Design and Application of Antimicrobial Peptide Conjugates
Abstract
:1. Introduction
1.1. Antimicrobial Peptides (AMPs): Classification
1.2. AMPs: Mechanism of Action
2. Modified AMPs and AMP Conjugates
2.1. Antibiotics Coupled to AMPs and AMP-Like Sequences
2.2. Improving AMP Activity by Lipidation
2.3. Photosensitizer-AMP Conjugates
2.4. Decoration of Particles and Polymers with AMPs
2.5. Conjugates out of AMPs and Organometallic Complexes
2.6. AMPs and AMP Containing Conjugates as Anti-Cancer Drugs
2.7. Other Examples of Modulated AMPs
3. Concluding Remarks
Acknowledgments
Conflicts of Interest
Abbreviations
3T3 | Mouse fibroblast cells |
AmB | Amphotericin B |
AMP | Antimicrobial peptide |
B16-F0 | Mouse skin melanoma cells |
Bac | Bacitracin |
BLT-1 | Murine Leydig tumor cells |
CAP | Chloramphenicol |
CAPAN-1 | Human pancreatic adenocarcinoma cells |
CBA | Mouse kidney cells |
CD | Cyclodextrin |
CuAAC | Copper(1)-catalyzed alkyne-azide cycloaddition |
Cyt c | Cytochrome c |
DTPA | Diethylene triamine pentaacetic acid |
DU-145 | Human prostate carcinoma cells |
DX5 | Antibody that reacts with CD49b integrin |
Fc | Ferrocene |
FSF | Human facial skin fibroblast cells |
GE11-β3 | Mouse mammary epithelial cells |
HT-1080 | Human fibrosarcoma cells |
IDR | Immunmodulatory peptide innate defense regulator |
IgG | Immunglobuline |
IL | Ionic liquid |
KG1a | Human bone marrow macrophages |
KLA | Proapoptotic domain peptide (KLAKLAK)2 |
LPS | Lipopolysaccharide |
MBP | Maltose binding protein |
MCA-205 | Murine fibrosarcoma cells |
MCF-7 | Michigan Cancer Foundation-7, breast cancer cell line |
MES-SA | Human uterine epithelial cells |
MIC | Minimal inhibitory concentration |
MMP | Matrix metallo-proteinase |
MRSA | Methicillin-resistant S. aureus |
MRSE | Methicilin-resistant S. epidermidis |
NDHF | Normal human dermal fibroblast cells |
NHS | N-hydroxysuccinimide |
pDNA | Plasmid desoxyribonucleic acid |
PDT | Photodynamic therapy |
PEG-PS | Polyethylene glycol-polystyrene |
PNA | Peptide nucleic acid |
PpIX | Protoprophyrin IX |
PS | Photosensitizer |
RNA | Ribonucleic acid |
ROS | Reactive oxygen species |
SCOV | Human ovary adenocarcinoma cells |
SDS PAGE | Sodium dodecyl sulfate polyacrylamide gel electrophoresis |
SMAP | Sheep myeloid antimicrobial peptide |
SPECT | Single-photon emission computer tomography |
SPPS | Solid phase peptide synthesis |
TEM | Transmission electron microscopy |
U87 MG | Human glioblastoma cells |
UBI | Ubiquicidin |
VRE | Vancomycin-resistant Enterococci |
ZR-75-30 | Human breast ductual carcinoma cells |
References
- Marr, A.K.; Gooderham, W.J.; Hancock, R.E.W. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 2006, 6, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Mygind, P.H.; Fischer, R.L.; Schnorr, K.M.; Hansen, M.T.; Sonksen, C.P.; Ludvigsen, S.; Raventos, D.; Buskov, S.; Christensen, B.; de Maria, L.; et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 2005, 437, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Hof, W.V.T.; Veerman, E.C.I.; Helmerhorst, E.J.; Amerongen, A.V.N. Antimicrobial peptides: Properties and applicability. Biol. Chem. 2001, 382, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011, 29, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Fjell, C.D.; Hiss, J.A.; Hancock, R.E.W.; Schneider, G. Designing antimicrobial peptides: Form follows function. Nat. Rev. Drug Discov. 2012, 11, 37–51. [Google Scholar] [CrossRef]
- Hancock, R.E.W.; Lehrer, R. Cationic peptides: A new source of antibiotics. Trends Biotechnol. 1998, 16, 82–88. [Google Scholar] [CrossRef]
- Brogden, K.A.; Ackermann, M.; McCray, P.B.; Tack, B.F. Antimicrobial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents 2003, 22, 465–478. [Google Scholar] [CrossRef]
- Maria-Neto, S.; de Almeida, K.C.; Macedo, M.L.R.; Franco, O.L. Understanding bacterial resistance to antimicrobial peptides: From the surface to deep inside. Biochim. Biophys. Acta Biomembr. 2015, 1848, 3078–3088. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, C.; Haldar, J. Membrane-active small molecules: Designs inspired by antimicrobial peptides. Chemmedchem 2015, 10, 1606–1624. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.; Boman, A.; Boman, H.G. Ascaris nematodes from pig and human make three antibacterial peptides: Isolation of cecropin p1 and two asabf peptides. Cell. Mol. Life Sci. 2003, 60, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Agerberth, B.; Gunne, H.; Odeberg, J.; Kogner, P.; Boman, H.G.; Gudmundsson, G.H. Fall-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone-marrow and testis. Proc. Natl. Acad. Sci. USA 1995, 92, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Falla, T.J.; Karunaratne, D.N.; Hancock, R.E.W. Mode of action of the antimicrobial peptide indolicidin. J. Biol. Chem. 1996, 271, 19298–19303. [Google Scholar] [CrossRef] [PubMed]
