Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples
Abstract
:1. Introduction
1.1. FFPE Remains the Standard of Practice
1.2. Factors Impacting the Quality of FFPE Samples
1.3. Critical Considerations for Retrieval of DNA from FFPE Samples
2. Current State of FFPE NGS Pre-Analytics in Commercial Labs and Recommendations for Improvement
2.1. Substantial Variability in Commercial Laboratory Performance on DNA Extraction
2.2. Lack of Standardization in DNA Input Requirement for NGS
2.3. Lack of Standard and Routine Implementation of Functional DNA QC Test in Commercial Labs
2.4. Adjust NGS Input Based on DNA Amplifiability Test
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Lou, J.J.; Mirsadraei, L.; Sanchez, D.E.; Wilson, R.W.; Shabihkhani, M.; Lucey, G.M.; Wei, B.; Singer, E.J.; Mareninov, S.; Yong, W.H. A review of room temperature storage of biospecimen tissue and nucleic acids for anatomic pathology laboratories and biorepositories. Clin. Biochem. 2014, 47, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Do, H.; Dobrovic, A. Sequence artifacts in DNA from formalin-fixed tissues: Causes and strategies for minimization. Clin. Chem. 2015, 61, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Von Ahlfen, S.; Missel, A.; Bendrat, K.; Schlumpberger, M. Determinants of RNA quality from FFPE samples. PLoS ONE 2007, 2, e1261. [Google Scholar] [CrossRef] [PubMed]
- Janecka, A.; Adamczyk, A.; Gasińska, A. Comparison of eight commercially available kits for DNA extraction from formalin-fixed paraffin-embedded tissues. Anal. Biochem. 2015, 476, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Heydt, C.; Fassunke, J.; Künstlinger, H.; Ihle, M.A.; König, K.; Heukamp, L.C.; Schildhaus, H.U.; Odenthal, M.; Büttner, R.; Merkelbach-Bruse, S. Comparison of pre-analytical FFPE sample preparation methods and their impact on massively parallel sequencing in routine diagnostics. PLoS ONE 2014, 9, e104566. [Google Scholar] [CrossRef] [PubMed]
- Spencer, D.H.; Sehn, J.K.; Abel, H.J.; Watson, M.A.; Pfeifer, J.D.; Duncavage, E.J. Comparison of clinical targeted next-generation sequence data from formalin-fixed and fresh-frozen tissue specimens. J. Mol. Diagn. 2013, 15, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Tuononen, K.; Mäki-Nevala, S.; Sarhadi, V.K.; Wirtanen, A.; Rönty, M.; Salmenkivi, K.; Andrews, J.M.; Telaranta-Keerie, A.I.; Hannula, S.; Lagström, S.; et al. Comparison of targeted next-generation sequencing (NGS) and real-time PCR in the detection of EGFR, KRAS, and BRAF mutations on formalin-fixed, paraffin-embedded tumor material of non-small cell lung carcinoma—superiority of NGS. Genes Chromosom. Cancer 2013, 52, 503–511. [Google Scholar] [CrossRef] [PubMed]
- Hadd, A.G.; Houghton, J.; Choudhary, A.; Sah, S.; Chen, L.; Marko, A.C.; Sanford, T.; Buddavarapu, K.; Krosting, J.; Garmire, L.; et al. Targeted, high-depth, next-generation sequencing of cancer genes in formalin-fixed, paraffin-embedded and fine-needle aspiration tumor specimens. J. Mol. Diagn. 2013, 15, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Rennert, H.; Eng, K.; Zhang, T.; Tan, A.; Xiang, J.; Romane, A.; Kim, R.; Tam, W.; Liu, Y.C.; Bhinder, B.; et al. Development and validation of a whole-exome sequencing test for simultaneous detection of point mutations, indels and copy-number alterations for precision cancer care. NPJ Genom. Med. 2016, 1, 16019. [Google Scholar] [CrossRef]
- Lipson, D. Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat. Med. 2012, 18, 382–384. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, N.; Hellmann, M.D.; Snyder, A.; Kvistborg, P.; Makarov, V.; Havel, J.J.; Lee, W.; Yuan, J.; Wong, P.; Ho, T.S.; et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015, 348, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet 2016, 387, 1909–1920. [Google Scholar] [CrossRef]
