Transcriptome Sequencing Analyses between the Cytoplasmic Male Sterile Line and Its Maintainer Line in Welsh Onion (Allium fistulosum L.)
Abstract
:1. Introduction
2. Results
2.1. Sequencing and Transcriptome Assembly
2.2. Functional Annotation and Classification
2.3. Gene Ontology (GO) Classification
2.4. Pathway Enrichment Analysis of DEGs (Differentially Expressed Unigenes)
2.5. Analysis of CMS Related Genes in the Welsh Onion
3. Discussion
3.1. The Welsh Onion CMS Related Genes Were Enriched in the Oxidative Phosphorylation Pathway of the Mitochondrial Respiratory Chain
3.2. The Nuclear Cellular Component Function Genes Are Important to CMS in the Welsh Onion
4. Methods and Methods
4.1. Sample Preparation
4.2. Sequence Data Analysis and Assembly
4.3. Functional Annotation and Differential Gene Expression Analysis
4.4. Quantitative RT-PCR (RT-qPCR) Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, Q.C.; Wen, C.L.; Zhao, H.; Zhang, L.Y.; Wang, J.; Wang, Y.Q. RNA-Seq reveals leaf cuticular wax-related genes in welsh onion. PLoS ONE 2014, 9, e113290. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.J. Vegetable Breeding; China Agriculture Press: Beijing, China, 1995; pp. 214–216. [Google Scholar]
- Laser, K.D.; Lersten, N.R. Anatomy and cytology of microsporogenesis in cytoplasmic male sterile angiosperms. Bot. Rev. 1972, 38, 425–454. [Google Scholar] [CrossRef]
- Ogura, H. Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ. 1968, 6, 39–78. [Google Scholar]
- Fu, T.D.; Yang, X.N.; Yang, G.S. Deveiopment and studies on polima cytoplasmic male sterile “three lines” in Brassica napus L. J. Huazhong Agric. Unv. 1989, 8, 201–207. [Google Scholar]
- Hinata, K.; Konno, N. Studies on a male sterile strain having the Brassica campestris nucleus and the Diplotaxismuralis cytoplasm. Jpn. J. Breed. 1979, 29, 305–311. [Google Scholar] [CrossRef]
- Wang, D.J.; Guo, A.G.; Li, D.R.; Tian, J.H.; Huang, F.; Sun, G.L. Cytological and molecular characterization of a novel monogenic dominant GMS in Brassica napus L. Plant Cell Rep. 2007, 26, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Sanders, P.M.; Bui, A.Q.; Weterings, K.; McIntire, K.N.; Hsu, Y.C.; Lee, P.Y.; Truong, M.T.; Beals, T.P.; Goldberg, R.B. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant. Reprod. 1999, 11, 297–322. [Google Scholar] [CrossRef]
- Hu, Q.; Hansen, L.; Laursen, J.; Dixelius, C.; Andersen, S. Intergeneric hybrids between Brassica napus and Orychophragmus violaceus containing traits of agronomic importance for oilseed rape breeding. Theory Appl. Genet. 2002, 105, 834–840. [Google Scholar]
- Zubko, M.K.; Zubko, E.I.; Adler, K.; Grimm, B.; Gleba, Y.Y. New CMS-associated phenotypes in cybrids Nicotiana tabacum L. (+Hyoscyamus niger L.). Ann. Bot. 2003, 92, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, J.; Shino, M. Studies on the male sterility in Welsh onion. Jpn. Soc. Hortic. Sci. 1972, 9, 180–181. [Google Scholar]
- Zhang, Q. Welsh Onion male sterility in natural populations. J. Shandong Agric. Univ. 1987, 18, 1–10. [Google Scholar]
- Yamashita, K.; Tashiro, Y. Seed productivity test of CMS lines of Japanese bunching onion (Allium fistulosum L.) possessing the cytoplasm of a wild species, A. galanthum Kar. et Kir. Euphytica 2004, 136, 327–331. [Google Scholar] [CrossRef]
- Peffley, E.B.; Hou, A. Bulb-type onion introgressants possessing Allium fistulosum L. genes recovered from interspecific hybrid backcrosses between A. cepa L. and A. fistulosum L. Theory Appl. Genet. 2000, 100, 528–534. [Google Scholar]
- Yamashita, K.; Takatori, Y.; Tashiro, Y. Chromosomal location of a pollen fertility-restoring gene, Rf, for CMS in Japanese bunching onion (Allium fistulosum L.) possessing the cytoplasm of A. galanthum Kar. et Kir. revealed by genomic in situ hybridization. Theory Appl. Genet. 2005, 111, 15–22. [Google Scholar]
- Li, H.Y.; Wang, C.; Li, L.L.; Wang, Y.Q.; Zhao, R. Cloning and Expression Analysis of A Putative B Class MADS-box Gene of AcPI in Onion. Sci. Agric. Sin. 2012, 45, 4759–4769. [Google Scholar]
