Determinants of Serum Glycerophospholipid Fatty Acids in Cystic Fibrosis
Abstract
:1. Introduction and Aims
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Dietary Intake
4.3. Fatty Acid Analysis
4.4. Statistical Methods
4.5. Ethical Considerations
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res. 2008, 52, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Glaser, C.; Demmelmair, H.; Koletzko, B. High-throughput analysis of fatty acid composition of plasma glycerophospholipids. J. Lipid Res. 2010, 51, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Glaser, C.; Demmelmair, H.; Sausenthaler, S.; Herbarth, O.; Heinrich, J.; Koletzko, B. Fatty acid composition of serum glycerophospholipids in children. J. Pediatr. 2010, 157, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Glaser, C.; Demmelmair, H.; Koletzko, B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS ONE 2010, 5, 12045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freedman, S.D.; Katz, M.H.; Parker, E.M.; Laposata, M.; Urman, M.Y.; Alvarez, J.G. A membrane lipid imbalance plays a role in the phenotypic expression of cystic fibrosis in cftr(−/−) mice. Proc. Natl. Acad. Sci. USA. 1999, 96, 13995–14000. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001, 36, 1007–1024. [Google Scholar] [CrossRef] [PubMed]
- Gil, A. Polyunsaturated fatty acids and inflammatory diseases. Biomed. Pharmacother. 2002, 56, 388–396. [Google Scholar] [CrossRef]
- Colombo, C.; Bennato, V.; Costantini, D.; Valmarana, L.; Daccò, V.; Zazzeron, L.; Ghisleni, D.; Bruzzese, M.G.; Scaglioni, S.; Riva, E.; et al. Dietary and circulating polyunsaturated fatty acids in cystic fibrosis: Are they related to clinical outcomes? J. Pediatr. Gastroenterol. Nutr. 2006, 43, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Kerem, B.; Rommens, J.M.; Buchanan, J.A.; Markiewicz, D.; Cox, T.K.; Chakravarti, A.; Buchwald, M.; Tsui, L.C. Identification of the cystic fibrosis gene: Genetic analysis. Science 1989, 245, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Gelfond, D.; Borowitz, D. Gastrointestinal complications of cystic fibrosis. Clin. Gastroenterol. Hepatol. 2013, 11, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.T.; Huang, N.N.; Bassett, D.R. The fatty acid composition of the serum chylomicrons and adipose tissue of children with cystic fibrosis of the pancreas. J. Pediatr. 1962, 60, 394–403. [Google Scholar] [CrossRef]
- Strandvik, B.; Gronowitz, E.; Enlund, F.; Martinsson, T.; Wahlström, J. Essential fatty acid deficiency in relation to genotype in patients with cystic fibrosis. J. Pediatr. 2001, 139, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Olveira, G.; Dorado, A.; Olveira, C.; Padilla, A.; Rojo-Martínez, G.; García-Escobar, E.; Gaspar, I.; Gonzalo, M.; Soriguer, F. Serum phospholipid fatty acid profile and dietary intake in an adult Mediterranean population with cystic fibrosis. Br. J. Nutr. 2006, 96, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Freedman, S.D.; Blanco, P.G.; Zaman, M.M.; Shea, J.C.; Ollero, M.; Hopper, I.K.; Weed, D.A.; Gelrud, A.; Regan, M.M.; Laposata, M.; et al. Association of cystic fibrosis with abnormalities in fatty acid metabolism. N. Engl. J. Med. 2004, 350, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, A.; Schall, J.I.; Garcia-Espana, J.F.; Zemel, B.S.; Strandvik, B.; Stallings, V.A. Serum linoleic acid status as a clinical indicator of essential fatty acid status in children with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Moukarzel, S.; Dyer, R.A.; Innis, S.M. The complex relationship between diet and phospholipid fatty acids in children with cystic fibrosis. J. Pediatr. Gastroenterol. Nutr. 2016. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, J.; Lisowska, A.; Blaszczynski, M.; Przyslawski, J.; Walczak, M. Polyunsaturated fatty acids in cystic fibrosis are related to nutrition and clinical expression of the disease. J. Pediatr. Gastroenterol. Nutr. 2007, 45, 488–489. [Google Scholar] [CrossRef] [PubMed]
