New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections
Abstract
:1. Introduction
2. Antibiotics Developed to Combat MRSA
3. Topical Antibiotic-Free Treatments against MRSA
4. Ethnomedical Treatments against MRSA
5. A Feasible and Cost-Effective but Challenging Way: To Use Ethnomedical Drugs Topically
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chahoud, J.; Kanafani, Z.; Kanj, S.S. Surgical site infections following spine surgery: Eliminating the controversies in the diagnosis. Front. Med. 2014, 1. [Google Scholar] [CrossRef]
- Munoz, P.; Hortal, J.; Giannella, M.; Barrio, J.M.; Rodriguez-Creixems, M.; Perez, M.J.; Rincon, C.; Bouza, E. Nasal carriage of S. aureus increases the risk of surgical site infection after major heart surgery. J. Hosp. Infect. 2008, 68, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Chen, P.Y.; Huang, F.L.; Lin, C.F. Microbiologic spectrum and susceptibility pattern of clinical isolates from the pediatric intensive care unit in a single medical center—6 years’ experience. J. Microbiol. Immunol. Infect. 2009, 42, 160–165. [Google Scholar] [PubMed]
- Ellis, S.L.; Finn, P.; Noone, M.; Leaper, D.J. Eradication of methicillin-resistant Staphylococcus aureus from pressure sores using warming therapy. Surg. Infect. 2003, 4, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Negi, V.; Pal, S.; Juyal, D.; Sharma, M.K.; Sharma, N. Bacteriological profile of surgical site infections and their antibiogram: A study from resource constrained rural setting of Uttarakhand State, India. J. Clin. Diagn. Res. JCDR 2015, 9, DC17–DC20. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, C.; Eickhoff, C.; Radziwill, R.; Schulz, M. Adherence to guidelines for antibiotic prophylaxis in surgery patients in German hospitals: A multicentre evaluation involving pharmacy interns. Infection 2012, 40, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Simor, A.E. Staphylococcal decolonisation: An effective strategy for prevention of infection? Lancet Infect. Dis. 2011, 11, 952–962. [Google Scholar] [CrossRef]
- Tong, S.Y.; Holden, M.T.; Nickerson, E.K.; Cooper, B.S.; Koser, C.U.; Cori, A.; Jombart, T.; Cauchemez, S.; Fraser, C.; Wuthiekanun, V.; et al. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res. 2015, 25, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Karageorgopoulos, D.E.; Leptidis, J.; Korbila, I.P. MRSA in Africa: Filling the global map of antimicrobial resistance. PLoS ONE 2013, 8, e68024. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, E.K.; West, T.E.; Day, N.P.; Peacock, S.J. Staphylococcus aureus disease and drug resistance in resource-limited countries in South and East Asia. Lancet Infect. Dis. 2009, 9, 130–135. [Google Scholar] [CrossRef]
- Fry, D.E. The continued challenge of Staphylococcus aureus in the surgical patient. Am. Surg. 2013, 79, 1–10. [Google Scholar] [PubMed]
- Bahemia, I.A.; Muganza, A.; Moore, R.; Sahid, F.; Menezes, C.N. Microbiology and antibiotic resistance in severe burns patients: A 5 year review in an adult burns unit. Burns J. Int. Soc. Burn Inj. 2015, 41, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Murray, B.E. Antibiotic-resistant bugs in the 21st century—A clinical super-challenge. N. Engl. J. Med. 2009, 360, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Reardon, S. Antibiotic resistance sweeping developing world. Nature 2014, 509, 141–142. [Google Scholar] [CrossRef] [PubMed]
- McKenna, M. Vaccine development: Man vs. MRSA. Nature 2012, 482, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sun, H.Q.; Wei, S.S.; Li, B.; Feng, Q.; Zhu, J.; Zeng, H.; Zou, Q.M.; Wu, C. Multiple B-cell epitope vaccine induces a Staphylococcus enterotoxin B-specific IgG1 protective response against MRSA infection. Sci. Rep. 2015, 5, 12371. [Google Scholar] [CrossRef] [PubMed]
- Bal, A.M.; Gould, I.M. Antibiotic resistance in Staphylococcus aureus and its relevance in therapy. Expert Opin. Pharmacother. 2005, 6, 2257–2269. [Google Scholar] [CrossRef] [PubMed]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Spellberg, B.; Powers, J.H.; Brass, E.P.; Miller, L.G.; Edwards, J.E., Jr. Trends in antimicrobial drug development: Implications for the future. Clin. Infect. Dis. 2004, 38, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Shlaes, D.M.; Sahm, D.; Opiela, C.; Spellberg, B. The FDA reboot of antibiotic development. Antimicrob. Agents Chemother. 2013, 57, 4605–4607. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. FDA Approved Drugs for Infections and Infectious Diseases. Available online: http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails (accessed on 20 December 2015).
