Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods
Abstract
:1. Introduction and Overview
2. Dispersion-Corrected Density Functional Theory (DFT-D) and Higher-Level Quantum Chemistry Investigations
2.1. Host/Guest and Other Model Systems
2.2. Local Wave Function Theory Methods
3. Dispersion and Hydrogen Bond-Corrected Semi-Empirical Quantum Mechanical (SQM-DH) Applications
3.1. Model Systems and Related Studies
3.2. Host/Guest Systems and Protein/Ligand Interactions
3.2.1. Host/Guest Systems
3.2.2. Protein/Ligand Interactions
4. Summary and Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Leach, A.R.; Shoichet, B.K.; Peishoff, C.E. Prediction of protein-ligand interactions. Docking and scoring: Successes and gaps. J. Med. Chem. 2006, 49, 5851–5855. [Google Scholar] [CrossRef] [PubMed]
- Klebe, G. Virtual ligand screening: Strategies, perspectives and limitations. Drug Discov. Today 2006, 11, 580–594. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L. Efficient Drug Lead Discovery and Optimization. Acc. Chem. Res. 2009, 42, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Gilson, M.K.; Zhou, H.-X. Calculation of protein-ligand binding affinities. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 21–42. [Google Scholar] [CrossRef] [PubMed]
- Gallicchio, E.; Levy, R.M. Recent Theoretical and Computational Advances for Modeling Protein–Ligand Binding Affinities. Adv. Protein Chem. Struct. Biol. 2011, 85, 27–80. [Google Scholar] [PubMed]
- Zhou, H.-X.; Gilson, M.K. Theory of Free Energy and Entropy in Noncovalent Binding. Chem. Rev. 2009, 109, 4092–4107. [Google Scholar] [CrossRef] [PubMed]
- Korth, M. A quantum chemical view of enthalpy–entropy compensation. Med. Chem. Commun. 2013, 4, 1025–1033. [Google Scholar] [CrossRef]
- Mobley, D.L. Let’s get honest about sampling. J. Comput. Aided Mol. Des. 2012, 26, 93–95. [Google Scholar] [CrossRef] [PubMed]
- Paton, R.S.; Goodman, J.M. Hydrogen Bonding and π-Stacking: How Reliable are Force Fields? A Critical Evaluation of Force Field Descriptions of Nonbonded Interactions. J. Chem. Inf. Model. 2009, 49, 944–955. [Google Scholar] [CrossRef]
- Yilmazer, N.D.; Heitel, P.; Schwabe, T.; Korth, M. Benchmark of electronic structure methods for protein–ligand interactions based on high-level reference data. J. Theor. Comput. Chem. 2015, 14, 1540001. [Google Scholar] [CrossRef]
- Liu, L.; Guo, Q.X. Isokinetic relationship, isoequilibrium relationship, and enthalpy–entropy compensation. Chem. Rev. 2001, 101, 673–695. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Supramolecular Binding Thermodynamics by Dispersion-Corrected Density Functional Theory. Chem. A Eur. J. 2012, 18, 9955–9964. [Google Scholar] [CrossRef] [PubMed]
- Muddana, H.S.; Gilson, M.K. Calculation of Host-Guest Binding Affinities Using a Quantum-Mechanical Energy Model. J. Chem. Theory Comput. 2012, 8, 2023–2033. [Google Scholar] [CrossRef] [PubMed]
- Merz, K.M. Using Quantum Mechanical Approaches to Study Biological Systems. Acc. Chem. Res. 2014, 47, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Klimovich, P.V.; Shirts, M.R.; Mobley, D.L. Guidelines for the analysis of free energy calculations. J. Comput. Aided Mol. Des. 2015, 29, 397–411. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Ucisik, M.N.; Merz, K.M. The Movable Type Method Applied to Protein–Ligand Binding. J. Chem. Theory Comput. 2013, 9, 5526–5538. [Google Scholar] [CrossRef] [PubMed]
