −1 | 1 | 4.08 | 51.11 | 17.67 | 5.09 | ||
8 | 1.5 | 1 | 1 | 1 | −1 | 4.179 | 52.29 | 17.82 | 5.155 | |
9 | 10 | 1 | 1 | 1 | 4.25 | 53.424 | 18.85 | 5.38 |
Property | Unit | Result | Standards |
---|---|---|---|
Density at 15 °C | kg/m3 | 867 | ISO 3675 |
Viscosity at 40 °C | Mm2/s | 3.8 | ISO 3104 |
Flash point | °C | 124 | ISO 15267 |
Carbon residue (on 10% distillation residue) | % (m/m) | 0.2 | EN ISO 10370 |
Total contamination | mg/kg | 2 | EN 12662 |
Oxidation stability, 110 °C | Hours | 12 | EN 14112 |
Calorific value | MJ/kg | 37.49 | DIN 51900 |
Acid value | mg·KOH/g | 0.3 | EN 14104 |
Iodine value | mg·KOH/g | 47 | EN 14111 |
Water content | mg/kg | 80 | EN ISO 12937 |
Sulfur content | mg/kg | 2 | ISO 3987 |
Phosphorus content | mg/kg | 3 | ISO 10540 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gülyurt, M.Ö.; Özçimen, D.; İnan, B. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification. Int. J. Mol. Sci. 2016, 17, 579. https://doi.org/10.3390/ijms17040579
Gülyurt MÖ, Özçimen D, İnan B. Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification. International Journal of Molecular Sciences. 2016; 17(4):579. https://doi.org/10.3390/ijms17040579
Chicago/Turabian StyleGülyurt, Mustafa Ömer, Didem Özçimen, and Benan İnan. 2016. "Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification" International Journal of Molecular Sciences 17, no. 4: 579. https://doi.org/10.3390/ijms17040579
APA StyleGülyurt, M. Ö., Özçimen, D., & İnan, B. (2016). Biodiesel Production from Chlorella protothecoides Oil by Microwave-Assisted Transesterification. International Journal of Molecular Sciences, 17(4), 579. https://doi.org/10.3390/ijms17040579