- Corey, G.R.; Kabler, H.; Mehra, P.; Gupta, S.; Overcash, J.S.; Porwal, A.; Giordano, P.; Lucasti, C.; Perez, A.; Good, S.; et al. Single-dose oritavancin in the treatment of acute bacterial skin infections. N. Engl. J. Med. 2014, 370, 2180–2190. [Google Scholar] [CrossRef] [PubMed]
- Dunbar, L.M.; Milata, J.; McClure, T.; Wasilewski, M.M.; Team, S.S. Comparison of the efficacy and safety of oritavancin front-loaded dosing regimens to daily dosing: An analysis of the SIMPLIFI trial. Antimicrob. Agents Chemother. 2011, 55, 3476–3484. [Google Scholar] [CrossRef] [PubMed]
- Mlynarczyk, A.; Mlynarczyk, B.; Kmera-Muszynska, M.; Majewski, S.; Mlynarczyk, G. Mechanisms of the resistance and tolerance to β-lactam and glycopeptide antibiotics in pathogenic Gram-positive cocci. Mini Rev. Med. Chem. 2009, 9, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagace-Wiens, P.R.; Rubinstein, E.; Walkty, A.; et al. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant Gram-positive pathogens. Drugs 2015, 75, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.S.; Goering, R.V. Activity of tedizolid (TR-700) against well-characterized methicillin-resistant Staphylococcus aureus strains of diverse epidemiological origins. Antimicrob. Agents Chemother. 2013, 57, 2892–2895. [Google Scholar] [CrossRef] [PubMed]
- Prokocimer, P.; de Anda, C.; Fang, E.; Mehra, P.; Das, A. Tedizolid phosphate vs. linezolid for treatment of acute bacterial skin and skin structure infections: The ESTABLISH-1 randomized trial. JAMA 2013, 309, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Prokocimer, P.; Bien, P.; Surber, J.; Mehra, P.; DeAnda, C.; Bulitta, J.B.; Corey, G.R. Phase 2, randomized, double-blind, dose-ranging study evaluating the safety, tolerability, population pharmacokinetics, and efficacy of oral torezolid phosphate in patients with complicated skin and skin structure infections. Antimicrob. Agents Chemother. 2011, 55, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Fang, E.; Corey, G.R.; Das, A.F.; de Anda, C.; Prokocimer, P. Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2014, 14, 696–705. [Google Scholar] [CrossRef]
- Sahm, D.F.; Deane, J.; Bien, P.A.; Locke, J.B.; Zuill, D.E.; Shaw, K.J.; Bartizal, K.F. Results of the surveillance of Tedizolid activity and resistance program: In vitro susceptibility of Gram-positive pathogens collected in 2011 and 2012 from the United States and Europe. Diagn. Microbiol. Infect. Dis. 2015, 81, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Barnea, Y.; Lerner, A.; Aizic, A.; Navon-Venezia, S.; Rachi, E.; Dunne, M.W.; Puttagunta, S.; Carmeli, Y. Efficacy of dalbavancin in the treatment of MRSA rat sternal osteomyelitis with mediastinitis. J. Antimicrob. Chemother. 2015, 71, 460–463. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Noviello, S.; Leone, S. Dalbavancin for the treatment of acute bacterial skin and skin structure infections. Expert Opin. Pharmacother. 2015, 23, 313–317. [Google Scholar]
- Zhanel, G.G.; Calic, D.; Schweizer, F.; Zelenitsky, S.; Adam, H.; Lagace-Wiens, P.R.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Karlowsky, J.A. New lipoglycopeptides: A comparative review of dalbavancin, oritavancin and telavancin. Drugs 2010, 70, 859–886. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.J.; Citron, D.M.; Merriam, C.V.; Tyrrell, K.L. Ceftaroline versus isolates from animal bite wounds: Comparative in vitro activities against 243 isolates, including 156 Pasteurella species isolates. Antimicrob. Agents Chemother. 2012, 56, 6319–6323. [Google Scholar] [CrossRef] [PubMed]
- Friedland, H.D.; O’Neal, T.; Biek, D.; Eckburg, P.B.; Rank, D.R.; Llorens, L.; Smith, A.; Witherell, G.W.; Laudano, J.B.; Thye, D. CANVAS 1 and 2: Analysis of clinical response at day 3 in two phase 3 trials of ceftaroline fosamil versus vancomycin plus aztreonam in treatment of acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother. 2012, 56, 2231–2236. [Google Scholar] [CrossRef] [PubMed]
- Biedenbach, D.J.; Alm, R.A.; Lahiri, S.D.; Reiszner, E.; Hoban, D.J.; Sahm, D.F.; Bouchillon, S.K.; Ambler, J.E. In vitro activity of ceftaroline against Staphylococcus aureus isolated in 2012 from Asia-Pacific countries: AWARE surveillance program. Antimicrob. Agents Chemother. 2015, 60, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Yanik, K.; Guluzade, E.; Bilgin, K.; Karadag, A.; Eroglu, C.; Birinci, A.; Gunaydin, M. Ceftaroline activity on certain respiratory tract and wound infection agents at the minimum inhibitory concentration level. J. Infect. Dev. Ctries. 2015, 9, 1086–1090. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, S.D.; Alm, R.A. Potential of Staphylococcus aureus isolates carrying different PBP2a alleles to develop resistance to ceftaroline. J. Antimicrob. Chemother. 2016, 71, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Adam, H.J.; Baxter, M.R.; Fuller, J.; Nichol, K.A.; Denisuik, A.J.; Lagace-Wiens, P.R.; Walkty, A.; Karlowsky, J.A.; Schweizer, F.; et al. Antimicrobial susceptibility of 22746 pathogens from Canadian hospitals: Results of the CANWARD 2007-11 study. J. Antimicrob. Chemother. 2013, 68 (Suppl. 1), i7–i22. [Google Scholar] [CrossRef] [PubMed]
- Stryjewski, M.E.; Barriere, S.L.; O’Riordan, W.; Dunbar, L.M.; Hopkins, A.; Genter, F.C.; Corey, G.R. Efficacy of telavancin in patients with specific types of complicated skin and skin structure infections. J. Antimicrob. Chemother. 2012, 67, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Mendes, R.E.; Sader, H.S.; Jones, R.N. Telavancin activity against Gram-positive bacteria isolated from respiratory tract specimens of patients with nosocomial pneumonia. J. Antimicrob. Chemother. 2010, 65, 2396–2404. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, M.B.; Fan, K.; Shiveley, R.L.; van Anglen, L.J. Successful treatment of polymicrobial calcaneal osteomyelitis with telavancin, rifampin, and meropenem. Ann. Pharmacother. 2012, 46, e15. [Google Scholar] [CrossRef] [PubMed]