- Frank, R.W.; Gennaro, R.; Schneider, K.; Przybylski, M.; Romeo, D. Amino-acid-sequences of 2 proline-rich bactenecins—Antimicrobial peptides of bovine neutrophils. J. Biol. Chem. 1990, 265, 18871–18874. [Google Scholar] [PubMed]
- Wu, M.H.; Hancock, R.E.W. Interaction of the cyclic antimicrobial cationic peptide bactenecin with the outer and cytoplasmic membrane. J. Biol. Chem. 1999, 274, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Dings, R.P.M.; Haseman, J.R.; Leslie, D.B.; Luong, M.; Dunn, D.L.; Mayo, K.H. Bacterial membrane disrupting dodecapeptide SC4 improves survival of mice challenged with Pseudomonas aeruginosa. BBA-Gen. Subj. 2013, 1830, 3454–3457. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Meng, K.; Wang, Y.R.; Lu, H.Y.; Yang, P.L.; Wu, N.F.; Fan, Y.L.; Yao, B. Eukaryotic expression and antimicrobial spectrum determination of the peptide tachyplesin II. Protein Expr. Purif. 2008, 58, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Findlay, B.; Zhanel, G.G.; Schweizer, F. Cationic amphiphiles, a new generation of antimicrobials inspired by the natural antimicrobial peptide scaffold. Antimicrob. Agents Chemother. 2010, 54, 4049–4058. [Google Scholar] [CrossRef] [PubMed]
- Strom, M.B.; Haug, B.E.; Skar, M.L.; Stensen, W.; Stiberg, T.; Svendsen, J.S. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem. 2003, 46, 1567–1570. [Google Scholar] [CrossRef] [PubMed]
- Thaker, H.D.; Sgolastra, F.; Clements, D.; Scott, R.W.; Tew, G.N. Synthetic mimics of antimicrobial peptides from triaryl scaffolds. J. Med. Chem. 2011, 54, 2241–2254. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.G.; Yan, H.; Hancock, R.E.W. Biological properties of structurally related α-helical cationic antimicrobial peptides. Infect. Immun. 1999, 67, 2005–2009. [Google Scholar] [PubMed]
- Scott, M.G.; Gold, M.R.; Hancock, R.E.W. Interaction of cationic peptides with lipoteichoic acid and Gram-positive bacteria. Infect. Immun. 1999, 67, 6445–6453. [Google Scholar] [PubMed]
- Matsuzaki, K. Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. BBA-Biomembranes 1999, 1462, 1–10. [Google Scholar] [CrossRef]
- Pag, U.; Oedenkoven, M.; Papo, N.; Oren, Z.; Shai, Y.; Sahl, H.G. In vitro activity and mode of action of diastereomeric antimicrobial peptides against bacterial clinical isolates. J. Antimicrob. Chemother. 2004, 53, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Bang, J.K.; Kim, H.J.; Kim, J.K.; Kim, Y.; Shin, S.Y. Antimicrobial specificity and mechanism of action of disulfide-removed linear analogs of the plant-derived Cys-rich antimicrobial peptide Ib-AMP1. Peptides 2009, 30, 2144–2149. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.F.; Xu, Y.M.; Hao, D.M.; Huang, Y.B.; Liu, Y.; Chen, Y.X. Structure-guided de novo design of α-helical antimicrobial peptide with enhanced specificity. Pure Appl. Chem. 2010, 82, 243–257. [Google Scholar] [CrossRef]
- Huang, Y.B.; He, L.Y.; Li, G.R.; Zhai, N.C.; Jiang, H.Y.; Chen, Y.X. Role of helicity of α-helical antimicrobial peptides to improve specificity. Protein Cell 2014, 5, 631–642. [Google Scholar] [CrossRef] [PubMed]
- Oren, Z.; Shai, Y. Selective lysis of bacteria but not mammalian cells by diastereomers of melittin: Structure-function study. Biochemistry 1997, 36, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.L.; Nan, Y.H.; Hahm, K.S.; Shin, S.Y. Cell selectivity of an antimicrobial peptide melittin diastereomer with D-amino acid in the leucine zipper sequence. J. Biochem. Mol. Biol. 2007, 40, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Oren, Z.; Shai, Y. Cyclization of a non cell-selective cytolytic amphipatic α-helical peptide renders it selective to bacteria. Biophys. J. 2000, 78, 14a. [Google Scholar]
- Song, Y.M.; Park, Y.; Lim, S.S.; Yang, S.T.; Woo, E.R.; Park, I.S.; Lee, J.S.; Kim, J.I.; Hahm, K.S.; Kim, Y.; et al. Cell selectivity and mechanism of action of antimicrobial model peptides containing peptoid residues. Biochemistry 2005, 44, 12094–12106. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, J.P.; Cova, M.; Ferreira, R.; Vitorino, R. Antimicrobial peptides: An alternative for innovative medicines? Appl. Microbiol. Biotechnol. 2015, 99, 2023–2040. [Google Scholar] [CrossRef] [PubMed]
- Brogden, K.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K.; Murase, O.; Fujii, N.; Miyajima, K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 1996, 35, 11361–11368. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Harroun, T.A.; Weiss, T.M.; Ding, L.; Huang, H.W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001, 81, 1475–1485. [Google Scholar] [CrossRef]
- Kang, S.J.; Park, S.J.; Mishig-Ochir, T.; Lee, B.J. Antimicrobial peptides: Therapeutic potentials. Expert Rev. Anti-Infect. Ther. 2014, 12, 1477–1486. [Google Scholar] [CrossRef] [PubMed]