- Gronowitz, E.; Mellström, D.; Strandvik, B. Serum phospholipid fatty acid pattern is associated with bone mineral density in children, but not adults, with cystic fibrosis. Br. J. Nutr. 2006, 95, 1159–1165. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Still, J.D.; Johnson, S.B.; Holman, R.T. Essential fatty acid status in cystic fibrosis and the effects of safflower oil supplementation. Am. J. Clin. Nutr. 1981, 34, 1–7. [Google Scholar] [PubMed]
- Biggemann, B.; Laryea, M.D.; Schuster, A.; Griese, M.; Reinhardt, D.; Bremer, H.J. Status of plasma and erythrocyte fatty acids and vitamin A and E in young children with cystic fibrosis. Scand. J. Gastroenterol. Suppl. 1988, 143, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Steinkamp, G.; Demmelmair, H.; Rühl-Bagheri, I.; von der Hardt, H.; Koletzko, B. Energy supplements rich in linoleic acid improve body weight and essential fatty acid status of cystic fibrosis patients. J. Pediatr. Gastroenterol. Nutr. 2000, 31, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Walkowiak, J.; Wilczynski, M.; Boleslawska, I.; Krawczynski, M.; Korzon, M.; Przyslawski, J. The predominance of omega-6 polyunsaturated fatty acids in cystic fibrosis despite low arachidonic acid levels. Acta Paediatr. 2003, 92, 1354–1355. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, S.W.; Laposata, M.; Boyd, K.L.; Seegmiller, A.C. Polyunsaturated fatty acid supplementation reverses cystic fibrosis-related fatty acid abnormalities in CFTR−/− mice by suppressing fatty acid desaturases. J. Nutr. Biochem. 2015, 26, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Sinaasappel, M.; Stern, M.; Littlewood, J.; Wolfe, S.; Steinkamp, G.; Heijerman, H.G.M.; Robberecht, E.; Döring, G. Nutrition in patients with cystic fibrosis: A European Consensus. J. Cyst. Fibros. 2002, 1, 51–75. [Google Scholar] [CrossRef]
- Jarosz, M. Normy Żywienia dla Populacji Polskiej—Nowelizacja; Instytut Żywności i Żywienia: Warszawa, Poland, 2012. [Google Scholar]
- Panel on Dietetic Products, Nutrition and Allergies. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J. 2010, 8, 1461. [Google Scholar]
- Hodson, L.; Skeaff, C.M.; Fielding, B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake. Prog. Lipid Res. 2008, 47, 348–380. [Google Scholar] [CrossRef] [PubMed]
- Roulet, M.; Frascarolo, P.; Rappaz, I.; Pilet, M. Essential fatty acid deficiency in well nourished young cystic fibrosis patients. Eur. J. Pediatr. 1997, 156, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Lepage, G.; Yesair, D.W.; Ronco, N.; Champagne, J.; Bureau, N.; Chemtob, S.; Bérubé, D.; Roy, C.C. Effect of an organized lipid matrix on lipid absorption and clinical outcomes in patients with cystic fibrosis. J. Pediatr. 2002, 141, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Rogiers, V.; Dab, I.; Michotte, Y.; Vercruysse, A.; Crokaert, R.; Vis, H.L. Abnormal fatty acid turnover in the phospholipids of the red blood cell membranes of cystic fibrosis patients (in vitro study). Pediatr. Res. 1984, 18, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Njoroge, S.W.; Seegmiller, A.C.; Katrangi, W.; Laposata, M. Increased Δ5- and Δ6-desaturase, cyclooxygenase-2, and lipoxygenase-5 expression and activity are associated with fatty acid and eicosanoid changes in cystic fibrosis. Biochim. Biophys. Acta 2011, 1811, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Christophe, A.; Robberecht, E. Directed modification instead of normalization of fatty acid patterns in cystic fibrosis: An emerging