- Engelke, T.; Terefe, D.; Tatlioglu, T. A PCR-based marker system monitoring CMS-(S), CMS-(T) and (N)-cytoplasm in the onion (Allium cepa L.). Theory Appl. Genet. 2003, 107, 162–167. [Google Scholar]
- Havey, M.J. A putative donor of S-cytoplasm and its distribution among open-pollinated populations of onion. Theory Appl. Genet. 1993, 86, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Hanson, M.R. Plant mitochondrial mutations and male sterility. Annu. Rev. Genet. 1991, 25, 461–486. [Google Scholar] [CrossRef] [PubMed]
- Chase, C.D. Cytoplasmic male sterility: A window to the world of plant mitochondrial-nuclear interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Jing, B.; Heng, S.P.; Tong, D.; Wan, Z.J.; Fu, T.D.; Tu, J.X.; Ma, C.Z.; Yi, B.; Wen, J.; Shen, J.X. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. J. Exp. Bot. 2012, 63, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Kang, J.G.; Kim, B.D. Isolation and characterization of the cytoplasmic male sterility-associated orf456 gene of chili pepper (Capsicum annuum L.). Plant Mol. Biol. 2007, 63, 519–532. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.P.; Xu, H.; Liu, Z.L.; Guo, J.X.; Li, H.Y.; Chen, L.T.; Fang, C.; Zhang, Q.Y.; Bai, M.; Yao, N.; et al. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat. Genet. 2013, 45, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Bowler, M.W.; Montgomery, M.G.; Leslie, A.G.W.; Walker, J.E. Howazide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. USA 2006, 103, 8646–8649. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.; Friedrich, T.; Hofhaus, G.; Preis, D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur. J. Biochem. 1991, 197, 563–576. [Google Scholar] [CrossRef] [PubMed]
- L’Homme, Y.; Stahl, R.J.; Li, X.Q.; Hameed, A.; Brown, G.G. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Curr. Genet. 1997, 31, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Yang, G.S.; Fu, T.D.; Li, Y. Transcriptional control of orf224/atp6 by the pol CMS restorer Rfp gene in Brassica napus L. J. Genet. Genom. 2003, 30, 469–473. [Google Scholar]
- Singh, M.; Hamel, N.; Menassa, R.; Li, X.Q.; Young, B.; Jean, M.; Landry, B.S.; Brown, G.G. Nuclear genes associated with a single Brassica CMS restorer locus influence transcripts of three different mitochondrial gene regions. Genetics 1996, 143, 505–516. [Google Scholar] [PubMed]
- Singh, M.; Brown, G.G. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell 1991, 3, 1349–1362. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, N.; Wang, P.Y.; Fu, N.; Shen, H.L. Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its near-isogenic restorer line in chili pepper (Capsicum annuum L.). PLoS ONE 2013, 8, e65209. [Google Scholar] [CrossRef] [PubMed]
- An, H.; Yang, Z.; Yi, B.; Wen, J.; Shen, J.; Tu, J.; Ma, C.; Fu, T. Comparative transcript profiling of the fertile and sterile flower buds of pol CMS in B. napus. BMC Genom. 2014, 15, 162–182. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.Y.; Yang, H.; Wei, C.L.; Yu, O.; Zhang, Z.Z.; Jiang, C.J.; Sun, J.; Li, Y.Y.; Chen, Q.; Xia, T.; et al. Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genom. 2011, 12. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Rice, P.; Longden, I.; Bleasby, A. EMBOSS: The European molecular biology open software suite. Trends Genet. 2000, 16, 276–277. [Google Scholar] [CrossRef]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10. [Google Scholar] [CrossRef] [PubMed]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.H.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol. 2010, 11, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010, 26, 136–138. [Google Scholar] [CrossRef] [PubMed]
Sample | Total Reads | Total Nucleotides (bp) | GC Percentage | Q30 Percentage | Total Mapping Reads Percentage |
---|---|---|---|---|---|