- Klamt, A. The COSMO and COSMO–RS solvation models. WIREs Comput. Mol. Sci. 2011, 1, 699–709. [Google Scholar] [CrossRef]
- Moghaddam, S.; Inoue, Y.; Gilson, M.K. Host–Guest Complexes with Protein–Ligand-Like Affinities: Computational Analysis and Design. J. Am. Chem. Soc. 2009, 131, 4012–4021. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.H. Predicting accurate absolute binding energies in aqueous solution: Thermodynamic considerations for electronic structure methods. Phys. Chem. Chem. Phys. 2015, 17, 12441–12451. [Google Scholar] [CrossRef] [PubMed]
- Hobza, P. Calculations on Noncovalent Interactions and Databases of Benchmark Interaction Energies. Acc. Chem. Res. 2012, 45, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Density functional theory with London dispersion correction. WIREs Comput. Mol. Sci. 2011, 1, 211–228. [Google Scholar] [CrossRef]
- Korth, M. Error estimates for (semi-)empirical dispersion terms and large biomacromolecules. Org. Biomol. Chem. 2013, 11, 6515–6519. [Google Scholar] [CrossRef] [PubMed]
- Korth, M. Empirical Hydrogen-Bond Potential Functions—An Old Hat Reconditioned. Chem. Phys. Chem. 2011, 12, 3131–3142. [Google Scholar] [CrossRef] [PubMed]
- Yilmazer, N.D.; Korth, M. Enhanced semiempirical QM methods for biomolecular interactions. Comp. Struct. Biotech. J. 2015, 13, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Raha, K.; Merz, K.M. Large-Scale Validation of a Quantum Mechanics Based Scoring Function: Predicting the Binding Affinity and the Binding Mode of a Diverse Set of Protein–Ligand Complexes. J. Med. Chem. 2005, 48, 4558–4575. [Google Scholar] [CrossRef] [PubMed]
- Risthaus, T.; Grimme, S. Benchmarking of London Dispersion-Accounting Density Functional Theory Methods on Very Large Molecular Complexes. J. Chem. Theory Comput. 2013, 9, 1580–1591. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.; Grimme, S.; Liakos, D.G.; Neese, F. Protein–Ligand Interaction Energies with Dispersion Corrected Density Functional Theory and High-Level Wave Function Based Methods. J. Phys. Chem. A 2011, 115, 11210–11220. [Google Scholar] [CrossRef] [PubMed]
- Antony, J.; Grimme, S. Fully ab initio Protein–Ligand Interaction Energies with Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2012, 33, 1730–1739. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhu, T.; Wang, X.; Liu, J.; Zhang, J.Z.H. Fragment Quantum Mechanical Calculation of Proteins and Its Applications. Acc. Chem. Res. 2014, 47, 2748–2757. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Wang, X.; Liu, J.; Zhang, J.Z.H.; Mei, Y.; He, X. An Improved Fragment-Based Quantum Mechanical Method for Calculation of Electrostatic Solvation Energy of Proteins. J. Chem. Phys. 2013, 139, 214104. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, X.; Zhang, J.Z.H.; He, X. Calculation of Protein–Ligand Binding Affinities Based on a Fragment Quantum Mechanical Method. RSC Adv. 2015, 5, 107020–107030. [Google Scholar] [CrossRef]
- Antony, J.; Sure, R.; Grimme, S. Using dispersion-corrected density functional theory to understand supramolecular binding thermodynamics. Chem. Commun. 2015, 51, 1764–1774. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.J.; Pittock, C.; Fox, T.; Tautermann, C.S.; Malcolm, N.; Skylaris, C.-K. Electrostatic embedding in large-scale first principles quantum mechanical calculations on biomolecules. J. Chem. Phys. 2011, 135, 224107. [Google Scholar] [CrossRef] [PubMed]
