Rheumatoid Arthritis: The Stride from Research to Clinical Practice
Abstract
:1. Introduction
2. Clinical Classification of Rheumatoid Arthritis (RA) Patients
3. Genes and RA
3.1. Human Leukocyte Antigen (HLA) Susceptibility Genes
3.2. Non-HLA Susceptibility Genes
4. Functional Role of Non-HLA Genetic Variations
5. RA Protective Genes
6. MicroRNAs in Rheumatoid Arthritis
7. Personalized Treatment for RA
8. Conclusions
Acknowledgments
Conflicts of Interest
References
- Alamanos, Y.; Drosos, A.A. Epidemiology of adult rheumatoid arthritis. Autoimmun. Rev. 2005, 4, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Ahlmen, M.; Svensson, B.; Albertsson, K.; Forslind, K.; Hafstrom, I. Influence of gender on assessments of disease activity and function in early rheumatoid arthritis in relation to radiographic joint damage. Ann. Rheum. Dis. 2010, 69, 230–233. [Google Scholar] [CrossRef] [PubMed]
- Areskoug-Josefsson, K.; Oberg, U. A literature review of the sexual health of women with rheumatoid arthritis. Musculoskel. Care 2009, 7, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Breedveld, F.C.; Burmester, G.R.; Bykerk, V.; Dougados, M.; Emery, P.; Kvien, T.K.; Navarro-Compán, M.V.; Oliver, S.; Schoels, M.; et al. Treating rheumatoid arthritis to target: 2014 update of the recommendations of an international task force. Ann. Rheum. Dis. 2015. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Landewe, R.; Breedveld, F.C.; Dougados, M.; Emery, P.; Gaujoux-Viala, C.; Gorter, S.; Knevel, R.; Nam, J.; Schoels, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 2010, 69, 964–975. [Google Scholar] [CrossRef] [PubMed]
- Barton, A.; Worthington, J. Genetic susceptibility to rheumatoid arthritis: An emerging picture. Arthritis Rheumatol. 2009, 61, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Sparks, A.J.; Chen, C.Y.; Hiraki, L.T.; Malspeis, S.; Costenbader, K.H.; Karlson, E.W. Contributions of familial rheumatoid arthritis or lupus and environmental factors to risk of rheumatoid arthritis in women: A prospective cohort study. Arthritis Care Res. 2015, 66, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Li, X.; Sundquist, J.; Sundquist, K. Familial associations of rheumatoid arthritis with autoimmune diseases and related conditions. Arthritis Rheumatol. 2009, 60, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Van Gaalen, F.A.; Linn-Rasker, S.P.; van Venrooij, W.J.; de Jong, B.A.; Breedveld, F.C.; Verweij, C.L.; Toes, R.E.M.; Huizinga, T.W.J. Autoantibodies to cyclic citrullinated peptides predict progression to rheumatoid arthritis in patients with undifferentiated arthritis: A prospective cohort study. Arthritis Rheumatol. 2004, 50, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Van der Woude, D.; Houwing-Duistermaat, J.J.; Toes, R.E.; Huizinga, T.W.; Thomson, W.; Worthington, J.; van der Helm-van Mil, A.H.M.; de Vries, R.R. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheumatol. 2009, 60, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; van de Stadt, L.A.; Levarht, E.W.; Huizinga, T.W.; Hamann, D.; van Schaardenburg, D.; Toes, R.E.; Trouw, L.A. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann. Rheum. Dis. 2014, 73, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Bax, M.; van Heemst, J.; Huizinga, T.W.; Toes, R.E. Genetics of rheumatoid arthritis: What have we learned. Immunogenetics 2011, 63, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Huizinga, T.W.; Amos, C.I.; van der Helm-van Mil, A.H.; Chen, W.; van Gaalen, F.A.; Jawaheer, D.; Schreuder, G.M.; Wener, M.; Breedveld, F.C.; Ahmad, N.; et al. Refining the complex rheumatoid arthritis phenotype based on specificity of the HLA-DRB1 shared epitope for antibodies to citrullinated proteins. Arthritis Rheumatol. 2005, 52, 3433–3438. [Google Scholar] [CrossRef] [PubMed]