- Di Luca, M.; Maccari, G.; Nifosi, R. Treatment of microbial biofilms in the post-antibiotic era: Prophylactic and therapeutic use of antimicrobial peptides and their design by bioinformatics tools. Pathog. Dis. 2014, 70, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Ehrenstein, G.; Lecar, H. Electrically gated ionic channels in lipid bilayers. Q. Rev. Biophys. 1977, 10, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Bechinger, B. The structure, dynamics and orientation of antimicrobial peptides in membranes by multidimensional solid-state nmr spectroscopy. BBA-Biomembranes 1999, 1462, 157–183. [Google Scholar] [CrossRef]
- Pouny, Y.; Rapaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogs with phospholipid-membranes. Biochemistry 1992, 31, 12416–12423. [Google Scholar] [CrossRef] [PubMed]
- Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. BBA-Biomembranes 1999, 1462, 55–70. [Google Scholar] [CrossRef]
- Ladokhin, A.S.; White, S.H. “Detergent-like” permeabilization of anionic lipid vesicles by melittin. BBA-Biomembranes 2001, 1514, 253–260. [Google Scholar] [CrossRef]
- Fernandez, D.I.; Le Brun, A.P.; Whitwell, T.C.; Sani, M.A.; James, M.; Separovic, F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys. Chem. Chem. Phys. 2012, 14, 15739–15751. [Google Scholar] [CrossRef] [PubMed]
- Brotz, H.; Bierbaum, G.; Leopold, K.; Reynolds, P.E.; Sahl, H.G. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid ii. Antimicrob. Agents Chemother. 1998, 42, 154–160. [Google Scholar] [PubMed]
- Kavanagh, K.; Dowd, S. Histatins: Antimicrobial peptides with therapeutic potential. J. Pharm. Pharmacol. 2004, 56, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Andreu, D.; Rivas, L. Animal antimicrobial peptides: An overview. Biopolymers 1998, 47, 415–433. [Google Scholar] [CrossRef]
- Kragol, G.; Lovas, S.; Varadi, G.; Condie, B.A.; Hoffmann, R.; Otvos, L. The antibacterial peptide pyrrhocoricin inhibits the atpase actions of dnak and prevents chaperone-assisted protein folding. Biochemistry 2001, 40, 3016–3026. [Google Scholar] [CrossRef] [PubMed]
- Lehrer, R.I.; Barton, A.; Daher, K.A.; Harwig, S.S.L.; Ganz, T.; Selsted, M.E. Interaction of human defensins with Escherichia-coli—Mechanism of bactericidal activity. J. Clin. Investig. 1989, 84, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Boman, H.G.; Agerberth, B.; Boman, A. Mechanisms of action on Escherichia coli of cecropin-P1 and PR-39, 2 antibacterial peptides from pig intestine. Infect. Immun. 1993, 61, 2978–2984. [Google Scholar] [PubMed]
- Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 1998, 160, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Patrzykat, A.; Friedrich, C.L.; Zhang, L.J.; Mendoza, V.; Hancock, R.E.W. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother. 2002, 46, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Splith, K.; Neundorf, I. Antimicrobial peptides with cell-penetrating peptide properties and vice versa. Eur. Biophys. J. Biophys. 2011, 40, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Brogden, N.K.; Brogden, K.A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? Int. J. Antimicrob. Agents 2011, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Dosselli, R.; Gobbo, M.; Bolognini, E.; Campestrini, S.; Reddi, E. Porphyrin—Apidaecin conjugate as a new broad spectrum antibacterial agent. ACS Med. Chem. Lett. 2010, 1, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Chu-Kung, A.F.; Nguyen, R.; Bozzelli, K.N.; Tirrell, M. Chain length dependence of antimicrobial peptide-fatty acid conjugate activity. J. Colloid Interface Sci. 2010, 345, 160–167. [Google Scholar] [CrossRef] [PubMed]
- Soler, M.; Gonzalez-Bartulos, M.; Soriano-Castell, D.; Ribas, X.; Costas, M.; Tebar, F.; Massaguer, A.; Feliu, L.; Planas, M. Identification of BP16 as a non-toxic cell-penetrating peptide with highly efficient drug delivery properties. Org. Biomol. Chem. 2014, 12, 1652–1663. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Kim, M.Y.; Lee, J.W.; Kim, S.C.; Cho, J.H. Enhancement of the cancer targeting specificity of buforin lib by fusion with an anionic peptide via a matrix metalloproteinases-cleavable linker. Peptides 2011, 32, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Pinto, S.; Evangelista, M.B.; Gil, H.; Kallip, S.; Ferreira, M.G.; Ferreira, L. High-density antimicrobial peptide coating with broad activity and low cytotoxicity against human cells. Acta Biomater. 2016, 33, 64–77. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Muller, A.; Vuorenoja, S.; Tuominen, M.; Waclawik, A.; Brokken, L.J.S.; Ziecik, A.J.; Huhtaniemi, I.; Rahman, N.A. Use of hecate-chorionic gonadotropin β conjugate in therapy of lutenizing hormone receptor expressing gonadal somatic cell tumors. Mol. Cell. Endocrinol. 2007, 269, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Sanches, P.R.S.; Carneiro, B.M.; Batista, M.N.; Braga, A.C.S.; Lorenzon, E.N.; Rahal, P.; Cilli, E.M. A conjugate of the lytic peptide hecate and gallic acid: Structure, activity against cervical cancer, and toxicity. Amino Acids 2015, 47, 1433–1443. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Tak, Y.K.; Han, E.; Rangasamy, S.; Song, J.M. A multifunctional composite of an antibacterial higher-valent silver metallopharmaceutical and a potent wound healing polypeptide: A combined killing and healing approach to wound care. New J. Chem. 2014, 38, 3889–3898. [Google Scholar] [CrossRef]