concept. Curr. Opin. Clin. Nutr. Metab. Care 2001, 4, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Glaser, C.; Lattka, E.; Rzehak, P.; Steer, C.; Koletzko, B. Genetic variation in polyunsaturated fatty acid metabolism and its potential relevance for human development and health: Genetic variation in PUFA metabolism. Matern. Child. Nutr. 2011, 7, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Lloyd-Still, J.D.; Bibus, D.M.; Powers, C.A.; Johnson, S.B.; Holman, R.T. Essential fatty acid deficiency and predisposition to lung disease in cystic fibrosis. Acta Paediatr. 1996, 85, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Christophe, A.B.; Warwick, W.J.; Holman, R.T. Serum fatty acid profiles in cystic fibrosis patients and their parents. Lipids 1994, 29, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Coste, T.C.; Armand, M.; Lebacq, J.; Lebecque, P.; Wallemacq, P.; Leal, T. An overview of monitoring and supplementation of omega 3 fatty acids in cystic fibrosis. Clin. Biochem. 2007, 40, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Christophe, A.; Robberecht, E.; Franckx, H.; de Baets, F.; van de Pas, M. Effect of administration of gamma-linolenic acid on the fatty acid composition of serum phospholipids and cholesteryl esters in patients with cystic fibrosis. Ann. Nutr. Metab. 1994, 38, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Innis, S.M.; Davidson, A.G.F.; Chen, A.; Dyer, R.; Melnyk, S.; James, S.J. Increased plasma homocysteine and S-adenosylhomocysteine and decreased methionine is associated with altered phosphatidylcholine and phosphatidylethanolamine in cystic fibrosis. J. Pediatr. 2003, 143, 351–356. [Google Scholar] [CrossRef]
- Aldámiz-Echevarría, L.; Prieto, J.A.; Andrade, F.; Elorz, J.; Sojo, A.; Lage, S.; Sanjurjo, P.; Vázquez, C.; Rodríguez-Soriano, J. Persistence of essential fatty acid deficiency in cystic fibrosis despite nutritional therapy. Pediatr. Res. 2009, 66, 585–589. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Al-Turkmani, M.R.; Savaille, J.E.; Alturkmani, R.; Katrangi, W.; Cluette-Brown, J.E.; Zaman, M.M.; Laposata, M.; Freedman, S.D. Cell culture models demonstrate that CFTR dysfunction leads to defective fatty acid composition and metabolism. J. Lipid Res. 2008, 49, 1692–1700. [Google Scholar] [CrossRef] [PubMed]
- Van Biervliet, S.; van Biervliet, J.-P.; Robberecht, E.; Christophe, A. Fatty acid composition of serum phospholipids in cystic fibrosis (CF) patients with or without CF related liver disease. Clin. Chem. Lab. Med. 2010, 48, 1751–1755. [Google Scholar] [CrossRef] [PubMed]
- Grønn, M.; Christensen, E.; Hagve, T.A.; Christophersen, B.O. Peroxisomal retroconversion of docosahexaenoic acid (22:6(n-3)) to eicosapentaenoic acid (20:5(n-3)) studied in isolated rat liver cells. Biochim. Biophys. Acta 1991, 1081, 85–91. [Google Scholar] [CrossRef]
- Hiltunen, J.K.; Kärki, T.; Hassinen, I.E.; Osmundsen, H. Beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes: A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J. Biol. Chem. 1986, 261, 16484–16493. [Google Scholar] [PubMed]
- Innis, S.M.; Davidson, A.G.F. Cystic fibrosis and nutrition: Linking phospholipids and essential fatty acids with thiol metabolism. Annu. Rev. Nutr. 2008, 28, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Strandvik, B. Fatty acid metabolism in cystic fibrosis. Prostaglandins Leukot. Essent. Fatty Acids 2010, 83, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Gotlinger, K.; Hong, S.; Arita, M. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: An overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat. 2004, 73, 155–172. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Chiang, N.; Dalli, J.; Levy, B.D. Lipid mediators in the resolution of inflammation. Cold Spring Harb. Perspect. Biol. 2015, 7, 016311. [Google Scholar] [CrossRef] [PubMed]