- Qiu, P.; Pang, L.; Arreaza, G.; Maguire, M.; Chang, K.C.; Marton, M.J.; Levitan, D. Data interoperability of whole exome sequencing (WES) based mutational burden estimates from different laboratories. Int. J. Mol. Sci. 2016, 17, E651. [Google Scholar] [CrossRef] [PubMed]
- Young, G.; Wang, K.; He, J.; Otto, G.; Hawryluk, M.; Zwirco, Z.; Brennan, T.; Nahas, M.; Donahue, A.; Yelensky, R.; et al. Clinical next-generation sequencing successfully applied to fine-needle aspirations of pulmonary and pancreatic neoplasms. Cancer Cytopathol. 2013, 121, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Lozano, M.D.; Labiano, T.; Echeveste, J.; Gurpide, A.; Martín-Algarra, S.; Zhang, G.; Sharma, A.; Palma, J.F. Assessment of EGFR and KRAS mutation status from FNAs and core-needle biopsies of non-small cell lung cancer. Cancer Cytopathol. 2015, 123, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Satya, R.V.; Lewis, M.; Randad, P.; Wang, Y. Reducing amplification artifacts in high multiplex amplicon sequencing by using molecular barcodes. BMC Genom. 2015, 16, 589. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Choi, Y.L.; Kwon, M.J.; Kim, R.N.; Kim, Y.J.; Song, J.Y.; Jung, K.S.; Shin, Y.K. Comparison of Accuracy of whole-exome sequencing with formalin-fixed paraffin-embedded and fresh frozen tissue samples. PLoS ONE 2015, 10, e0144162. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Hansen, M.D.; Halgunset, J.; Skorpen, F.; Krokan, H.E. Low copy number DNA template can render polymerase chain reaction error prone in a sequence-dependent manner. J. Mol. Diagn. 2005, 7, 36–39. [Google Scholar] [CrossRef]
- Rykalina, V.; Shadrin, A.A.; Amstislavskiy, V.S.; Rogaev, E.I.; Lehrach, H.; Borodina, T.A. Exome sequencing from nanogram amounts of starting DNA: Comparing three approaches. PLoS ONE 2014, 9, e101154. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Son, D.S.; Jeon, H.J.; Kim, K.M.; Park, G.; Ryu, G.H.; Park, W.Y.; Park, D. The minimal amount of starting DNA for Agilent's hybrid capture-based targeted massively parallel sequencing. Sci. Rep. 2016, 6, 26732. [Google Scholar] [CrossRef] [PubMed]
Sample | FFPE Quality (QFI-82) | DNA Input | PreCapture PCR Yield (ng) | Post Capture PCR: Library Conc (nM) | |||
---|---|---|---|---|---|---|---|
Cutoff = 700 ng | Cutoff = 10 nM | ||||||
Default (ng) | QFI Adjusted (ng) | 50 ng Input | QFI Adjusted Input | 50 ng Input | QFI Adjusted Input | ||
S1 | Low (6.0) | 50 | 500 | 392.1 | 1662 | 6.4 | 13 |
S2 | Low (3.4) | 50 | 1000 | 424.5 | 1200 | 3.2 | 9.9 |
S5 | Medium (8.9) | 50 | 250 | 732 | 1911 | 14.9 | 19.5 |
S10 | Medium (13.5) | 50 | 250 | 1014 | 1911 | 10 | 22.5 |
S6 | High (15.0) | 50 | 100 | 1962 | 1974 | 18.5 | 14.9 |
S19 | High (23.1) | 50 | 100 | 1389 | 2094 | 12.5 | 10 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arreaza, G.; Qiu, P.; Pang, L.; Albright, A.; Hong, L.Z.; Marton, M.J.; Levitan, D. Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples. Int. J. Mol. Sci. 2016, 17, 1579. https://doi.org/10.3390/ijms17091579
Arreaza G, Qiu P, Pang L, Albright A, Hong LZ, Marton MJ, Levitan D. Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples. International Journal of Molecular Sciences. 2016; 17(9):1579. https://doi.org/10.3390/ijms17091579
Chicago/Turabian StyleArreaza, Gladys, Ping Qiu, Ling Pang, Andrew Albright, Lewis Z. Hong, Matthew J. Marton, and Diane Levitan. 2016. "Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples" International Journal of Molecular Sciences 17, no. 9: 1579. https://doi.org/10.3390/ijms17091579
APA StyleArreaza, G., Qiu, P., Pang, L., Albright, A., Hong, L. Z., Marton, M. J., & Levitan, D. (2016). Pre-Analytical Considerations for Successful Next-Generation Sequencing (NGS): Challenges and Opportunities for Formalin-Fixed and Paraffin-Embedded Tumor Tissue (FFPE) Samples. International Journal of Molecular Sciences, 17(9), 1579. https://doi.org/10.3390/ijms17091579