- Tati, S.; Li, R.; Puri, S.; Kumar, R.; Davidow, P.; Edgerton, M. Histatin 5-spermidine conjugates have enhanced fungicidal activity and efficacy as a topical therapeutic for oral candidiasis. Antimicrob. Agents Chemother. 2014, 58, 756–766. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Cheng, J.T.J.; Kindrachuk, J.; Hancock, R.E.W.; Straus, S.K.; Kizhakkedathu, J.N. Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide. Chem. Biol. 2012, 19, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Ghaffar, K.A.; Hussein, W.M.; Khalil, Z.G.; Capon, R.J.; Skwarczynski, M.; Toth, I. Levofloxacin and indolicidin for combination antimicrobial therapy. Curr. Drug Deliv. 2015, 12, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Muthukrishnan, N.; Pellois, J.P. Photoinactivation of Gram positive and Gram negative bacteria with the antimicrobial peptide (KLAKLAK)2 conjugated to the hydrophilic photosensitizer eosin Y. Bioconjug. Chem. 2013, 24, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Johnson, G.A.; Ellis, E.A.; Kim, H.; Muthukrishnan, N.; Snavely, T.; Pellois, J.P. Photoinduced membrane damage of E. coli and S. aureus by the photosensitizer-antimicrobial peptide conjugate eosin-(KLAKLAK)2. PLoS ONE 2014, 9, e91220. [Google Scholar] [CrossRef] [PubMed]
- Mai, J.C.; Mi, Z.B.; Kim, S.H.; Ng, B.; Robbins, P.D. A proapoptotic peptide for the treatment of solid tumors. Cancer Res. 2001, 61, 7709–7712. [Google Scholar] [PubMed]
- Watkins, C.L.; Brennan, P.; Fegan, C.; Takayama, K.; Nakase, I.; Futaki, S.; Jones, A.T. Cellular uptake, distribution and cytotoxicity of the hydrophobic cell penetrating peptide sequence pfvyli linked to the proapoptotic domain peptide pad. J. Control. Release 2009, 140, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; Jang, S.; Yang, M.H.; Cho, H.; Lee, K.H. Characterization of antibacterial activity and synergistic effect of cationic antibacterial peptide-resin conjugates. Bull. Korean Chem. Soc. 2011, 32, 3928–3932. [Google Scholar] [CrossRef]
- Zhong, J.; Chau, Y. Synthesis, characterization, and thermodynamic study of a polyvalent lytic peptide-polymer conjugate as novel anticancer agent. Bioconjug. Chem. 2010, 21, 2055–2064. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, A.; Horn, M.; Schmauck, J.P.G.; Brohl, A.; Giernoth, R.; Oelkrug, C.; Schubert, A.; Neundorf, I. Novel imidazolium salt-peptide conjugates and their antimicrobial activity. Bioconjug. Chem. 2014, 25, 2166–2174. [Google Scholar] [CrossRef] [PubMed]
- Postleb, F.; Stefanik, D.; Seifert, H.; Giernoth, R. Bionic liquids: Imidazolium-based ionic liquids with antimicrobial activity. Z. Naturforsch B 2013, 68, 1123–1128. [Google Scholar] [CrossRef]
- Li, Y.X.; Afrasiabi, R.; Fathi, F.; Wang, N.; Xiang, C.L.; Love, R.; She, Z.; Kraatz, H.B. Impedance based detection of pathogenic E. coli O157:H7 using a ferrocene-antimicrobial peptide modified biosensor. Biosens. Bioelectron. 2014, 58, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Blin, T.; Purohit, V.; Leprince, J.; Jouenne, T.; Glinel, K. Bactericidal microparticles decorated by an antimicrobial peptide for the easy disinfection of sensitive aqueous solutions. Biomacromolecules 2011, 12, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Arnusch, C.J.; Pieters, R.J.; Breukink, E. Enhanced membrane pore formation through high-affinity targeted antimicrobial peptides. PLoS ONE 2012, 7, e39768. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, H.; Wan, L.; Cai, H.W.; Li, S.F.; Li, Y.P.; Cheng, J.Q.; Lu, X.F. Enhancement of cytotoxicity of antimicrobial peptide magainin II in tumor cells by bombesin-targeted delivery. Acta Pharmacol. Sin. 2011, 32, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Perekalin, D.S.; Novikov, V.V.; Pavlov, A.A.; Ivanov, I.A.; Anisimova, N.Y.; Kopylov, A.N.; Volkov, D.S.; Seregina, I.F.; Bolshov, M.A.; Kudinov, A.R. Selective ruthenium labeling of the tryptophan residue in the bee venom peptide melittin. Chem. Eur. J. 2015, 21, 4923–4925. [Google Scholar] [CrossRef] [PubMed]