- Viatte, S.; Plant, D.; Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 2013, 9, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Karlson, E.W.; Chibnik, L.B.; Kraft, P.; Cui, J.; Keenan, B.T.; Ding, B.; Raychaudhuri, S.; Klareskog, L.; Alfredsson, L.; Plenge, R.M. Cumulative association of 22 genetic variants with seropositive rheumatoid arthritis risk. Ann. Rheum. Dis. 2010, 69, 1077–1085. [Google Scholar] [CrossRef] [PubMed]
- Sigurdsson, S.; Padyukov, L.; Kurreeman, F.A.; Liljedahl, U.; Wiman, A.C.; Alfredsson, L.; Toes, R.; Rönnelid, J.; Klareskog, L.; Huizinga, T.W.; et al. Association of a haplotype in the promoter region of the interferon regulatory factor 5 gene with rheumatoid arthritis. Arthritis Rheumatol. 2007, 56, 2202–2210. [Google Scholar] [CrossRef] [PubMed]
- D’Amato, M.; Zucchelli, M.; Seddighzadeh, M.; Anedda, F.; Lindblad, S.; Kere, J.; Alfredsson, L.; Klareskog, L.; Padyukov, L. Analysis of neuropeptide S receptor gene (NPSR1) polymorphism in rheumatoid arthritis. PLoS ONE 2010, 5, e9315. [Google Scholar] [CrossRef] [PubMed]
- Majorczyk, E.; Pawlik, A.; Kuśnierczyk, P. PTPN22 1858C>T polymorphism is strongly associated with rheumatoid arthritis but not with a response to methotrexate therapy. Int. Immunopharmacol. 2010, 10, 1626–1629. [Google Scholar] [CrossRef] [PubMed]
- Lamas, J.S.; Rodríguez-Rodríguez, L.; Varadé, J.; López-Romero, P.; Tornero-Esteban, P.; Abasolo, L.; Urcelay, E.; Fernández-Gutiérrez, B. Influence of IL6R rs8192284 polymorphism status in disease activity in rheumatoid arthritis. J. Rheumatol. 2010, 37, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Stahl, E.A.; Raychaudhuri, S.; Remmers, E.F.; Xie, G.; Eyre, S.; Thomson, B.P.; Li, Y.; Kurreeman, F.A.; Zhernakova, A.; Hinks, A.; et al. Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat. Genet. 2010, 42, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Kochi, Y.; Okada, Y.; Suzuki, A.; Ikari, K.; Terao, C.; Takahashi, A.; Yamazaki, K.; Hosono, N.; Myouzen, K.; Tsunoda, T.; et al. A regulatory variant in CCR6 is associated with rheumatoid arthritis susceptibility. Nat. Genet. 2010, 42, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Scherer, H.U.; van der Linden, M.P.M.; Kurreeman, F.A.S.; Stoeken-Rijsbergen, G.; le Cessie, S.; Huizinga, T.W.; van der Helm, A.H.; Toes, R.E. Concise report: Association of the 6q23 region with the rate of joint destruction in rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Eyre, S.; Bowes, J.; Diogo, D.; Lee, A.; Barton, A.; Martin, P.; Zhernakova, A.; Stahl, E.; Viatte, S.; McAllister, K.; et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 2012, 44, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Sun, P.; Jiang, Y.; Chen, Z.; Huang, C.; Zhang, X.; Zhang, R. Genome-wide haplotype association analysis and gene prioritization identify CCL3 as a risk locus for rheumatoid arthritis. Int. J. Immunogenet. 2010, 37, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Kastbom, A.; Johansson, M.; Verma, D.; Söderkvist, P.; Rantapää-Dahlqvist, S. Concise report: CARD8 p.C10X polymorphism is associated with inflammatory activity in early rheumatoid arthritis. Ann. Rheum. Dis. 2010, 69, 723–726. [Google Scholar] [CrossRef] [PubMed]