- Souli, M.; Karaiskos, I.; Galani, L.; Maraki, S.; Perivolioti, E.; Argyropoulou, A.; Charissiadou, A.; Zachariadou, L.; Tsiplakou, S.; Papaioannou, V.; et al. Nationwide surveillance of resistance rates of Staphylococcus aureus clinical isolates from Greek hospitals, 2012–2013. Infect. Dis. 2016, 48, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Eckmann, C.; Heizmann, W.; Bodmann, K.F.; von Eiff, C.; Petrik, C.; Loeschmann, P.A. Tigecycline in the treatment of patients with necrotizing skin and soft tissue infections due to multiresistant bacteria. Surg. Infect. 2015, 16, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.Y.; Manikam, R.; Muniandy, S. Prevalence and antibiotic susceptibility of bacteria from acute and chronic wounds in Malaysian subjects. J. Infect. Dev. Ctries. 2015, 9, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Romanowski, E.G.; Kowalski, T.A.; O’Connor, K.E.; Yates, K.A.; Mah, F.S.; Shanks, R.M.; Kowalski, R.P. The in vitro evaluation of tigecycline and the in vivo evaluation of RPX-978 (0.5% Tigecycline) as an ocular antibiotic. J. Ocul. Pharmacol. Ther. 2016, 32, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.S.; Traglia, G.M.; Perez, J.F.; Muller, G.L.; Martinez, M.F.; Golic, A.E.; Mussi, M.A. White and blue light induce reduction in susceptibility to minocycline and tigecycline in Acinetobacter spp. and other bacteria of clinical importance. J. Med. Microbiol. 2015, 64 Pt 5, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Heidari, H.; Emaneini, M.; Dabiri, H.; Jabalameli, F. Virulence factors, antimicrobial resistance pattern and molecular analysis of Enterococcal strains isolated from burn patients. Microb. Pathog. 2016, 90, 93–97. [Google Scholar] [CrossRef] [PubMed]
- O'Riordan, W.; Mehra, P.; Manos, P.; Kingsley, J.; Lawrence, L.; Cammarata, S. A randomized phase 2 study comparing two doses of delafloxacin with tigecycline in adults with complicated skin and skin-structure infections. Int. J. Infect. Dis. IJID 2015, 30, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.; Brito, C.I.; Pereira, V.C.; Oliveira, A.; Bartolomeu, A.R.; Camargo, C.H.; Cunha, M.L. Susceptibility profile of Staphylococcus epidermidis and Staphylococcus haemolyticus isolated from blood cultures to vancomycin and novel antimicrobial drugs over a period of 12 years. Microb. Drug Resist. 2015. [Google Scholar] [CrossRef] [PubMed]
- Niveditha, N.; Sujatha, S. Worrisome trends in rising minimum inhibitory concentration values of antibiotics against methicillin resistant Staphylococcus aureus—Insights from a tertiary care center, South India. Braz. J. Infect. Dis. 2015, 19, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Lupien, A.; Gingras, H.; Leprohon, P.; Ouellette, M. Induced tigecycline resistance in Streptococcus pneumoniae mutants reveals mutations in ribosomal proteins and rRNA. J. Antimicrob. Chemother. 2015, 70, 2973–2980. [Google Scholar] [CrossRef] [PubMed]
- Cogo, A.; Gonzalez-Ruiz, A.; Pathan, R.; Hamed, K. Real-world treatment of complicated skin and soft tissue infections with daptomycin: Results from a large European Registry (EU-CORE). Infect. Dis. Ther. 2015, 4, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Dhand, A.; Bayer, A.S.; Pogliano, J.; Yang, S.J.; Bolaris, M.; Nizet, V.; Wang, G.; Sakoulas, G. Use of antistaphylococcal β-lactams to increase daptomycin activity in eradicating persistent bacteremia due to methicillin-resistant Staphylococcus aureus: Role of enhanced daptomycin binding. Clin. Infect. Dis. 2011, 53, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Stone, P.A.; AbuRahma, A.F.; Campbell, J.R.; Hass, S.M.; Mousa, A.Y.; Nanjundappa, A.; Srivastiva, M.; Modak, A.; Emmett, M. Prospective randomized double-blinded trial comparing 2 anti-MRSA agents with supplemental coverage of cefazolin before lower extremity revascularization. Ann. Surg. 2015, 262, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Natal, I.; Saez-Nieto, J.A.; Medina-Pascual, M.J.; Albersmeier, A.; Valdezate, S.; Guerra-Laso, J.M.; Rodriguez, H.; Marrodan, T.; Parras, T.; Tauch, A.; et al. Dermabacter hominis: A usually daptomycin-resistant Gram-positive organism infrequently isolated from human clinical samples. New Microbes New Infect. 2013, 1, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Saravolatz, L.D.; Pawlak, J.; Johnson, L.B. In vitro activity of oritavancin against community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA), vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA) and daptomycin-non-susceptible S. aureus (DNSSA). Int. J. Antimicrob. Agents 2010, 36, 69–72. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Niederman, M.S.; Kollef, M.H.; Shorr, A.F.; Kunkel, M.J.; Baruch, A.; McGee, W.T.; Reisman, A.; Chastre, J. Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: A randomized, controlled study. Clin. Infect. Dis. 2012, 54, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Yayan, J.; Ghebremedhin, B.; Rasche, K. No outbreak of Vancomycin and linezolid resistance in Staphylococcal pneumonia over a 10-year period. PLoS ONE 2015, 10, e0138895. [Google Scholar] [CrossRef] [PubMed]
- Akhi, M.T.; Ghotaslou, R.; Beheshtirouy, S.; Asgharzadeh, M.; Pirzadeh, T.; Asghari, B.; Alizadeh, N.; Ostadgavahi, A.T.; Somesaraei, V.S.; Memar, M.Y. Antibiotic susceptibility pattern of aerobic and anaerobic bacteria isolated from surgical site infection of hospitalized patients. Jundishapur J. Microbiol. 2015, 8, e20309. [Google Scholar] [CrossRef] [PubMed]
- Herrero, I.A.; Issa, N.C.; Patel, R. Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium. N. Engl. J. Med. 2002, 346, 867–869. [Google Scholar] [CrossRef] [PubMed]
- Cidral, T.A.; Carvalho, M.C.; Figueiredo, A.M.; de Melo, M.C. Emergence of methicillin-resistant coagulase-negative staphylococci resistant to linezolid with rRNA gene C2190T and G2603T mutations. APMIS 2015, 123, 867–871. [Google Scholar] [CrossRef] [PubMed]