- Franzel, B.; Frese, C.; Penkova, M.; Metzler-Nolte, N.; Bandow, J.E.; Wolters, D.A. Corynebacterium glutamicum exhibits a membrane-related response to a small ferrocene-conjugated antimicrobial peptide. J. Biol. Inorg. Chem. 2010, 15, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Albada, H.B.; Prochnow, P.; Bobersky, S.; Langklotz, S.; Schriek, P.; Bandow, J.E.; Metzler-Nolte, N. Tuning the activity of a short Arg-Trp antimicrobial peptide by lipidation of a C- or N-terminal lysine side-chain. ACS Med. Chem. Lett. 2012, 3, 980–984. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, J.; Schatzschneider, U.; Schulz-Siegmund, M.; Neundorf, I. Dimerization of a cell-penetrating peptide leads to enhanced cellular uptake and drug delivery. Beilstein J. Org. Chem. 2012, 8, 1788–1797. [Google Scholar] [CrossRef] [PubMed]
- Franzman, M.R.; Burnell, K.K.; Dehkordi-Vakil, F.H.; Guthmiller, J.M.; Dawson, D.V.; Brogden, K.A. Targeted antimicrobial activity of a specific IgG-SMAP28 conjugate against Porphyromonas gingivalis in a mixed culture. Int. J. Antimicrob. Agents 2009, 33, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Leptihn, S.; Har, J.Y.; Chen, J.Z.; Ho, B.; Wohland, T.; Ding, J.L. Single molecule resolution of the antimicrobial action of quantum dot-labeled sushi peptide on live bacteria. BMC Biol. 2009, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.Z.; Carneiro, H.C.; Lara, H.A.; Alves, R.B.; Resende, J.M.; Oliveira, H.M.; Silva, L.M.; Santos, D.A.; Freitas, R.P. Synthesis of a new peptide-coumarin conjugate: A potential agent against cryptococcosis. ACS Med. Chem. Lett. 2015, 6, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Welling, M.M.; Bunschoten, A.; Kuil, J.; Nelissen, R.G.H.H.; Beekman, F.J.; Buckle, T.; van Leeuwen, F.W.B. Development of a hybrid tracer for spect and optical imaging of bacterial infections. Bioconjug. Chem. 2015, 26, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, C.; Chen, D.; Madrid, K.; Peng, S.; Dong, X.; Zhang, M.; Gu, Y. Bacteria-targeting conjugates based on antimicrobial peptide for bacteria diagnosis and therapy. Mol. Pharm. 2015, 12, 2505–2516. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ni, A.S.Y.; Lim, Y.; Mohanram, H.; Bhattacharjya, S.; Xing, B.G. Lipopolysaccharide neutralizing peptide-porphyrin conjugates for effective photoinactivation and intracellular imaging of Gram-negative bacteria strains. Bioconjug. Chem. 2012, 23, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Mahato, M.; Pathak, R.; Jha, D.; Kumar, B.; Deka, S.R.; Gautam, H.K.; Sharma, A.K. Multifunctional self-assembled cationic peptide nanostructures efficiently carry plasmid DNA in vitro and exhibit antimicrobial activity with minimal toxicity. J. Mater. Chem. B 2014, 2, 4848–4861. [Google Scholar] [CrossRef]
- Arnusch, C.J.; Ulm, H.; Josten, M.; Shadkchan, Y.; Osherov, N.; Sahl, H.G.; Shai, Y. Ultrashort peptide bioconjugates are exclusively antifungal agents and synergize with cyclodextrin and amphotericin B. Antimicrob. Agents Chemther. 2012, 56, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bera, S.; Zhanel, G.G.; Schweizer, F. Synthesis and antibacterial activity of amphiphilic lysine-ligated neomycin B conjugates. Carbohydr. Res. 2011, 346, 560–568. [Google Scholar] [CrossRef] [PubMed]
- Magoulas, G.E.; Kostopoulou, O.N.; Garnelis, T.; Athanassopoulos, C.M.; Kournoutou, G.G.; Leotsinidis, M.; Dinos, G.P.; Papaioannou, D.; Kalpaxis, D.L. Synthesis and antimicrobial activity of chloramphenicol-polyamine conjugates. Bioorgan. Med. Chem. 2015, 23, 3163–3174. [Google Scholar] [CrossRef] [PubMed]
- Brouwer, C.P.J.M.; Bogaards, S.J.P.; Wulferink, M.; Velders, M.P.; Welling, M.M. Synthetic peptides derived from human antimicrobial peptide ubiquicidin accumulate at sites of infections and eradicate (multi-drug resistant) Staphylococcus aureus in mice. Peptides 2006, 27, 2585–2591. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Jones, G.S.; Blacksberg, I.; Remers, W.A.; Misiek, M.; Pursiano, T.A. Aminoglycoside antibiotics. 3. Epimino derivatives of neamine, ribostamycin, and kanamycin-B. J. Med. Chem. 1980, 23, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Chiang, F.I.; Wu, L.; Czyryca, P.G.; Li, D.; Chang, C.W.T. Surprising alteration of antibacterial activity of 5″-modified neomycin against resistant bacteria. J. Med. Chem. 2008, 51, 7563–7573. [Google Scholar] [CrossRef] [PubMed]
- Borkow, G.; Vijayabaskar, V.; Lara, H.H.; Kalinkovich, A.; Lapidot, A. Structure-activity relationship of neomycin, paromomycin, and neamine-arginine conjugates, targeting HIV-1 gp120-CXCR4 binding step. Antivir. Res. 2003, 60, 181–192. [Google Scholar] [CrossRef]
- Chu-Kung, A.F.; Bozzelli, K.N.; Lockwood, N.A.; Haseman, J.R.; Mayo, K.H.; Tirrell, M.V. Promotion of peptide antimicrobial activity by fatty acid conjugation. Bioconjug. Chem. 2004, 15, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, M.; Schriek, P.; Prochnow, P.; Albada, H.B.; Metzler-Nolte, N.; Bandow, J.E. Influence of lipidation on the mode of action of a small RW-rich antimicrobial peptide. Biochim. Biophys. Acta 2015, 1858, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Huang, Y.Y.; Hamblin, M.R. Photodynamic therapy for localized infections-state of the art. Photodiagn. Photodyn. 2009, 6, 170–188. [Google Scholar] [CrossRef] [PubMed]