- Nam, E.J.; Kim, K.H.; Han, S.W.; Cho, C.M.; Lee, J.; Park, J.Y.; Kang, Y.M. The −283C/T polymorphism of the DNMT3B gene influences the progression of joint destruction in rheumatoid arthritis. Rheumatol. Int. 2010, 30, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Orozco, G.; Viatte, S.; Bowes, J.; Martin, P.; Wilson, A.G.; Morgan, A.W.; Steer, S.; Wordsworth, P.; Hocking, L.J.; Barton, A.; et al. Novel rheumatoid arthritis susceptibility locus at 22q12 identified in an extended UK genome-wide association study. Arthritis Rheumatol. 2014, 66, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zahir, N.; Jiang, Q.; Miliotis, H.; Heyraud, S.; Meng, X.; Dong, B.; Xie, G.; Qiu, F.; Hao, Z.; et al. The autoimmune disease-associated PTPN22 variant promotes calpain-mediated Lyp/Pep degradation associated with lymphocyte and dendritic cell hyperresponsiveness. Nat. Genet. 2011, 43, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Hill, J.A.; Southwood, S.; Alessandro, S.; Jevnikar, A.M.; Bell, D.A.; Cairns, E. Cutting edge: The conversion of arginine to citrulline allows for a high-affinity peptide interaction with the rheumatoid arthritis-associated HLA-DRB1*0401 MHC class II molecule. J. Immunol. 2003, 171, 538–541. [Google Scholar] [CrossRef] [PubMed]
- Snir, O.; Rieck, M.; Gebe, J.A.; Yue, B.B.; Rawlings, C.A.; Nepom, G.; Malmström, V.; Buckner, J.H. Identification and functional characterization of T cells reactive to citrullinated vimentin in HLA-DRB1*0401-positive humanized mice and rheumatoid arthritis patients. Arthritis Rheumatol. 2011, 63, 2873–2883. [Google Scholar] [CrossRef] [PubMed]
- Van Steenbergen, H.W.; van Nies, J.A.B.; Ruyssen-Witrand, A.; Huizinga, T.W.J.; Cantagrel, A.; Berenbaum, F.; van der Helm-van Mil, A.H.M. IL2RA is associated with persistence of rheumatoid arthritis. Arthritis Res. Ther. 2015, 17. [Google Scholar] [CrossRef] [PubMed]
- Miterski, B.; Drynda, S.; Boschow, G.; Klein, W.; Oppermann, J.; Kekow, J.; Epplen, J.T. Complex genetic predisposition in adult and juvenile rheumatoid arthritis. BMC Genet. 2004, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orozco, G.; Alizadeh, B.Z.; Delgado-Vega, A.M.; Gonzalez-Gay, M.A.; Balsa, A.; Pascual-Salcedo, D.; Fernández-Gutierrez, B.; González-Escribano, M.F.; Petersson, I.F.; van Riel, P.L.; et al. Association of STAT4 with rheumatoid arthritis: A replication study in three European populations. Arthritis Rheumatol. 2008, 58, 1974–1980. [Google Scholar] [CrossRef] [PubMed]
- Paulissen, S.M.; van Hamburg, J.P.; Davelaar, N.; Vroman, H.; Hazes, J.M.; de Jong, P.H.; Lubberts, E. CCR6+ Th cell populations distinguish ACPA positive from ACPA negative rheumatoid arthritis. Arthritis Res. Ther. 2015, 17, 344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matmati, M.; Jacques, P.; Maelfait, J.; Verheugen, E.; Kool, M.; Sze, M.; Geboes, L.; Louagie, E.; Mc Guire, C.; Vereecke, L.; et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 2011, 43, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, W.; Zhang, X.; Zhao, L.; Zhang, X.; Jiang, L.; Guo, Y.; Zhang, J.; Liang, Z.; Wang, X. Single nucleotide polymorphisms in TNFAIP3 were associated with the risk of rheumatoid arthritis in northern Chinese Han population. BMC Med. Genet. 2014, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- De Vries, N.; Tijssen, H.; van Riel, P.L.; van de Putte, L.B. Reshaping the shared epitope hypothesis: HLA-associated risk for rheumatoid arthritis is encoded by amino acid substitutions at positions 67–74 of the HLA-DRB1 molecule. Arthritis Rheumatol. 