- Cole, D.J.; Rajendra, E.; Roberts-Thomson, M.; Hardwick, B.; McKenzie, G.J.; Payne, M.C.; Venkitaraman, A.R.; Skylaris, C.K. Interrogation of the Protein–Protein Interactions between Human BRCA2 BRC Repeats and RAD51 Reveals Atomistic Determinants of Affinity. PLoS Comput. Biol. 2011, 7, e1002096. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Wallnoefer, H.G.; Fox, T.; Tautermann, C.S.; Skylaris, C.K. First Principles-Based Calculations of Free Energy of Binding: Application to Ligand Binding in a Self-Assembling Superstructure. J. Chem. Theory Comput. 2011, 7, 1102–1108. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.J.; Dziedzic, J.; Fox, T.; Tautermann, C.S.; Skylaris, C.K. Density functional theory calculations on entire proteins for free energies of binding: Application to a model polar binding site. Proteins Struct. Funct. Bioinf. 2014, 82, 3335–3346. [Google Scholar] [CrossRef]
- Simova, L.; Rezac, J.; Hobza, P. Convergence of the Interaction Energies in Noncovalent Complexes in the Coupled-Cluster Methods Up to Full Configuration Interaction. J. Chem. Theory Comput. 2013, 9, 3420–3428. [Google Scholar] [CrossRef] [PubMed]
- Kolar, M.; Fanfrlik, J.; Hobza, P. Ligand Conformational and Solvation/Desolvation Free Energy in Protein–Ligand Complex Formation. J. Phys. Chem. B 2011, 115, 4718–4724. [Google Scholar]
- Kolar, M.; Fanfrlik, J.; Lepsik, M.; Forti, F.; Luque, F.J.; Hobza, P. Assessing the Accuracy and Performance of Implicit Solvent Models for Drug Molecules: Conformational Ensemble Approaches. J. Phys. Chem. B 2013, 117, 5950–5962. [Google Scholar] [CrossRef]
- Söderhjelm, P.; Kongsted, J.; Ryde, U. Ligand Affinities Estimated by Quantum Chemical Calculations. J. Chem. Theory Comput. 2010, 6, 1726–1737. [Google Scholar] [CrossRef] [PubMed]
- Mikulskis, P.; Cioloboc, D.; Andrejic, M.; Khare, S.; Brorsson, J.; Genheden, S.; Mata, R.A.; Söderhjelm, P.; Ryde, U. Free-energy perturbation and quantum mechanical study of SAMPL4 octa-acid host–guest binding energies. J. Comput. Aided Mol. Des. 2014, 28, 375–400. [Google Scholar] [CrossRef] [PubMed]
- Andrejic, M.; Ryde, U.; Mata, R.A.; Söderhjelm, P. Coupled-Cluster Interaction Energies for 200-Atom Hos–Guest Systems. ChemPhysChem 2014, 15, 3270–3281. [Google Scholar] [CrossRef] [PubMed]
- Rao, L.; Zhang, I.Y.; Guo, W.; Feng, L.; Meggers, E.; Xu, X. Nonfitting protein-ligand interaction scoring function based on first-principles theoretical chemistry methods: Development and application on kinase inhibitors. J. Comput. Chem. 2013, 34, 1636–1646. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, D.; Tehan, B.; Gleeson, M.P.; Limtrakul, J. Evaluating the enthalpic contribution to ligand binding using QM calculations: Effect of methodology on geometries and interaction energies. Org. Biomol. Chem. 2013, 10, 7053–7061. [Google Scholar] [CrossRef] [PubMed]
- Kantardjiev, A.A. Quantum.Ligand.Dock: Protein–ligand docking with quantum entanglement refinement on a GPU system. Nucleic Acids Res. 2012, 40, W415–W422. [Google Scholar] [CrossRef] [PubMed]