- Caballero, J.D.; Pastor, M.D.; Vindel, A.; Maiz, L.; Yague, G.; Salvador, C.; Cobo, M.; Morosini, M.I.; del Campo, R.; Canton, R.; et al. Emergence of cfr-mediated linezolid resistance in a methicillin-resistant Staphylococcus aureus epidemic clone isolated from patients with cystic fibrosis. Antimicrob. Agents Chemother. 2015. [Google Scholar] [CrossRef]
- Cafini, F.; Nguyen, L.T.; Higashide, M.; Roman, F.; Prieto, J.; Morikawa, K. Horizontal gene transmission of the cfr gene to MRSA and Enterococcus: Role of Staphylococcus epidermidis as a reservoir and alternative pathway for the spread of linezolid resistance. J. Antimicrob. Chemother. 2015. [Google Scholar] [CrossRef]
- Savoia, D. New antimicrobial approaches: Reuse of old drugs. Curr. Drug Targets 2016, 17, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Younis, W.; Seleem, M.N. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Sci. Rep. 2015, 5, 11596. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Younis, W.; Seleem, M.N. Repurposing celecoxib as a topical antimicrobial agent. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Thangamani, S.; Mohammad, H.; Abushahba, M.F.; Hamed, M.I.; Sobreira, T.J.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci. Rep. 2015, 5, 16407. [Google Scholar] [CrossRef] [PubMed]
- Corriden, R.; Hollands, A.; Olson, J.; Derieux, J.; Lopez, J.; Chang, J.T.; Gonzalez, D.J.; Nizet, V. Tamoxifen augments the innate immune function of neutrophils through modulation of intracellular ceramide. Nat. Commun. 2015, 6, 8369. [Google Scholar] [CrossRef] [PubMed]
- Taubes, G. The bacteria fight back. Science 2008, 321, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Buru, A.S.; Pichika, M.R.; Neela, V.; Mohandas, K. In vitro antibacterial effects of Cinnamomum extracts on common bacteria found in wound infections with emphasis on methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2014, 153, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2015, 16, 161–168. [Google Scholar] [CrossRef]
- Ling, L.L.; Schneider, T.; Peoples, A.J.; Spoering, A.L.; Engels, I.; Conlon, B.P.; Mueller, A.; Schaberle, T.F.; Hughes, D.E.; Epstein, S.; et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015, 517, 455–459. [Google Scholar] [CrossRef] [PubMed]
- Stewart, P.S.; Costerton, J.W. Antibiotic resistance of bacteria in biofilms. Lancet 2001, 358, 135–138. [Google Scholar] [CrossRef]
- Hansen, S.K.; Rainey, P.B.; Haagensen, J.A.; Molin, S. Evolution of species interactions in a biofilm community. Nature 2007, 445, 533–536. [Google Scholar] [CrossRef] [PubMed]
- Wimpenny, J.; Manz, W.; Szewzyk, U. Heterogeneity in biofilms. FEMS Microbiol. Rev. 2000, 24, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Koch, G.; Yepes, A.; Forstner, K.U.; Wermser, C.; Stengel, S.T.; Modamio, J.; Ohlsen, K.; Foster, K.R.; Lopez, D. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 2014, 158, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Segev-Zarko, L.; Saar-Dover, R.; Brumfeld, V.; Mangoni, M.L.; Shai, Y. Mechanisms of biofilm inhibition and degradation by antimicrobial peptides. Biochem. J. 2015, 468, 259–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stinner, D.J.; Hsu, J.R.; Wenke, J.C. Negative pressure wound therapy reduces the effectiveness of traditional local antibiotic depot in a large complex musculoskeletal wound animal model. J. Orthop. Trauma 2012, 26, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.Y.; Teo, R.; Nather, A. Negative-pressure wound therapy for management of diabetic foot wounds: A review of the mechanism of action, clinical applications, and recent developments. Diabet. Foot Ankle 2015, 6, 27618. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.J.; Attinger, C.E.; Oliver, N.; Garwood, C.; Evans, K.K.; Steinberg, J.S.; Lavery, L.A. Comparison of outcomes for normal saline and an antiseptic solution for negative-pressure wound therapy with instillation. Plast. Reconstr. Surg. 2015, 136, 657e–664e. [Google Scholar] [CrossRef] [PubMed]
- Nusbaum, A.G.; Gil, J.; Rippy, M.K.; Warne, B.; Valdes, J.; Claro, A.; Davis, S.C. Effective method to remove wound bacteria: Comparison of various debridement modalities in an in vivo porcine model. J. Surg. Res. 2012, 176, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Seth, A.K.; Geringer, M.R.; Nguyen, K.T.; Agnew, S.P.; Dumanian, Z.; Galiano, R.D.; Leung, K.P.; Mustoe, T.A.; Hong, S.J. Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: A new approach to chronic wound care. Plast. Reconstr. Surg. 2013, 131, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.G.; Yousaf, A.M.; Jang, S.W.; Son, M.W.; Kim, K.S.; Kim, D.W.; Li, D.X.; Kim, J.O.; Yong, C.S.; Choi, H.G. In vivo wound-healing effects of novel benzalkonium chloride-loaded hydrocolloid wound dressing. Drug Dev. Res. 2015, 76, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Sultana, S.T.; Atci, E.; Babauta, J.T.; Mohamed Falghoush, A.; Snekvik, K.R.; Call, D.R.; Beyenal, H. Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Sci. Rep. 2015, 5, 14908. [Google Scholar] [CrossRef] [PubMed]
- Gibson, A.L.; Thomas-Virnig, C.L.; Centanni, J.M.; Schlosser, S.J.; Johnston, C.E.; van Winkle, K.F.; Szilagyi, A.; He, L.K.; Shankar, R.; Allen-Hoffmann, B.L. Nonviral human β defensin-3 expression in a bioengineered human skin tissue: A therapeutic alternative for infected wounds. Wound Repair Regen. 2012, 20, 414–424. [Google Scholar] [CrossRef] [PubMed]
- Sandy-Hodgetts, K.; Watts, R. Effectiveness of negative pressure wound therapy/closed incision management in the prevention of post-surgical wound complications: A systematic review and meta-analysis. JBI Database Syst. Rev. Implement. Rep. 2015, 13, 253–303. [Google Scholar]