- Kochevar, I.E.; Redmond, R.W. Photosensitized production of singlet oxygen. Method Enzymol. 2000, 319, 20–28. [Google Scholar]
- Maisch, T.; Hackbarth, S.; Regensburger, J.; Felgentrager, A.; Baumler, W.; Landthaler, M.; Roder, B. Photodynamic inactivation of multi-resistant bacteria (pib)—A new approach to treat superficial infections in the 21st century. J. Dtsch. Dermatol. Ges. 2011, 9, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Vera, D.M.A.; Haynes, M.H.; Ball, A.R.; Dai, T.H.; Astrakas, C.; Kelso, M.J.; Hamblin, M.R.; Tegos, G.P. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes. Photochem. Photobiol. 2012, 88, 499–511. [Google Scholar] [CrossRef] [PubMed]
- Segalla, A.; Borsarelli, C.D.; Braslavsky, S.E.; Spikes, J.D.; Roncucci, G.; Dei, D.; Chiti, G.; Jori, G.; Reddi, E. Photophysical, photochemical and antibacterial photosensitizing properties of a novel octacationic Zn(II)-phthalocyanine. Photochem. Photobiol. Sci. 2002, 1, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Usacheva, M.N.; Teichert, M.C.; Biel, M.A. Comparison of the methylene blue and toluidine blue photobactericidal efficacy against Gram-positive and Gram-negative microorganisms. Lasers Surg. Med. 2001, 29, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Maisch, T.; Bosl, C.; Szeimies, R.M.; Lehn, N.; Abels, C. Photodynamic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells. Antimicrob. Agents Chemther. 2005, 49, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Bonnett, R.; Buckley, D.G.; Burrow, T.; Galia, A.B.B.; Saville, B.; Songca, S.P. Photobactericidal materials based on porphyrins and phthalocyanines. J. Mater. Chem. 1993, 3, 323–324. [Google Scholar] [CrossRef]
- Dahl, T.A.; Midden, W.R.; Hartman, P.E. Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygen. J. Bacteriol. 1989, 171, 2188–2194. [Google Scholar] [PubMed]
- Perria, C.; Carai, M.; Falzoi, A.; Orunesu, G.; Rocca, A.; Massarelli, G.; Francaviglia, N.; Jori, G. Photodynamic therapy of malignant brain-tumors—Clinical-results of, difficulties with, questions about, and future-prospects for the neurosurgical applications. Neurosurgery 1988, 23, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Yih, T.C.; Al-Fandi, M. Engineered nanoparticles as precise drug delivery systems. J. Cell. Biochem. 2006, 97, 1184–1190. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.Z.; Lange, D.; Hilpert, K.; Kindrachuk, J.; Zou, Y.Q.; Cheng, J.T.J.; Kazemzadeh-Narbat, M.; Yu, K.; Wang, R.Z.; Straus, S.K.; et al. The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 2011, 32, 3899–3909. [Google Scholar] [CrossRef] [PubMed]
- Hilpert, K.; Elliott, M.; Jenssen, H.; Kindrachuk, J.; Fjell, C.D.; Korner, J.; Winkler, D.F.H.; Weaver, L.L.; Henklein, P.; Ulrich, A.S.; et al. Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem. Biol. 2009, 16, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Eckert, R. Road to clinical efficacy: Challenges and novel strategies for antimicrobial peptide development. Future Microbiol. 2011, 6, 635–651. [Google Scholar] [CrossRef] [PubMed]
- Bandow, J.E.; Metzler-Nolte, N. New ways of killing the beast: Prospects for inorganic-organic hybrid nanomaterials as antibacterial agents. Chembiochem 2009, 10, 2847–2850. [Google Scholar] [CrossRef] [PubMed]
- Chantson, J.T.; Falzacappa, M.V.V.; Crovella, S.; Metzler-Nolte, N. Solid-phase synthesis, characterization, and antibacterial activities of metallocene-peptide bioconjugates. Chemmedchem 2006, 1, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.I.; Prenner, E.J.; Vogel, H.J. Tryptophan- and arginine-rich antimicrobial peptides: Structures and mechanisms of action. BBA-Biomembranes 2006, 1758, 1184–1202. [Google Scholar] [CrossRef] [PubMed]
- Oudhoff, M.J.; Bolscher, J.G.M.; Nazmi, K.; Kalay, H.; Hof, W.V.T.; Amerongen, A.V.N.; Veerman, E.C.I. Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay. FASEB J. 2008, 22, 3805–3812. [Google Scholar] [CrossRef] [PubMed]
- Mannoor, M.S.; Zhang, S.Y.; Link, A.J.; McAlpine, M.C. Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides. Proc. Natl. Acad. Sci. USA 2010, 107, 19207–19212. [Google Scholar] [CrossRef] [PubMed]
- Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: Melittin, apamin and mastoparan. Toxins 2015, 7, 1126–1150. [Google Scholar] [CrossRef] [PubMed]
- Szczepanski, C.; Tenstad, O.; Baumann, A.; Martinez, A.; Myklebust, R.; Bjerkvig, R.; Prestegarden, L. Identification of a novel lytic peptide for the treatment of solid tumours. Genes Cancer 2014, 5, 186–200. [Google Scholar] [PubMed]