CMS-2013 | 29,169,887 | 5,891,890,308 | 49.30% | 87.75% | 89.99% |
CMM-2013 | 28,020,145 | 5,659,402,069 | 45.46% | 89.18% | 83.95% |
CMS-2014 | 20,978,451 | 4,237,366,829 | 41.80% | 95.07% | 79.22% |
CMM-2014 | 23,309,156 | 4,708,122,991 | 41.92% | 95.11% | 79.55% |
Pathway | DEGs with Pathway Annotation | All genes with Pathway Annotation | p-Value | Pathway ID | |||
---|---|---|---|---|---|---|---|
May 2013 | May 2014 | May 2013 | May 2014 | May 2013 | May 2014 | ||
Plant-pathogen interaction | 13 | 17 | 111 | 113 | 8.55 × 10−5 | 5.04 × 10−5 | ko04626 |
(9.35%) | (8.85%) | (2.73%) | (3.04%) | ||||
Protein processing in endoplasmic reticulum | 16 | 4 | 231 | 186 | 5.03 × 10−3 | 9.89 × 10−1 | ko04141 |
(11.51%) | (2.08%) | (5.69%) | (5%) | ||||
Oxidative phosphorylation | 13 | 15 | 171 | 161 | 5.24 × 10−3 | 1.76 × 10−2 | ko00190 |
(9.35%) | (7.81%) | (4.21%) | (4.33%) | ||||
Starch and sucrose metabolism | 13 | 15 | 173 | 152 | 5.77 × 10−3 | 1.08 × 10−2 | ko00500 |
(9.35%) | (7.81%) | (4.26%) | (4.08%) | ||||
Plant hormone signal transduction | 8 | 15 | 173 | 152 | 2.40 × 10−1 | 1.08 × 10−2 | ko04075 |
(5.76%) | (7.81%) | (4.26%) | (4.08%) | ||||
Glycerophospholipid metabolism | 5 | 10 | 84 | 90 | 1.59 × 10−1 | 1.64 × 10−2 | ko00564 |
(3.6%) | (5.21%) | (2.07%) | (2.42%) |
Unigene ID | COG Class Annotation | KEGG Annotation | Swissprot Annotation | nr Annotation | nt Annotation |
---|---|---|---|---|---|
c116086 | -- | -- | Plasma membrane ATPase (Wheat) | plasma membrane H+-ATPase (Cucumissativus) | PREDICTED: Cucumissativus plasma membrane ATPase 4-like (LOC101221564), mRNA >gi|449510556|ref|XM_004163650.1| |
c175619 | Energy production and conversion | K02261|1e-149|pop:POPTR_936218|hypothetical protein | Cytochrome c oxidase subunit 2 (Mouse-ear cress) | cytochrome oxidase subunit 2 (Boehmerianivea) | Hibiscus cannabinus cultivar P3B cytochrome c oxidase subunit II (cox2) gene, complete cds; mitochondrial |
c159049 | Energy production and conversion | K02262|0.0|ath:AT2G07687|cytochrome c oxidase subunit 3 (EC:1.9.3.1) | Cytochrome c oxidase subunit 3 (Wheat) | cytochrome oxidase subunit 3 (Cliviaminiata) | Allium cepa cultivar saski cytochrome oxidase subunit 2 (cox2) gene, exon 2 and partial cds; and cytochrome oxidase subunit 3 (cox3) gene, complete cds; mitochondrial |
c160965 | -- | -- | -- | -- | Allium cepa cultivar saski NADH dehydrogenase subunit 1 (nad1) gene, partial cds; and ATPase alpha subunit (atpA) gene, complete cds; mitochondrial |
c113452 | -- | -- | Probable F-box protein (Mouse-ear cress) | hypothetical protein MTR_139s0011 (Medicagotruncatula) | -- |
c50467 | -- | -- | Polygalacturonase inhibitor 1 (Mouse-ear cress) | PREDICTED: polygalacturonase inhibitor-like (Setariaitalica) | -- |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Lan, Y.; Wen, C.; Zhao, H.; Wang, J.; Wang, Y. Transcriptome Sequencing Analyses between the Cytoplasmic Male Sterile Line and Its Maintainer Line in Welsh Onion (Allium fistulosum L.). Int. J. Mol. Sci. 2016, 17, 1058. https://doi.org/10.3390/ijms17071058
Liu Q, Lan Y, Wen C, Zhao H, Wang J, Wang Y. Transcriptome Sequencing Analyses between the Cytoplasmic Male Sterile Line and Its Maintainer Line in Welsh Onion (Allium fistulosum L.). International Journal of Molecular Sciences. 2016; 17(7):1058. https://doi.org/10.3390/ijms17071058
Chicago/Turabian StyleLiu, Qianchun, Yanping Lan, Changlong Wen, Hong Zhao, Jian Wang, and Yongqin Wang. 2016. "Transcriptome Sequencing Analyses between the Cytoplasmic Male Sterile Line and Its Maintainer Line in Welsh Onion (Allium fistulosum L.)" International Journal of Molecular Sciences 17, no. 7: 1058. https://doi.org/10.3390/ijms17071058
APA StyleLiu, Q., Lan, Y., Wen, C., Zhao, H., Wang, J., & Wang, Y. (2016). Transcriptome Sequencing Analyses between the Cytoplasmic Male Sterile Line and Its Maintainer Line in Welsh Onion (Allium fistulosum L.). International Journal of Molecular Sciences, 17(7), 1058. https://doi.org/10.3390/ijms17071058