- Kimura, M.; Nishimura, T.; Kinoshita, O.; Okada, S.; Inafuku, H.; Kyo, S.; Ono, M. Successful treatment of pump pocket infection after left ventricular assist device implantation by negative pressure wound therapy and omental transposition. Ann. Thorac. Cardiovasc. Surg. 2014, 20, 842–845. [Google Scholar] [CrossRef] [PubMed]
- Steenvoorde, P.; de Roo, R.A.; Oskam, J.; Neijenhuis, P. Negative pressure wound therapy to treat peri-prosthetic methicillin-resistant Staphylococcus aureus infection after incisional herniorrhaphy. A case study and literature review. Ostomy Wound Manag. 2006, 52, 52–54. [Google Scholar]
- Diogenes, M.S.; Carvalho, A.C.; Tabosa, A.M. Acupuncture and moxibustion as fundamental therapeutic complements for full recovery of staphylococcal skin infection after a poor 50-day treatment response to antibiotics. J. Altern. Complement. Med. 2008, 14, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Roa, A.; Gaona, M.A.; Segura, N.A.; Ramirez-Hernandez, A.; Cortes-Vecino, J.A.; Patarroyo, M.A.; Bello, F. Evaluating Sarconesiopsis magellanica blowfly-derived larval therapy and comparing it to Lucilia sericata-derived therapy in an animal model. Acta Trop. 2015, 154, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Bexfield, A.; Nigam, Y.; Thomas, S.; Ratcliffe, N.A. Detection and partial characterisation of two antibacterial factors from the excretions/secretions of the medicinal maggot Lucilia sericata and their activity against methicillin-resistant Staphylococcus aureus (MRSA). Microbes Infect. Inst. Pasteur 2004, 6, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Van der Plas, M.J.; Dambrot, C.; Dogterom-Ballering, H.C.; Kruithof, S.; van Dissel, J.T.; Nibbering, P.H. Combinations of maggot excretions/secretions and antibiotics are effective against Staphylococcus aureus biofilms and the bacteria derived therefrom. J. Antimicrob. Chemother. 2010, 65, 917–923. [Google Scholar] [CrossRef] [PubMed]
- Deare, J.C.; Zheng, Z.; Xue, C.C.; Liu, J.P.; Shang, J.; Scott, S.W.; Littlejohn, G. Acupuncture for treating fibromyalgia. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Manheimer, E.; Cheng, K.; Wieland, L.S.; Min, L.S.; Shen, X.; Berman, B.M.; Lao, L. Acupuncture for treatment of irritable bowel syndrome. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Linde, K.; Allais, G.; Brinkhaus, B.; Manheimer, E.; Vickers, A.; White, A.R. Acupuncture for tension-type headache. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar]
- Temrangsee, P.; Kondo, S.; Itharat, A. Antibacterial activity of extracts from five medicinal plants and their formula against bacteria that cause chronic wound infection. J. Med. Assoc. Thail. 2011, 94 (Suppl. 7), S166–S171. [Google Scholar]
- Zhang, S.; Wang, J.; Xu, W.; Liu, Y.; Wang, W.; Wu, K.; Wang, Z.; Zhang, X. Antibacterial effects of Traditional Chinese Medicine monomers against Streptococcus pneumoniae via inhibiting pneumococcal histidine kinase (VicK). Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed]
- Emran, T.B.; Rahman, M.A.; Uddin, M.M.; Dash, R.; Hossen, M.F.; Mohiuddin, M.; Alam, M.R. Molecular docking and inhibition studies on the interactions of Bacopa monnieri’s potent phytochemicals against pathogenic Staphylococcus aureus. Daru 2015, 23. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Li, X.; Cai, S.; Xin, G.; Wang, Y.; Du, D.; He, S.; Huang, B.; Guo, X.; Zhao, H.; et al. Haloemodin as novel antibacterial agent inhibiting DNA gyrase and bacterial topoisomerase I. J. Med. Chem. 2014, 57, 3707–3714. [Google Scholar] [CrossRef] [PubMed]
- Molan, P.; Rhodes, T. Honey: A Biologic Wound Dressing. Wounds 2015, 27, 141–151. [Google Scholar] [PubMed]
- Asadollahi, F.; Mehrzad, J.; Chaichi, M.J.; Taghavi Razavizadeh, A. Photoimmunological properties of borage in bovine neutrophil in vitro model. J. Photochem. Photobiol. B Biol. 2015, 151, 270–275. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, R.; Cooper, R. Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS ONE 2012, 7, e45600. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, S.; Williamson, D.; Grey, J.; Harding, K.G.; Cooper, R.A. Healing of an MRSA-colonized, hydroxyurea-induced leg ulcer with honey. J. Dermatol. Treat. 2001, 12, 33–36. [Google Scholar] [CrossRef] [PubMed]
- Li, W.Z.; Tan, L.L.; Li, Q.J.; Zhou, B.J.; Gao, Y.X.; Ding, W.J. Stabilizing the bactericidal activity of hydrogen peroxide: A brand new function of certain Chinese herbs. Chin. J. Integr. Med. 2014, 20, 468–473. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Han, S.Y.; Ji, A.R.; Park, J.K.; Hong, I.H.; Ki, M.R.; Lee, E.M.; Kim, A.Y.; Lee, E.J.; Hwang, J.S.; et al. Antimicrobial effects of coprisin on wounds infected with Staphylococcus aureus in rats. Wound Repair Regen. 2013, 21, 876–882. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Bligh, S.W.; Smith, E. Quinolone alkaloids from Fructus Euodiae show activity against methicillin-resistant Staphylococcus aureus. Phytother. Res. PTR 2014, 28, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Shang, F.; Meng, Y.; Li, L.; Cui, Y.; Zhang, M.; Qi, K.; Xue, T. Ethanol extract of Sanguisorba officinalis L. inhibits biofilm formation of methicillin-resistant Staphylococcus aureus in an ica-dependent manner. J. Dairy Sci. 2015, 98, 8486–8491. [Google Scholar] [CrossRef] [PubMed]
- Brango-Vanegas, J.; Costa, G.M.; Ortmann, C.F.; Schenkel, E.P.; Reginatto, F.H.; Ramos, F.A.; Arevalo-Ferro, C.; Castellanos, L. Glycosylflavonoids from Cecropia pachystachya Trecul are quorum sensing inhibitors. Phytomedicine 2014, 21, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Zhou, Y.H.; Chen, J.Q.; Huang, Q.Y.; Han, Q.; Liu, B.; Cheng, G.D.; Li, Y.H. Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of S. suis in vitro. J. Proteom. 2015, 116, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Limsuwan, S.; Homlaead, S.; Watcharakul, S.; Chusri, S.; Moosigapong, K.; Saising, J.; Voravuthikunchai, S.P. Inhibition of microbial adhesion to plastic surface and human buccal epithelial cells by Rhodomyrtus tomentosa leaf extract. Arch. Oral Biol. 2014, 59, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, V.; di Bartolomeo, S.; di Campli, E.; Nostro, A.; Cellini, L.; di Giulio, M. In vitro activity of Aloe vera inner gel against microorganisms grown in planktonic and sessile phases. Int. J. Immunopathol. Pharmacol. 2015, 28, 595–602. [Google Scholar] [CrossRef] [PubMed]