2002, 46, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Van der Woude, D.; Lie, B.A.; Lundström, E.; Balsa, A.; Feitsma, A.L.; Houwing-Duistermaat, J.J.; Verduijn, W.; Nordang, G.B.N.; Alfredsson, L.; Klareskog, L.; et al. Protection against anti–citrullinated protein antibody–positive rheumatoid arthritis is predominantly associated with HLA–DRB1*1301: A meta-analysis of HLA–DRB1 associations with anti–citrullinated protein antibody–positive and anti–citrullinated protein antibody–negative rheumatoid arthritis in four European populations. Arthritis Rheum. 2010, 62, 1236–1245. [Google Scholar] [PubMed]
- Feitsma, A.L.; Worthington, J.; van der Helm-van Mil, A.H.; Plant, D.; Thomson, W.; Ursum, J.; van Schaardenburg, D.; van der Horst-Bruinsma, I.E.; van Rood, J.J.; Huizinga, T.W.; et al. Protective effect of noninherited maternal HLA-DR antigens on rheumatoid arthritis development. Proc. Natl. Acad. Sci. USA 2007, 104, 19966–19970. [Google Scholar] [CrossRef] [PubMed]
- Pauley, K.M.; Satoh, M.; Chan, A.L.; Bubb, M.R.; Reeves, W.H.; Chan, E.K. Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res. Ther. 2008, 10, R101. [Google Scholar] [CrossRef] [PubMed]
- Nakasa, T.; Miyaki, S.; Okubo, A.; Hashimoto, M.; Nishida, K.; Ochi, M.; Asahara, H. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheumatol. 2008, 58, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Stanczyk, J.; Pedrioli, D.M.; Brentano, C.; Sanchez-Pernaute, O.; Kolling, C.; Gay, R.E.; Detmar, M.; Gay, S.; Kyburz, D. Altered expression of microRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. Arthritis Rheumatol. 2008, 58, 1001–1009. [Google Scholar] [CrossRef] [PubMed]
- Nakamachi, Y.; Kawano, S.; Takenokuchi, M.; Nishimura, K.; Sakai, Y.; Chin, T.; Saura, R.; Kurosaka, M.; Kumagai, S. MicroRNA-124a is a key regulator of proliferation and monocytes chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis Rheumatol. 2009, 60, 1294–1304. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wan, Y.; Guo, Q.; Zou, L.; Zhang, J.; Fang, Y.; Zhang, J.; Zhang, J.; Fu, X.; Liu, H.; et al. Altered microRNA expression profile with miR-146a upregulation in CD4+ T cells from patients with rheumatoid arthritis. Arthritis Res. Ther. 2010, 12, R81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, S.; Nakamachi, Y. The Role of miRNA in Rheumatoid Arthritis, Rheumatoid Arthritis—Etiology, Consequences and Co-Morbidities; Lemmey, A., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Mayama, T.; Marr, A.K.; Kino, T. Differential expression of glucocorticoid receptor noncoding RNA repressor Gas5 in autoimmune and inflammatory diseases. Horm. Metab. Res. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-C.; Yu, H.-C.; Yu, C.-L.; Huang, H.-B.; Koo, M.; Tung, C.-H.; Lai, N.S. Increased expression of long noncoding RNAs LOC100652951 and LOC100506036 in T cells from patients with rheumatoid arthritis facilitates the inflammatory responses. Immunol. Res. 2016, 64, 576–583. [Google Scholar] [CrossRef] [PubMed]
- Uribarri, M.; Ruiz-Larranaga, O.; Arteta, D.; Hernandez, L.; Alcaro, M.C.; Martinez, A. Influence of MTHFR C677T polymorphism on methotrexate monotherapy discontinuation in rheumatoid arthritis patients: Results from the GAPAID European project. Clin. Exp. Rheumatol. 2015, 33, 699–705. [Google Scholar] [PubMed]