- Dathe, M.; Wieprecht, T.; Nikolenko, H.; Handel, L.; Maloy, W.L.; MacDonald, D.L.; Beyermann, M.; Bienert, M. Hydrophobicity, hydrophobic moment and angle subtended by charged residues modulate antibacterial and haemolytic activity of amphipathic helical peptides. FEBS Lett. 1997, 403, 208–212. [Google Scholar] [CrossRef]
- Javadpour, M.M.; Juban, M.M.; Lo, W.C.J.; Bishop, S.M.; Alberty, J.B.; Cowell, S.M.; Becker, C.L.; McLaughlin, M.L. De novo antimicrobial peptides with low mammalian cell toxicity. J. Med. Chem. 1996, 39, 3107–3113. [Google Scholar] [CrossRef] [PubMed]
- Alves, I.D.; Carre, M.; Montero, M.P.; Castano, S.; Lecomte, S.; Marquant, R.; Lecorche, P.; Burlina, F.; Schatz, C.; Sagan, S.; et al. A proapoptotic peptide conjugated to penetratin selectively inhibits tumor cell growth. BBA-Biomembranes 2014, 1838, 2087–2098. [Google Scholar] [CrossRef] [PubMed]
- Smolarczyk, R.; Cichon, T.; Graja, K.; Hucz, J.; Sochanik, A.; Szala, S. Antitumor effect of RGD-4C-GG-D(KLAKLAK)2 peptide in mouse B16(F10) melanoma model. Acta Biochim. Pol. 2006, 53, 801–805. [Google Scholar] [PubMed]
- Mi, Z.B.; Mai, J.; Lu, X.L.; Robbins, P.D. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mol. Ther. 2000, 2, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Larrick, J.W.; Hirata, M.; Balint, R.F.; Lee, J.; Zhong, J.; Wright, S.C. Human cap18—A novel antimicrobial lipopolysaccharide-binding protein. Infect. Immun. 1995, 63, 1291–1297. [Google Scholar] [PubMed]
- Neundorf, I.; Rennert, R.; Hoyer, J. Fusion of a short HA2-derived peptide sequence to cell-penetrating peptides improves cytosolic uptake, but enhances cytotoxic activity. Pharmaceuticals 2009, 2, 49–65. [Google Scholar] [CrossRef]
- Foekens, J.A.; Kos, J.; Peters, H.A.; Krasovec, M.; Look, M.P.; Cimerman, N.; Meijer-van Gelder, M.E.; Henzen-Logmans, S.C.; van Putten, W.L.J.; Klijn, J.G.M. Prognostic significance of cathepsins B and L in primary human breast cancer. J. Clin. Oncol. 1998, 16, 1013–1021. [Google Scholar] [PubMed]
- Splith, K.; Hu, W.N.; Schatzschneider, U.; Gust, R.; Ott, I.; Onambele, L.A.; Prokop, A.; Neundorf, I. Protease-activatable organometal-peptide bioconjugates with enhanced cytotoxicity on cancer cells. Bioconjug. Chem. 2010, 21, 1288–1296. [Google Scholar] [CrossRef] [PubMed]
- Al-Rifai, A.A.; Ayoub, M.T.; Shakya, A.K.; Abu Safieh, K.; Mubarak, M.S. Synthesis, characterization, and antimicrobial activity of some new coumarin derivatives. Med. Chem. Res. 2012, 21, 468–476. [Google Scholar] [CrossRef]
- Tietze, A.A.; Bordusa, F.; Giernoth, R.; Imhof, D.; Lenzer, T.; Maass, A.; Mrestani-Klaus, C.; Neundorf, I.; Oum, K.; Reith, D.; et al. On the nature of interactions between ionic liquids and small amino-acid-based biomolecules. Chemphyschem 2013, 14, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Xhindoli, D.; Pacor, S.; Benincasa, M.; Scocchi, M.; Gennaro, R.; Tossi, A. The human cathelicidin LL-37 a pore-forming antibacterial peptide and host-cell modulator. BBA-Biomembranes 2016, 1858, 546–566. [Google Scholar] [CrossRef] [PubMed]
- Salomone, F.; Cardarelli, F.; Di Luca, M.; Boccardi, C.; Nifosi, R.; Bardi, G.; Di Bari, L.; Serresi, M.; Beltram, F. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape. J. Control. Release 2012, 163, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Luan, L.; Meng, Q.B.; Xu, L.; Meng, Z.; Yan, H.S.; Liu, K.L. Peptide amphiphiles with multifunctional fragments promoting cellular uptake and endosomal escape as efficient gene vectors. J. Mater. Chem. B 2015, 3, 1068–1078. [Google Scholar] [CrossRef]
Antimicrobial Peptide and Sequence | Conjugated Group | Coupling Method | Strains and Organisms Tested | Ref. |
---|---|---|---|---|
Apidaecin Ib | Porphyrin | Amide bond | Escherichia coli (ATCC 25922); P. aeruginosa (ATCC 25668); MRSA (ATCC BAA 44) | [55] |
GNNRPVYIPQPRPPHPRL | ||||
AKK-motif/LKK-motif | Fatty acids | Amide bond | E. coli (DH5α, ML-35); S. epidermidis (ATCC 12228) | [56] |
YGAA(KKAAKAA)2/YG(AKAKAAKA)2 | ||||
BP16 | Chlorambucil | Amide bond | 3T3; MCF-7; CAPAN-1 | [57] |
KKLFKKILKKL | ||||
Buforin IIb | Targeting peptide | Amide bond | FSF; HeLa; B16-F0; HT1080; U87MG | [58] |
RAGLQFPVG(RLLR)3 | ||||
Cecropin-melittin | Au particles | Thioether | S. aureus (ATCC 6538); E. coli (ATCC 25922); K. pneumoniae (ATCC 10031); P. aeruginosa (ATCC 15442); multidrug-resistant E. coli; S. haemolyticus HUVECs; NDHF | [59] |
KWKLFKKIGAVLKVL | ||||
Hecate FALALKALKKALKKLKKALKKAL | Chorionic gonadotropin-β | Amide bond | Murine Leydig tumor BLT-1 cells | [60] |
Gallic acid | Amide bond | HeLa; HaCat | [61] | |
Histatin-1 | [Ag(II)CHX] | Complex conjugate | A. calcoaceticus (ATCC 23055); C. freundii (ATCC 6750); K. pneumonia (ATCC 10031); P. aeruginosa (ATCC 27853); E. faecalis (ATCC 29212); S. aureus (ATCC 25923); S. epidermis (ATCC 12228); P. bacterium acnes (ATCC 6919) 3T3-L1 preadipocyte | [62] |
DSHEKRHHGYRRKFHEKHHSHREFPFYGDYGSNYLYDN | ||||