- Bryce, R.A. Physics-based scoring of protein-ligand interactions: Explicit polarizability, quantum mechanics and free energies. Future Med. Chem. 2011, 3, 683–698. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, M.P.; Hannongbua, S.; Gleeson, D. QM methods in structure based design: Utility in probing protein–ligand interactions. J. Mol. Graph. Model. 2010, 29, 507–517. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Caflisch, A. High-Throughput Virtual Screening Using Quantum Mechanical Probes: Discovery of Selective Kinase Inhibitors. Chem. Med. Chem. 2010, 5, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gibbs, A.C.; Reynolds, C.H.; Peters, M.B.; Westerhoff, L.M. Quantum Mechanical Pairwise Decomposition Analysis of Protein Kinase B Inhibitors: Validating a New Tool for Guiding Drug Design. J. Chem. Inf. Model. 2010, 50, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Fu, Z.; Merz, K.M. QM/MM refinement and analysis of protein bound retinoic acid. J. Comput. Chem. 2012, 33, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Li, X.; Miao, Y.; Merz, K.M. Conformational Analysis and Parallel QM/MM X-ray Refinement of Protein Bound Anti-Alzheimer Drug Donepezil. J. Chem. Theory Comput. 2013, 9, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Temelso, B.; Alser, K.A.; Gauthier, A.; Palmer, A.K.; Shields, G.C. Structural Analysis of α-Fetoprotein (AFP)-like Peptides with Anti-Breast-Cancer Properties. J. Phys. Chem. B 2014, 118, 4514–4526. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, X.; Wang, B.; Merz, K., Jr. Conformational Variability of Benzamidinium-Based Inhibitors. J. Am. Chem. Soc. 2009, 131, 7742–7754. [Google Scholar] [CrossRef] [PubMed]
- Christensen, A.S.; Linnet, T.E.; Borg, M.; Boomsma, W.; Lindorff-Larsen, K.; Hamelryck, T.; Jensen, J.H. Protein Structure Validation and Refinement Using Amide Proton Chemical Shifts Derived from Quantum Mechanics. PLoS ONE 2013, 8, e84123. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zhang, J.Z.H.; He, X. Correction of Erroneously Packed Protein’s Side Chains in the NMR Structure Based on Ab Initio Chemical Shift Calculations. Phys. Chem. Chem. Phys. 2014, 16, 18163–18169. [Google Scholar] [CrossRef] [PubMed]
- Sparta, M.; Neese, F. Chemical applications carried out by local pair natural orbital based coupled-cluster methods. Chem. Soc. Rev. 2014, 43, 5032–5041. [Google Scholar] [CrossRef] [PubMed]
- Neese, F.; Hansen, A.; Liakos, D.G. Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 2009, 131, 064103. [Google Scholar]
- Neese, F.; Wennmohs, F.; Hansen, A. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method. J. Chem. Phys. 2009, 130, 114108. [Google Scholar] [CrossRef] [PubMed]
- Liakos, D.G.; Sparta, M.; Kesharwani, M.K.; Martin, J.M.L.; Neese, F. Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory. J. Chem. Theory Comput. 2015, 11, 1525–1539. [Google Scholar] [CrossRef] [PubMed]
- Liakos, D.G.; Neese, F. Domain Based Pair Natural Orbital Coupled Cluster Studies on Linear and Folded Alkane Chains. J. Chem. Theory Comput. 2015, 11, 2137–2143. [Google Scholar] [CrossRef] [PubMed]
- Liakos, D.G.; Neese, F. Is It Possible to Obtain Coupled Cluster Quality Energies at near Density Functional Theory Cost? Domain-Based Local Pair Natural Orbital Coupled Cluster vs Modern Density Functional Theory. J. Chem. Theory Comput. 2015, 11, 4054–4063. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.E.; Sohlberg, K. Computational Investigation of the Role of Counterions and Reorganization Energy in a Switchable Bistable [2]Rotaxane. J. Phys. Chem. A 2011, 115, 7773–7777. [Google Scholar] [CrossRef] [PubMed]
- Fanfrlik, J.; Brahmkshatriya, P.S.; Rezac, J.; Jilkova, A.; Horn, M.; Mares, M.; Hobza, P.; Lepsik, M. Quantum Mechanics-Based Scoring Rationalizes the Irreversible Inactivation of Parasitic Schistosoma mansoni Cysteine Peptidase by Vinyl Sulfone Inhibitors. J. Phys. Chem. B 2013, 117, 14973–14982. [Google Scholar] [PubMed]