- Senpati, S.; Singh, S.; Das, M.; Kumar, A.; Gupta, R.; Kumar, U.; Jain, S.; Juyal, R.C.; Thelma, B.K. Genome-wide analysis of methotrexate pharmacogenomics in rheumatoid arthritis shows multiple novel risk variants and leads for TYMS regulation. Pharmacogenet. Genom. 2014, 24, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Bae, S.-C.; Song, G.G. Association of the ABCB1 C3435T polymorphism with responsiveness to and toxicity of DMARDs in rheumatoid arthritis. Z. Rheumatol. 2015, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Weisman, M.H.; Furst, D.E.; Park, G.S.; Kremer, J.M.; Smith, K.M.; Wallace, D.J.; Caldwell, J.R.; Dervieux, T. Risk genotypes in folate-dependent enzymes and their association with methotrexate-related side effects in rheumatoid arthritis. Arthritis Rheum. 2006, 54, 607–612. [Google Scholar] [CrossRef] [PubMed]
- Dervieux, T.; Furst, D.; Lein, D.O.; Capps, R.; Smith, K.; Walsh, M.; Kremer, J. Polyglutamation of methotrexate with common polymorphisms in reduced folate carrier, aminoimidazole carboxamide ribonucleotide transformylase, and thymidylate synthase are associated with methotrexate effects in rheumatoid arthritis. Arthritis Rheum. 2004, 50, 2766–2774. [Google Scholar] [CrossRef] [PubMed]
- Owen, S.A.; Lunt, M.; Bowes, J.; Hider, S.L.; Bruce, I.N.; Thomson, W.; Barton, A. MTHFR gene polymorphisms and outcome of methotrexate treatment in patients with rheumatoid arthritis: Analysis of key polymorphisms and meta-analysis of C677T and A1298C polymorphisms. Pharmacogenom. J. 2013, 13, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Van Baarsen, L.G.; Wijbrandts, C.A.; Gerlag, D.M.; Rustenburg, F.; van der Prouw Krann, T.C.; Dijkmans, B.A.; Tak, P.P.; Verweij, C.L. Pharmacogenomics of infliximab treatment using peripheral blood cells of patients with rheumatoid arthritis. Genes Immun. 2010, 11, 622–629. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Rho, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Association of TNF-α−308G/A polymorphism with responsiveness to TNF-α blockers I rheumatoid arthritis: A meta-analysis. Rheumatol. Int. 2006, 27, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Bongartz, T.; Sutton, A.J.; Sweeting, M.L.; Buchan, I.; Matteson, E.L.; Montori, V. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: A systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 2006, 295, 2275–2285. [Google Scholar] [CrossRef] [PubMed]
- Hughes, L.B.; Criswell, L.A.; Beasley, T.M.; Edberg, J.C.; Kimberly, R.P.; Moreland, L.W.; Seldin, M.F.; Bridges, S.L. Genetic risk factors for infection in patients with early rheumatoid arthritis. Genes Immun. 2004, 5, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Kurko, J.; Besenyei, T.; Laki, J.; Glant, T.T.; Mikecz, K.; Szekanecz, Z. Genetics of rheumatoid arthritis—A comprehensive review. Clin. Rev. Allergy Immunol. 2013, 45, 170–179. [Google Scholar] [CrossRef] [PubMed]
Genotype HLA-DRB1 | Amino Acid Sequence (70–74) | Disease Severity |
---|---|---|
*0101 | QRRAA | Intermediate |
*0102 | QRRAA | Intermediate |
*0401 | QKRAA | Severe |
*0404 | QRRAA | Intermediate |
*0405 | QRRAA | Intermediate |
*0408 | QRRAA | Intermediate |
*1001 | RRRAA | Intermediate |
*1301 | DERAA | Protective |
*1402 | QRRAA | Intermediate |
Chromosome | Candidate Gene | Variations | Phenotype | References |
---|---|---|---|---|
1 | PTPN22 | rs2476601 | Anti-citrullination protein antibody (ACPA) positive RA with worse prognosis | [18] |
1 | IL6R | rs8192284 | Influences disease activity of ACPA-positive RA | [19] |
2 | SPRED2 | rs934734 | Increased risk for ACPA-positive RA | [20] |