- Budri, P.E.; Silva, N.C.; Bonsaglia, E.C.; Fernandes, A.J.; Araujo, J.P.J.; Doyama, J.T.; Goncalves, J.L.; Santos, M.V.; Fitzgerald-Hughes, D.; Rall, V.L. Effect of essential oils of Syzygium aromaticum and Cinnamomum zeylanicum and their major components on biofilm production in Staphylococcus aureus strains isolated from milk of cows with mastitis. J. Dairy Sci. 2015, 98, 5899–5904. [Google Scholar] [CrossRef] [PubMed]
- Chew, Y.L.; Chan, E.W.; Tan, P.L.; Lim, Y.Y.; Stanslas, J.; Goh, J.K. Assessment of phytochemical content, polyphenolic composition, antioxidant and antibacterial activities of Leguminosae medicinal plants in Peninsular Malaysia. BMC Complement. Altern. Med. 2011, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Husain, F.M.; Ahmad, I.; Khan, M.S.; Al-Shabib, N.A. Trigonella foenum-graceum (seed) extract interferes with quorum sensing regulated traits and biofilm formation in the strains of Pseudomonas aeruginosa and Aeromonas hydrophila. Evid. Based Complement. Altern. Med. 2015, 2015, 879540. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, E.H.; Napimoga, M.H.; Carneiro, V.A.; de Oliveira, T.M.; Cunha, R.M.; Havt, A.; Martins, J.L.; Pinto, V.P.; Goncalves, R.B.; Cavada, B.S. In vitro inhibition of Streptococci binding to enamel acquired pellicle by plant lectins. J. Appl. Microbiol. 2006, 101, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.G.; Peng, W.; Yi, J.; Wu, Y.B.; Chen, T.Q.; Wong, K.H.; Wu, J.Z. Chemical composition, antimicrobial activity against Staphylococcus aureus and a pro-apoptotic effect in SGC-7901 of the essential oil from Toona sinensis (A. Juss.) Roem. leaves. J. Ethnopharmacol. 2014, 154, 198–205. [Google Scholar] [CrossRef] [PubMed]
- Sianglum, W.; Srimanote, P.; Taylor, P.W.; Rosado, H.; Voravuthikunchai, S.P. Transcriptome analysis of responses to rhodomyrtone in methicillin-resistant Staphylococcus aureus. PLoS ONE 2012, 7, e45744. [Google Scholar] [CrossRef] [PubMed]
- Srisuwan, S.; Tongtawe, P.; Srimanote, P.; Voravuthikunchai, S.P. Rhodomyrtone modulates innate immune responses of THP-1 monocytes to assist in clearing methicillin-resistant Staphylococcus aureus. PLoS ONE 2014, 9, e110321. [Google Scholar] [CrossRef] [PubMed]
- Visutthi, M.; Srimanote, P.; Voravuthikunchai, S.P. Responses in the expression of extracellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone. J. Microbiol. 2011, 49, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Sianglum, W.; Srimanote, P.; Wonglumsom, W.; Kittiniyom, K.; Voravuthikunchai, S.P. Proteome analyses of cellular proteins in methicillin-resistant Staphylococcus aureus treated with rhodomyrtone, a novel antibiotic candidate. PLoS ONE 2011, 6, e16628. [Google Scholar] [CrossRef] [PubMed]
- Limsuwan, S.; Trip, E.N.; Kouwen, T.R.; Piersma, S.; Hiranrat, A.; Mahabusarakam, W.; Voravuthikunchai, S.P.; van Dijl, J.M.; Kayser, O. Rhodomyrtone: A new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 2009, 16, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Chusri, S.; Settharaksa, S.; Chokpaisarn, J.; Limsuwan, S.; Voravuthikunchai, S.P. Thai herbal formulas used for wound treatment: A study of their antibacterial potency, anti-inflammatory, antioxidant, and cytotoxicity effects. J. Altern. Complement. Med. 2013, 19, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Chusri, S.; Sompetch, K.; Mukdee, S.; Jansrisewangwong, S.; Srichai, T.; Maneenoon, K.; Limsuwan, S.; Voravuthikunchai, S.P. Inhibition of Staphylococcus epidermidis biofilm formation by traditional Thai herbal recipes used for wound treatment. Evid. Based Complement. Altern. Med. 2012, 2012, 159797. [Google Scholar] [CrossRef] [PubMed]
- Sasitorn Chusri, N.C. Wanvalit Thongza-ard, Surasak Limsuwan and Supayang Piyawan Voravuthikunchai, in vitro antibacterial activity of ethanol extracts of nine herbal formulas and its plant components used for skin infections in Southern Thailand. J. Med. Plant Res. 2015, 6, 5616–5623. [Google Scholar]
- Chusri, S.; Tongrod, S.; Chokpaisarn, J.; Limsuwan, S.; Voravuthikunchai, S.P. Antagonistic interactions of “Ya-Sa-Marn-Phlae” ethanol extract in combination with topical antiseptics against clinical isolates of Staphylococcus aureus. BioMed Res. Int. 2014, 2014, 867603. [Google Scholar] [CrossRef] [PubMed]
- Quave, C.L.; Plano, L.R.; Pantuso, T.; Bennett, B.C. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol. 2008, 118, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Fahimi, S.; Abdollahi, M.; Mortazavi, S.A.; Hajimehdipoor, H.; Abdolghaffari, A.H.; Rezvanfar, M.A. Wound healing activity of a traditionally used poly herbal product in a burn wound model in rats. Iran. Red Crescent Med. J. 2015, 17, e19960. [Google Scholar] [CrossRef] [PubMed]
- Awolola, G.V.; Koorbanally, N.A.; Chenia, H.; Shode, F.O.; Baijnath, H. Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica Warb. subsp. sansibarica (Moraceae) extracts. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Teka, A.; Rondevaldova, J.; Asfaw, Z.; Demissew, S.; van Damme, P.; Kokoska, L.; Vanhove, W. In vitro antimicrobial activity of plants used in traditional medicine in Gurage and Silti Zones, south central Ethiopia. BMC Complement. Altern. Med. 2015, 15, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anani, K.; Adjrah, Y.; Ameyapoh, Y.; Karou, S.D.; Agbonon, A.; de Souza, C.; Gbeassor, M. Effects of hydroethanolic extracts of Balanites aegyptiaca (L.) Delile (Balanitaceae) on some resistant pathogens bacteria isolated from wounds. J. Ethnopharmacol. 2015, 164, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Munyendo, W.L.L.; Orwa, J.A.; Rukunga, G.M.; Bii, C.C. Bacteriostatic and bactericidal activities of Aspilia mossambicensis, Ocimum gratissimum and Toddalia asiatica extracts on selected pathogenic bacteria. Res. J. Med. Plant 2011, 5, 717–727. [Google Scholar] [CrossRef]