- Gordeev, E.G.; Polynski, M.V.; Ananikov, V.P. Fast and accurate computational modeling of adsorption on graphene: A dispersion interaction challenge. Phys. Chem. Chem. Phys. 2013, 15, 18815–18821. [Google Scholar] [CrossRef] [PubMed]
- Margiotta, N.; Marzano, C.; Gandin, V.; Osella, D.; Ravera, M.; Gabano, E.; Platts, J.A.; Petruzzella, E.; Hoeschele, J.D.; Natile, G. Revisiting [PtCl2(cis-1,4-DACH)]: An Underestimated Antitumor Drug with Potential Application to the Treatment of Oxaliplatin-Refractory Colorectal Cancer. J. Med. Chem. 2012, 55, 7182–7192. [Google Scholar] [CrossRef] [PubMed]
- Molla, M.R.; Gehrig, D.; Roy, L.; Kamm, V.; Paul, A.; Laquai, F.; Ghosh, S. Self-Assembly of Carboxylic Acid Appended Naphthalene Diimide Derivatives with Tunable Luminescent Color and Electrical Conductivity. Chem. Eur. J. 2014, 20, 760–771. [Google Scholar] [CrossRef] [PubMed]
- Raju, R.K.; Hillier, I.H.; Burton, N.A.; Vincent, M.A.; Doudou, S.; Bryce, R.A. The effects of perfluorination on carbohydrate-pi interactions: Computational studies of the interaction of benzene and hexafluorobenzene with fucose and cyclodextrin. Phys. Chem. Chem. Phys. 2010, 12, 7959–7967. [Google Scholar] [CrossRef] [PubMed]
- Ramraj, A.; Hillier, I.H.; Vincent, M.A.; Burton, N.A. Assessment of approximate quantum chemical methods for calculating the interaction energy of nucleic acid bases with graphene and carbon nanotubes. Chem. Phys. Lett. 2010, 484, 295–298. [Google Scholar] [CrossRef]
- Ramraj, A.; Raju, R.K.; Wang, Q.; Hillier, I.H.; Bryce, R.A.; Vincent, M.A. An evaluation of the GLYCAM06 and MM3 force fields, and the PM3-D* molecular orbital method for modelling prototype carbohydrate–aromatic interactions. J. Mol. Graph. Model. 2010, 29, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; McNamara, J.P.; Raju, R.K.; Vincent, M.A.; Hillier, I.H.; Morgado, C.A. The interaction of carbohydrates and amino acids with aromatic systems studied by density functional and semi-empirical molecular orbital calculations with dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 2767–2774. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.A.; Hillier, I.H. Accurate Prediction of Adsorption Energies on Graphene, Using a Dispersion-Corrected Semiempirical Method Including Solvation. J. Chem. Inf. Model. 2014, 54, 2255–2260. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Suzuki, K.; Nagashima, U.; Tachikawa, M.; Yan, S. Geometric isotope effects on small chloride ion water clusters with path integral molecular dynamics simulations. Chem. Phys. 2013, 426, 38–47. [Google Scholar] [CrossRef]
- Wang, Q.; Suzuki, K.; Nagashima, U.; Tachikawa, M.; Yan, S. Path integral molecular dynamic study of nuclear quantum effect on small chloride water clusters of Cl−(H2O)1–4. Chem. Phys. 2013, 419, 229–236. [Google Scholar] [CrossRef]
- Pietrusiewicz, K.M.; Flis, A.; Ujj, V.; Koertvelyesi, T.; Drahos, L.; Pongracz, P.; Kollar, L.; Keglevich, G. Synthesis and Use of Borane and Platinum(II) Complexes of 3-Diphenylphosphino-1-phenylphospholane (LuPhos). Heteroatom Chem. 2011, 22, 730–736. [Google Scholar] [CrossRef]