3 | PXK | rs13315591 | Increased risk for ACPA-positive RA | [20] |
4 | RBPJ | rs874040 | Increased risk for ACPA-positive RA | [20] |
5 | ANKRD55 | rs6859219 | Increased risk for ACPA-positive RA | [20] |
6 | CCR6 | rs3093023 | Increased RA susceptibility | [21] |
6 | TNFAIP3 | rs675520 rs9376293 | Increased rate of joint destruction in ACPA-positive RA | [22] |
6 | TAGAP | rs629326 | Increased risk for ACPA-positive RA | [23] |
7 | IRF5 | rs10488631 | Increased risk for ACPA-positive RA | [20] |
15 | RASGRP1 | rs8043085 | Increased risk for ACPA-positive RA | [23] |
17 | CCL3 | Undefined | Increased RA susceptibility | [24] |
19 | CARD8 | C10X | Worse disease course in early RA | [25] |
20 | DNMT3B | −283C/T | Influences progression of joint destruction in RA | [26] |
20 | CD40 | rs6032662 | Increased risk for ACPA-positive RA | [23] |
22 | GATSL3 | rs1043099 | Increased RA susceptibility | [27] |
X | IRAK1 | rs13397 | Increased RA susceptibility | [23] |
Source | Upregulated miRNA | Downregulated miRNA |
---|---|---|
CD4+ naïve T-cells | miR-223, miR-146a | miR-363, miR-498 |
PBMCs | miR-146a, miR-155, miR-132, miR-16 | |
Synovial fibroblasts | miR-203, miR-155 | |
Synovial tissue | miR-146a, miR-155 | |
Joint fluid | miR-146a, miR-155, miR-223, miR-16 | |
RA fibroblast-like synoviocytes | miR-346 | miR-124a |
Drug | Gene | Variant | Phenotype |
---|---|---|---|
Methotrexate | SLC19A1 (RFC-1) | G80A | Increased or unaffected efficacy |
MTHFR | C677T | Increased toxicity | |
MTHFR | A1298C | Controversy regarding toxicity and efficacy | |
ATIC | C347G | Increased gastrointestinal toxicity; increased efficacy | |
ABCB1 (MDR1) | C3435T | Controversy regarding toxicity and efficacy | |
MTHFD1 | G1985A | Decreased efficacy | |
SHMT1 | C1420T | Increased toxicity | |
TYMS | 5′-UTR repeat element | Decreased efficacy | |
Hydroxychloroquine | IL-10 | A308G | Increased efficacy |
IL-10 | A1082G | Increased efficacy | |
Azathioprine | TPMT | TPMT*2, *3A, *3C | Increased toxicity |
ITPA | C94A | Increased toxicity | |
Anti-TNF agents | TNF | G308A | Increased efficacy in most studies; effect on toxicity is controversial |
TNF | A238G | Increased efficacy | |
TNFRSF1B | T196G | Decreased or no effect on efficacy | |
FCGR3A | Val158Phe | No effect on efficacy | |
PTPRC | SNP | Increased efficacy | |
MAPK14 | SNP | Increased efficacy of anti-TNF antibodies (infliximab, adalimumab) | |
Rituximab | FCGR3A | Val158Phe | Increased efficacy or no effect |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, I.-M.; Ketharnathan, S.; Thiruvengadam, M.; Rajakumar, G. Rheumatoid Arthritis: The Stride from Research to Clinical Practice. Int. J. Mol. Sci. 2016, 17, 900. https://doi.org/10.3390/ijms17060900
Chung I-M, Ketharnathan S, Thiruvengadam M, Rajakumar G. Rheumatoid Arthritis: The Stride from Research to Clinical Practice. International Journal of Molecular Sciences. 2016; 17(6):900. https://doi.org/10.3390/ijms17060900
Chicago/Turabian StyleChung, Ill-Min, Sarada Ketharnathan, Muthu Thiruvengadam, and Govindasamy Rajakumar. 2016. "Rheumatoid Arthritis: The Stride from Research to Clinical Practice" International Journal of Molecular Sciences 17, no. 6: 900. https://doi.org/10.3390/ijms17060900
APA StyleChung, I. -M., Ketharnathan, S., Thiruvengadam, M., & Rajakumar, G. (2016). Rheumatoid Arthritis: The Stride from Research to Clinical Practice. International Journal of Molecular Sciences, 17(6), 900. https://doi.org/10.3390/ijms17060900