- Okoli, C.O.; Akah, P.A.; Okoli, A.S. Potentials of leaves of Aspilia africana (Compositae) in wound care: An experimental evaluation. BMC Complement. Altern. Med. 2007, 7, 24. [Google Scholar] [CrossRef] [PubMed]
- Palombo, E.A.; Semple, S.J. Antibacterial activity of Australian plant extracts against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). J. Basic Microbiol. 2002, 42, 444–448. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Jones, G.L. A possible role of partially pyrolysed essential oils in Australian Aboriginal traditional ceremonial and medicinal smoking applications of Eremophila longifolia (R. Br.) F. Muell (Scrophulariaceae). J. Ethnopharmacol. 2013, 147, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Hobby, G.H.; Quave, C.L.; Nelson, K.; Compadre, C.M.; Beenken, K.E.; Smeltzer, M.S. Quercus cerris extracts limit Staphylococcus aureus biofilm formation. J. Ethnopharmacol. 2012, 144, 812–815. [Google Scholar] [CrossRef] [PubMed]
- Holler, J.G.; Sondergaard, K.; Slotved, H.C.; Guzman, A.; Molgaard, P. Evaluation of the antibacterial activity of Chilean plants traditionally used for wound healing therapy against multidrug-resistant Staphylococcus aureus. Planta Med. 2012, 78, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Edmondson, M.; Newall, N.; Carville, K.; Smith, J.; Riley, T.V.; Carson, C.F. Uncontrolled, open-label, pilot study of tea tree (Melaleuca alternifolia) oil solution in the decolonisation of methicillin-resistant Staphylococcus aureus positive wounds and its influence on wound healing. Int. Wound J. 2011, 8, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Sherry, E.; Boeck, H.; Warnke, P.H. Percutaneous treatment of chronic MRSA osteomyelitis with a novel plant-derived antiseptic. BMC Surg. 2001, 1, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrestha, G.; Raphael, J.; Leavitt, S.D.; St Clair, L.L. In vitro evaluation of the antibacterial activity of extracts from 34 species of North American lichens. Pharm. Biol. 2014, 52, 1262–1266. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Santos, R.R.; Fink-Gremmels, J. Analyzing the antibacterial effects of food ingredients: Model experiments with allicin and garlic extracts on biofilm formation and viability of Staphylococcus epidermidis. Food Sci. Nutr. 2015, 3, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, V.; Phadatare, A.G.; Mukne, A. Antimycobacterial and antibacterial activity of Allium Sativum bulbs. Indian J. Pharm. Sci. 2014, 76, 256–261. [Google Scholar] [PubMed]
- Santiago, C.; Lim, K.H.; Loh, H.S.; Ting, K.N. Inhibitory effect of Duabanga grandiflora on MRSA biofilm formation via prevention of cell-surface attachment and PBP2a production. Molecules 2015, 20, 4473–4482. [Google Scholar] [CrossRef] [PubMed]
- Kreiswirth, B.; Kornblum, J.; Arbeit, R.D.; Eisner, W.; Maslow, J.N.; McGeer, A.; Low, D.E.; Novick, R.P. Evidence for a clonal origin of methicillin resistance in Staphylococcus aureus. Science 1993, 259, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Bharate, J.B.; Singh, S.; Wani, A.; Sharma, S.; Joshi, P.; Khan, I.A.; Kumar, A.; Vishwakarma, R.A.; Bharate, S.B. Discovery of 4-acetyl-3-(4-fluorophenyl)-1-(p-tolyl)-5-methylpyrrole as a dual inhibitor of human P-glycoprotein and Staphylococcus aureus Nor A efflux pump. Org. Biomol. Chem. 2015, 13, 5424–5431. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.S.; Viveiros, M.; Amaral, L.; Couto, I. Multidrug Efflux Pumps in Staphylococcus aureus: An Update. Open Microbiol. J. 2013, 7, 59–71. [Google Scholar] [CrossRef] [PubMed]
- White, R.J.; Cutting, K.; Kingsley, A. Topical antimicrobials in the control of wound bioburden. Ostomy Wound Manag. 2006, 52, 26–58. [Google Scholar] [CrossRef]
- Dai, T.; Huang, Y.Y.; Sharma, S.K.; Hashmi, J.T.; Kurup, D.B.; Hamblin, M.R. Topical antimicrobials for burn wound infections. Recent Pat. Anti-Infect. Drug Discov. 2010, 5, 124–151. [Google Scholar] [CrossRef]
- Barajas-Nava, L.A.; Lopez-Alcalde, J.; Roque i Figuls, M.; Sola, I.; Bonfill Cosp, X. Antibiotic prophylaxis for preventing burn wound infection. Cochrane Database Syst. Rev. 2013, 6, CD008738. [Google Scholar] [PubMed]
- Guthrie, K.M.; Agarwal, A.; Tackes, D.S.; Johnson, K.W.; Abbott, N.L.; Murphy, C.J.; Czuprynski, C.J.; Kierski, P.R.; Schurr, M.J.; McAnulty, J.F. Antibacterial efficacy of silver-impregnated polyelectrolyte multilayers immobilized on a biological dressing in a murine wound infection model. Ann. Surg. 2012, 256, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Yu, Q.H.; Chen, S.K.; Wang, Y.H. In-vitro activity of honey and topical silver in wound care management. Drug Res. 2015, 65, 592–596. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Qu, D.; Ma, Y.; Chen, Y.; Liu, C.; Zhou, J. Enhanced stability and antibacterial efficacy of a traditional Chinese medicine-mediated silver nanoparticle delivery system. Int. J. Nanomed. 2014, 9, 5491–5502. [Google Scholar]
- Murugan, K.; Senthilkumar, B.; Senbagam, D.; Al-Sohaibani, S. Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. Int. J. Nanomed. 2014, 9, 2431–2438. [Google Scholar]
- Glasser, J.S.; Guymon, C.H.; Mende, K.; Wolf, S.E.; Hospenthal, D.R.; Murray, C.K. Activity of topical antimicrobial agents against multidrug-resistant bacteria recovered from burn patients. Burns 2010, 36, 1172–1184. [Google Scholar] [CrossRef] [PubMed]
- Boot, J.R. Antibiotic resistance and topical treatment. Br. Med. J. 1978, 2, 649–650. [Google Scholar]
- Heal, C.F.; van Driel, M.L.; Lepper, P.D.; Banks, J.L. Topical antibiotics for preventing surgical site infection in wounds healing by primary intention. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar] [Green Version]