- Lupan, A.; Kun, A.-Z.; Carrascoza, F.; Silaghi-Dumitrescu, R. Performance comparison of computational methods for modeling α-helical structures. J. Mol. Model. 2013, 19, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Sedlak, R.; Janowski, T.; Pitonak, M.; Rezac, J.; Pulay, P.; Hobza, P. Accuracy of Quantum Chemical Methods for Large Noncovalent Complexes. J. Chem. Theory Comput. 2013, 9, 3364–3374. [Google Scholar] [CrossRef] [PubMed]
- Prenosil, O.; Pitonak, M.; Sedlak, R.; Kabelac, M.; Hobza, P. H-Bonding Cooperativity Effects in Amyloids: Quantum Mechanical and Molecular Mechanics Study. Z. Phys. Chem. 2011, 225, 553–574. [Google Scholar] [CrossRef]
- Rezac, J.; Riley, K.E.; Hobza, P. Benchmark Calculations of Noncovalent Interactions of Halogenated Molecules. J. Chem. Theory Comput. 2012, 8, 4285–4292. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Muddana, H.S.; Gilson, M.K. Quantum Mechanical Calculation of Noncovalent Interactions: A Large-Scale Evaluation of PMx, DFT, and SAPT Approaches. J. Chem. Theory Comput. 2014, 10, 1563–1575. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.E.; Sohlberg, K. A New Empirical Correction to the AM1 Method for Macromolecular Complexes. J. Chem. Theory Comput. 2010, 6, 2153–2166. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.E.; Sohlberg, K. Self-consistent addition of an atomic charge dependent hydrogen-bonding correction function. Comp. Theor. Chem. 2012, 984, 9–12. [Google Scholar] [CrossRef]
- Korth, M.; Pitonak, M.; Rezac, J.; Hobza, P. A Transferable H-Bonding Correction for Semiempirical Quantum-Chemical Methods. J. Chem. Theory Comput. 2010, 6, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Korth, M. Third-Generation Hydrogen-Bonding Corrections for Semiempirical QM Methods and Force Fields. J. Chem. Theory Comput. 2010, 6, 3808–3816. [Google Scholar] [CrossRef]
- Rezac, J.; Hobza, P. Advanced Corrections of Hydrogen Bonding and Dispersion for Semiempirical Quantum Mechanical Methods. J. Chem. Theory Comput. 2012, 8, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Kromann, J.C.; Christensen, A.S.; Steinmann, C.; Korth, M.; Jensen, J.H. A third-generation dispersion and third-generation hydrogen bonding corrected PM6 method: PM6-D3H+. PeerJ 2014, 2, e449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila-Salas, F.; Sandoval, C.; Caballero, J.; Guinez-Molinos, S.; Santos, L.S.; Cachau, R.E.; Gonzalez-Nilo, F.D. Study of Interaction Energies between the PAMAM Dendrimer and Nonsteroidal Anti-Inflammatory Drug Using a Distributed Computational Strategy and Experimental Analysis by ESI-MS/MS. J. Phys. Chem. B 2012, 116, 2031–2039. [Google Scholar] [CrossRef] [PubMed]
- Borbulevych, O.Y.; Plumley, J.A.; Martin, R.I.; Merz, Jr.K.M.; Westerhoff, L.M. Accurate macromolecular crystallographic refinement: Incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 1233–1247. [Google Scholar] [CrossRef] [PubMed]
- Muddana, H.S.; Sapra, N.V.; Fenley, A.T.; Gilson, M.K. The electrostatic response of water to neutral polar solutes: Implications for continuum solvent modeling. J. Chem. Phys. 2013, 138, 224504. [Google Scholar] [CrossRef] [PubMed]
- CarvalhoMaia, J.D.; Urquiza Carvalho, G.A.; Mangueira, C.P., Jr.; Santana, S.R.; Formiga Cabral, L.A.; Rocha, G.B. GPU Linear Algebra Libraries and GPGPU Programming for Accelerating MOPAC Semiempirical Quantum Chemistry Calculations. J. Chem. Theory Comput. 2012, 8, 3072–3081. [Google Scholar]