Histatin-5 | Spermidine | Amide bond | C. albicans (CAF4-2); C. glabrata (931010, 90032, 90030) | [63] |
DSHAKRHHGYKRKFHEKHHSHRGY | ||||
IDR-1010cys | Quartz slides | Thioether | P. aeruginosa | [64] |
IRWRIRVWVRRIC | ||||
Indolicin | Levofloxacin | Amide bond/ester linkage | E. coli (ATCC 11775); P. aeruginosa (ATCC 10145); S. aureus (ATCC 25923, ATCC 9144); B. subtilis (ATCC 6051, ATCC 6633) | [65] |
ILPWKWPWWPWRR | ||||
KLA, proapoptotic domain peptide (KLAKLAK)2 | Eosin Y | Amide bond | S. aureus (8325-4, ATCC 29213); S. pyogenes (12202); P. aeruginosa (PA01); E. coli (ATCC 25992; BL21 DE3) | [66,67] |
PTD-5 | Amide bond | MCA-205 murine fibrosarcoma line; human head and neck tumor clinical isolates (22B and 4129) | [68] | |
Octaarginine/PFVYLI | Amide bond | KG1a; HeLa | [69] | |
KSL7/KSL8 | PEG-PS resin | Amide bond | M. luteus (ATCC 9341); S. aureus (ATCC 6538); E. coli (ATCC 25922); P. aeruginosa (ATCC 9027) | [70] |
FKVKFKVKVK/ LKVVFKVLFK | ||||
KW3 | Dextran | CuAAC | MCF-7, PC-3, NIH/3T3, MES-SA, MES-SA/Dx5 | [71] |
KWKWKW | ||||
LL-37 | Imidazolium salt | Amide bond | B. subtilis (ATTC 6633); E. coli K12 (MG 1625); M. phlei (DSM 48214); MRSA; VRE | [72,73] |
LGDFFRSKEKIGKEFKRIVQRIKDFLRNLVPRTES | ||||
Magainin I | Ferrocene | Amide bond | E. coli K12; S. epidermidis; B. subtilis | [74] |
GIGKFLHSAGKFGKAFVGEIMKS | Silica particles | Sulfide bond | L. ivanovii | [75] |
Magainin II | Vancomycin | CuAAC | MRSA (15A761, 15A763); VSE (15A797); VRE (15A799); M. catarrhalis (58L028) | [76] |
GIGKFLHSAKKFGKAFVGEIMNS | Bombesin | Amide bond | MCF-7; ZR-75-30; A375; M14; A875; DU145; HeLa; A549; Raji; NB4; Vero E6; Hek-293A, HSF; HUVECs; hPBMCs | [77] |
Melittin | [(C5H5)Ru]+ | Complex | SKOV3, MDA-MB-231, CBA mice | [78] |
GIGAVLKVLTTGLPALIS | ||||
MP66 | Ferrocene | Amide bond | C. glutamicum (ATTC 13032) | [79] |
WRWRW | ||||
MP196 | Lipids | Amide bond | E. coli (DSM 30083); A. baumannii (DSM 30007); P. aeruginosa (DSM 50071); S. aureus (DSM 20231, ATCC 43300); B. subtilis (168 DSM 402) MCF-7; HT29; Fibroblast (GM5657) | [66,80] |
RWRWRW | ||||
Tat48-59 | Levofloxacin | Amide bond/ester linkage | E. coli (ATCC 11775); P. aeruginosa (ATCC 10145); S. aureus (ATCC 25923, ATCC 9144); B. subtilis (ATCC 6051, ATCC 6633) | [65] |
GRKKRRQRRRPQ | ||||
sC18 | Imidazolium salt | Amide bond | B. subtilis (ATTC 6633); E. coli K12 (MG 1625); M. phlei (DSM 48214); MRSA; VRE | [72,73] |
GLRKRLRKFRNKIKEK | ||||
(sC18)2 | Chlorambucil/KLA | Amide bond | HEK-293; MCF-7; HT-29 | [81] |
GLRK(GLRKRLRKFRNKIKEK)RLRKFRNKIKEK | ||||
SMAP28 | IgG | Thioether | P. gingivalis (381); A. actinomycetemcomitans (FDC-Y4); P. micros | [82] |
RGLRRLGRKIAHGVKKYGPTVLRIIRIA | ||||
Sushi I | Quantum dot/nanogold | Biotin/streptavidin | E. coli (ATCC 25922) | [83] |
GFKLKGMARISCLPNGQWSNFPPKCIRECAMVS | ||||
Ubiquicidin29-41 | Coumarin | CuAAC | MDA-MB-435; female athymic nude mice | [84] |
TGRAKRRMQYNRR | Hybrid label of Cy5 dye and DTPA chelator | Amide bond | S. aureus (ATCC 29213); S. epidermidis (ATCC 12228); K. pneumoniae (ATCC 43861); E. coli (ATCC 25922); B. subtilis (JH642) GE11-β3 Swiss mice | [85] |
Chloramphenicol | Amide bond | S. aureus; E. coli; P. aeruginosa; B. subtilis; L-02; HBL-100; HELF athymic nude mice; normal mice | [86] | |
YI13WF | Protoporphyrin IX | Thioether | E. coli DH5a (ATCC 53868); S. enterica (ATCC 14028); E. coli BL21 (AmprE. coli); K. pneumoniae (ATCC 700603); Jurkat T cells | [87] |
YVLWKRKRKFCFI | ||||
Other AMP like sequences | ||||
Dehydropeptide | Neomycin B | Amide bond | E. coli MG1655 (MTCC 1586); P. aeruginosa (MTCC 741); S. typhimurium (MTCC 98); B. subtilis (MTCC 121, MTCC 430); S. aureus (MTCC 740) | [88] |
Boc-FΔF-εAhx | ||||
Lysine based tetrapeptides | Biotin, vitamin E, cholesterol | Amide bond | 42 different bacterial and fungal strains (especially Aspergillus and Candida) | [89] |
WWK-motif | Neomycin B | Amide bond | S. aureus (ATCC 29213); MRSA (ATCC 33592); S. epidermidis (ATCC 14990); MRSE (CAN-ICU 61589); S. pneumoniae (ATCC 49619); E. coli (ATCC 25922; CAN-ICU 61714); P. aeruginosa (ATCC 27853; CAN-ICU 62308) | [90] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinhardt, A.; Neundorf, I. Design and Application of Antimicrobial Peptide Conjugates. Int. J. Mol. Sci. 2016, 17, 701. https://doi.org/10.3390/ijms17050701
Reinhardt A, Neundorf I. Design and Application of Antimicrobial Peptide Conjugates. International Journal of Molecular Sciences. 2016; 17(5):701. https://doi.org/10.3390/ijms17050701
Chicago/Turabian StyleReinhardt, Andre, and Ines Neundorf. 2016. "Design and Application of Antimicrobial Peptide Conjugates" International Journal of Molecular Sciences 17, no. 5: 701. https://doi.org/10.3390/ijms17050701
APA StyleReinhardt, A., & Neundorf, I. (2016). Design and Application of Antimicrobial Peptide Conjugates. International Journal of Molecular Sciences, 17(5), 701. https://doi.org/10.3390/ijms17050701