- Lipsky, B.A.; Hoey, C. Topical antimicrobial therapy for treating chronic wounds. Clin. Infect. Dis. 2009, 49, 1541–1549. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, C.V.; Frimodt-Moller, N. Efficacy of topical and systemic antibiotic treatment of meticillin-resistant Staphylococcus aureus in a murine superficial skin wound infection model. Int. J. Antimicrob. Agents 2013, 42, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Holroyd, K.J.; Zasloff, M. Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin. Infect. Dis. 2008, 47, 1537–1545. [Google Scholar] [CrossRef] [PubMed]
Antibiotics | Indications | Therapeutic Relevance | Resistant Strains Reported | Month/Year Approved | |
---|---|---|---|---|---|
For MRSA Infections | For Wound Infections | ||||
Oritavancin | For the treatment of acute bacterial skin and skin structure infections | [22,23] | [22,23] | Low potential [24] | August 2014 |
Sivextro | For the treatment of acute bacterial skin and skin structure infections | [25,26] | [27,28,29] | Low potential [25,30] | June 2014 |
Dalvance | For the treatment of acute bacterial skin and skin structure infections | [31,32] | [31,32] | VanA vancomycin-resistant enterococci [33] | May 2014 |
Teflaro | For the treatment of bacterial skin infections and bacterial pneumonia | [34,35,36] | [34,35,37] | A S. aureus [38] | October 2010 |
Telavancin | For the treatment of complicated skin and skin structure infections | [39,40,41] | [40,42] | VanA vancomycin-resistant enterococci [33] | September 2009; June 2013 |
Tigecycline | For the treatment of complicated skin and skin structure and intra-abdominal infections and bacterial pneumonia | [39,43,44,45,46] | [45,47,48,49] | Staphylococcus spp. [50], an MRSA [51], an S. pneumoniae [52] | June 2005 |
Daptomycin | For the treatment of complicated skin and skin structure infections | [39,43,45,53,54,55] | [45,53] | Dermabacter hominis [56], Staphylococcus spp. [45], a daptomycin non-susceptible S. aureus [57] | September 2003 |
Linezolid | For the treatment of infections, including pneumonia, infections of the skin and infections caused by a resistant bacterium (Enterococcus faecium) | [39,43,45,58,59] | [45,60] | Vancomycin-resistant Enterococcus faecium. [61]; MRSA [62,63,64] | April 2000 |
Regions | Resources of Materials | Effects | Note | References | |
---|---|---|---|---|---|
Anti-Biofilm | Anti-MRSA | ||||
Bangladesh | Bacopa monnieri Linn. (Plantaginaceae) | Unknown | + | In vitro assays | [99] |
Malaysia | Cinnamomum spp. | +[113] | +[71] | 1. Better effects against MRSA than MSSA [71] | [71,113] |
2. In vitro assays | |||||
Leguminosae family | Unknown | +[114] | 1. Anti-non-S.A. biofilm [115,116] | [114,115,116] | |
2. In vitro assays | |||||
China | Fructus Euodiae | Unknown | + | 1. Active compounds: quinolone alkaloids | [107] |
2. In vitro assays | |||||
Sanguisorba officinalis L. | + | + | 1. In vitro assays | [108] | |
2. Inhibiting MRSA biofilm formation in an ica-dependent manner | |||||
Toona sinensis (A. Juss.) Roem. (TSL) | Unknown | + | 1. Active compounds: sesquiterpenes | [117] | |
2. In vitro assays | |||||
Thailand | Rhodomyrtus tomentosa (Aiton) Hassk. | +[111] | +[118,119,120,121,122] | 1. Active compound: rhodomyrtone | [111,118,119,120,121,122] |
2. Inhibiting microbial adherence ability to sustain surfaces | |||||
Herbal formulas | +[123] | +[124,125] | 1. In vitro assays | [123,124,125,126] | |
2. Ethnomedical purposes can be clues for their medical applications | |||||
3. Antagonistic interactions in combination with topical antiseptics | |||||
Italy | Some medicinal plants | + | + | Ethnomedical purposes can be clues for their medical applications | [127] |
Iran | Malva sylvestris L., Solanum nigrum L. and Rosa damascene Mill. | +[127] | +[127] | In vitro assays | [127,128] |
African | Ficus sansibarica Warb. Subsp. Sansibarica (Moraceae) | + | + | In vitro assays | [129] |
Ethiopia | Guizotia schimperi Sch. Bip. ex Walp. | Unknown | + | In vitro assays | [130] |
Togo | Balanites aegyptiaca (L.) Delile (Balanitaceae) | Unknown | + | In vitro assays | [131] |
African | Aspilia africana C. D Adams (Compositae) | Unknown | +[132] | Including animal tests | [133] |
Australia | Eremophila longifolia (R. Br.) F. Muell | Unknown | +[134] | 1. The first known Western scientific justification for the smoking ceremonies involving leaves of Eremophila longifolia | [135] |
2. In vitro assays | |||||
Mediterranean | Quercus cerris L., Fagaceae | + | + | In vitro assays | [136] |
Chilean | Some medicinal plants | Unknown | + | In vitro assays | [137] |
Extensive | Tea tree | Unknown | +[138] | 1. Clinical trial [138] | [138,139] |
2. Case study [139] | |||||
North American | Lichens | Unknown | + | In vitro assays | [140] |
Worldwide | Garlic | +[141] | + | In vitro assays | [141,142] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dou, J.-L.; Jiang, Y.-W.; Xie, J.-Q.; Zhang, X.-G. New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections. Int. J. Mol. Sci. 2016, 17, 617. https://doi.org/10.3390/ijms17050617
Dou J-L, Jiang Y-W, Xie J-Q, Zhang X-G. New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections. International Journal of Molecular Sciences. 2016; 17(5):617. https://doi.org/10.3390/ijms17050617
Chicago/Turabian StyleDou, Jian-Lin, Yi-Wei Jiang, Jun-Qiu Xie, and Xiao-Gang Zhang. 2016. "New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections" International Journal of Molecular Sciences 17, no. 5: 617. https://doi.org/10.3390/ijms17050617
APA StyleDou, J. -L., Jiang, Y. -W., Xie, J. -Q., & Zhang, X. -G. (2016). New Is Old, and Old Is New: Recent Advances in Antibiotic-Based, Antibiotic-Free and Ethnomedical Treatments against Methicillin-Resistant Staphylococcus aureus Wound Infections. International Journal of Molecular Sciences, 17(5), 617. https://doi.org/10.3390/ijms17050617