- Brandon, C.J.; Martin, B.P.; McGee, K.J.; Stewart, J.J.P.; Braun-Sand, S.B. An approach to creating a more realistic working model from a protein data bank entry. J. Mol. Model. 2015, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Conti, S.; Ceccini, M. Accurate and Efficient Calculation of the Desorption Energy of Small Molecules from Graphene. J. Phys. Chem. C 2015, 119, 1867–1879. [Google Scholar] [CrossRef]
- Korth, M. Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: Evaluation of electronic structure theory methods. Phys. Chem. Chem. Phys. 2014, 16, 7919–7926. [Google Scholar] [CrossRef] [PubMed]
- Husch, T.; Yilmazer, N.D.; Balducci, A.; Korth, M. Large-scale virtual high-throughput screening for the identification of new battery electrolyte solvents: Computing infrastructure and collective properties. Phys. Chem. Chem. Phys. 2015, 17, 3394–3401. [Google Scholar] [CrossRef] [PubMed]
- Husch, T.; Korth, M. How to estimate solid-electrolyte-interphase features when screening electrolyte materials. Phys. Chem. Chem. Phys. 2015, 17, 22799–22808. [Google Scholar] [CrossRef] [PubMed]
- Husch, T.; Korth, M. Charting the known chemical space for non-aqueous Lithium-air battery electrolyte solvents. Phys. Chem. Chem. Phys. 2015, 17, 22596–22603. [Google Scholar] [CrossRef] [PubMed]
- Kubota, D.; Lopes Macedo, O.F.; Santana Andrade, G.R.; Conegero, L.S.; Almeida, L.E.; Costa, N.B., Jr.; Gimenez, I.F. Structural and theoretical-experimental physicochemical study of trimethoprim/randomly methylated-β-cyclodextrin binary system. Carbohydr. Res. 2011, 346, 2746–2751. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, L.; Suisse, I.; Roussel, P.; Agbossou-Niedercorn, F. Inclusion of tetrabutylammonium cations in a chiral thiazolium/triflate network: Solid state and solution structural investigation. J. Mol. Struct. 2012, 1010, 152–157. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, X.; Zhang, Y.; Luo, B. Theoretical Study on Interactions of β-cyclodextrin with Trans-dichloro(dipyridine) platinum(II). Comp. Theor. Chem. 2011, 967, 213–218. [Google Scholar] [CrossRef]
- Gavvala, K.; Sengupta, A.; Hazra, P. Modulation of Photophysics and pKa Shift of the Anti-cancer Drug Camptothecin in the Nanocavities of Supramolecular Hosts. ChemPhysChem 2013, 14, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Yilmazer, N.D.; Korth, M. Comparison of Molecular Mechanics, Semi-Empirical Quantum Mechanical, and Density Functional Theory Methods for Scoring Protein-Ligand Interactions. J. Phys. Chem. B 2013, 117, 8075–8084. [Google Scholar] [CrossRef] [PubMed]
- Fanfrlik, J.; Bronowska, A.K.; Rezac, J.; Prenosil, O.; Konvalinka, J.; Hobza, P. A Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands. J. Phys. Chem. B 2010, 114, 12666–12678. [Google Scholar] [CrossRef] [PubMed]
- Dobes, P.; Fanfrlik, J.; Rezac, J.; Otyepka, M.; Hobza, P. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. J. Comput. Aided Mol. Des. 2011, 25, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Jilkova, A.; Rezacova, P.; Lepsik, M.; Horn, M.; Vachova, J.; Fanfrlik, J.; Brynda, J.; McKerrow, J.H.; Caffrey, C.R.; Mares, M. Structural Basis for Inhibition of Cathepsin B Drug Target from the Human Blood Fluke, Schistosoma mansoni. J. Biol. Chem. 2011, 286, 35770–35781. [Google Scholar] [CrossRef] [PubMed]
- Vorlova, B.; Nachtigallova, D.; Jiraskova-Vanickova, J.; Ajani, H.; Jansa, P.; Rezac, J.; Fanfrlik, J.; Otyepka, M.; Hobza, P.; Konvalinka, J.; et al. Malonate-based inhibitors of mammalian serine racemase: Kinetic characterization and structure-based computational study. Eur. J. Med. Chem. 2015, 89, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Sulimov, V.B.; Katkova, E.V.; Oferkin, I.V.; Sulimov, A.V.; Romanov, A.N.; Roschin, A.I.; Beloglazova, I.B.; Plekhanova, O.S.; Tkachuk, V.A.; Sadovnichiy, V.A. Application of Molecular Modeling to Urokinase Inhibitors Development. BioMed Res. Int. 2014, 2014, 625176. [Google Scholar] [CrossRef] [PubMed]
- Stigliani, J.-L.; Bernardes-Genisson, V.; Bernadou, J.; Pratviel, G. Cross-docking study on InhA inhibitors: A combination of Autodock Vina and PM6-DH2 simulations to retrieve bio-active conformations. Org. Biomol. Chem. 2012, 10, 6341–6349. [Google Scholar] [CrossRef] [PubMed]
- Ucisik, M.N.; Zheng, Z.; Faver, J.C.; Merz, K.M. Bringing Clarity to the Prediction of Protein–Ligand Binding Free Energies via “Blurring”. J. Chem. Theory Comput. 2014, 10, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Kamel, K.; Kolinski, A. Computational study of binding of epothilone A to β-tubulin. Acta Biochim. Pol. 2011, 58, 255–260. [Google Scholar] [PubMed]
- Kamel, K.; Kolinski, A. Assessment of the free binding energy of 1,25-dihydroxyvitamin D-3 and its analogs with the human VDR receptor model. Acta Biochim. Pol. 2012, 59, 653–660. [Google Scholar] [PubMed]
- Ahmed, M.; Sadek, M.M.; Abouzid, K.A.; Wang, F. In silico design: Extended molecular dynamic simulations of a new series of dually acting inhibitors against EGFR and HER2. J. Mol. Graph. Model. 2013, 44, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Fong, P.; McNamara, J.P.; Hillier, I.H.; Bryce, R.A. Assessment of QM/MM Scoring Functions for Molecular Docking to HIV-1 Protease. J. Chem. Inf. Model. 2009, 49, 913–924. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.-L.; Liu, W.; Liu, J.-Y. Mechanism of the Glycosylation Step Catalyzed by Human α-Galactosidase: A QM/MM Metadynamics Study. J. Phys. Chem. B 2013, 117, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Fanfrlik, J.; Kolar, M.; Kamlar, M.; Hurny, D.; Ruiz, F.X.; Cousido-Siah, A.; Mitschler, A.; Rezac, J.; Munusamy, E.; Lepsik, M.; et al. Modulation of Aldose Reductase Inhibition by Halogen Bond Tuning. ACS Chem. Biol. 2013, 8, 2484–2492. [Google Scholar] [CrossRef] [PubMed]
- Sure, R.; Grimme, S. Corrected small basis set Hartree-Fock method for large systems. J. Comput. Chem. 2013, 34, 1672–1685. [Google Scholar] [CrossRef] [PubMed]
- OPENMOPAC. Available online: http://www.openmopac.net (accessed on 13 January 2015).
- Hydrogen-bond-correction-f3. Available online: https://github.com/jensengroup/hydrogen-bond-correction-f3 (accessed on 13 January 2015).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yilmazer, N.D.; Korth, M. Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods. Int. J. Mol. Sci. 2016, 17, 742. https://doi.org/10.3390/ijms17050742
Yilmazer ND, Korth M. Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods. International Journal of Molecular Sciences. 2016; 17(5):742. https://doi.org/10.3390/ijms17050742
Chicago/Turabian StyleYilmazer, Nusret Duygu, and Martin Korth. 2016. "Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods" International Journal of Molecular Sciences 17, no. 5: 742. https://doi.org/10.3390/ijms17050742
APA StyleYilmazer, N. D., & Korth, M. (2016). Recent Progress in Treating Protein–Ligand Interactions with Quantum-Mechanical Methods. International Journal of Molecular Sciences, 17(5), 742. https://doi.org/10.3390/ijms17050742