- Seegmiller, A.C. Abnormal unsaturated fatty acid metabolism in cystic fibrosis: Biochemical mechanisms and clinical implications. Int. J. Mol. Sci. 2014, 15, 16083–16099. [Google Scholar] [CrossRef] [PubMed]
- Reitz, R.C. Dietary fatty acids and alcohol: Effects on cellular membranes. Alcohol Alcohol. 1993, 28, 59–71. [Google Scholar] [PubMed]
- Thomsen, K.F.; Laposata, M.; Njoroge, S.W.; Umunakwe, O.C.; Katrangi, W.; Seegmiller, A.C. Increased elongase 6 and Δ9-desaturase activity are associated with n-7 and n-9 fatty acid changes in cystic fibrosis. Lipids 2011, 46, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Southern, K.W.; Brownlee, K.; Dankert Roelse, J.; Duff, A.; Farrell, M.; Mehta, A.; Munck, A.; Pollitt, R.; Sermet-Gaudelus, I.; et al. European best practice guidelines for cystic fibrosis neonatal screening. J. Cyst. Fibros. 2009, 8, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Palczewska, I.; Niedzwiedzka, Z. Somatic development indices in children and youth of Warsaw. Med. Wieku Rozwoj. 2001, 5, 18–118. [Google Scholar] [PubMed]
- Walkowiak, J.; Nousia-Arvanitakis, S.; Cade, A.; Kashirskaya, N.; Piotrowski, R.; Strzykala, K.; Kouniou, M.; Pogorzelski, A.; Sands, D.; Kapranov, N. Fecal elastase-1 cut-off levels in the assessment of exocrine pancreatic function in cystic fibrosis. J. Cyst. Fibros. 2002, 1, 260–264. [Google Scholar] [CrossRef]
- Walkowiak, J.; Lisowska, A.; Przyslawski, J.; Grzymislawski, M.; Krawczynski, M.; Herzig, K.H. Faecal elastase-1 test is superior to faecal lipase test in the assessment of exocrine pancreatic function in cystic fibrosis. Acta Paediatr. 2004, 93, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Debray, D.; Kelly, D.; Houwen, R.; Strandvik, B.; Colombo, C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J. Cyst. Fibros. 2011, 10, 29–36. [Google Scholar] [CrossRef]
- Moran, A.; Pillay, K.; Becker, D.J.; Acerini, C.L. Management of cystic fibrosis-related diabetes in children and adolescents: Management of cystic fibrosis-related diabetes. Pediatr. Diabetes 2014, 15, 65–76. [Google Scholar] [CrossRef] [PubMed]
Clinical Parameters | Median | 1st–3rd Quartile |
---|---|---|
Age (years) | 18.9 | 12.5–26.9 |
Z-score for body weight | −0.73 | −1.46 to −0.10 |
Z-score for body height | −0.71 | −1.44–0.10 |
ALT (U/L) | 22.0 | 15.0–33.0 |
AST (U/L) | 25.0 | 18.0–32.3 |
GGT (U/L) | 17.0 | 12.0–29.0 |
FEV1 (%) | 65.0 | 45.2–90.4 |
Dietary Intake | Median | 1st–3rd Quartile |
---|---|---|
Energy (kcal/day) | 2430 | 2144–3297 |
EER * (%) | 116.0 | 97.2–140.7 |
Protein (% en) | 15.6 | 13.4–17.2 |
Carbohydrates (% en) | 45.3 | 38.1–50.3 |
Total fat (% en) | 39.4 | 35.3–45.0 |
Saturated fat (% en) | 15.6 | 13.0–17.8 |
Monounsaturated fat (% en) | 14.5 | 12.7–17.6 |
Polyunsaturated fat (% en) | 5.1 | 4.4–7.0 |
C18:2n-6 (% en) | 3.9 | 3.1–5.1 |
C18:3n-3 (% en) | 0.6 | 0.5–0.7 |
n-6 (% of total fat) | 9.9 | 7.9–13.5 |
n-3 (% of total fat) | 1.5 | 1.2–2.0 |
n-6/n-3 | 6.2 | 4.8–8.3 |
Fatty Acid | All CF n = 172 | CF Adults n = 32 | HS n = 30 |
---|---|---|---|
Median, % wt/wt (1st–3rd quartile) | |||
Saturated fatty acids | |||
C14:0 (myristic acid) | 0.61 † (0.49–0.78) | 0.56 * (0.52–0.74) | 0.52 (0.40–0.61) |
C16:0 (palmitic acid) | 31.10 ‡ (29.23–32.70) | 30.06 * (28.81–34.24) | 28.79 (27.17–30.24) |
C18:0 (stearic acid) | 16.32 (14.75–18.89) | 16.17 (14.89–20.64) | 16.20 (14.90–17.73) |
Monounsaturated fatty acids | |||
C16:1n-7 (palmitoleic acid) | 1.04 ‡ (0.76–1.43) | 1.18 ‡ (0.86–1.85) | 0.57 (0.50–0.68) |
C18:1n-9 (oleic acid) | 13.22 † (11.97–14.68) | 13.04 ‡ (12.29–15.33) | 11.60 (10.37–13.17) |
C20:1n-9 (eicosenoic acid) | 0.20 ‡ (0.13–0.31) | 0.36 ‡ (0.20–0.48) | 0.11 (0.09–0.18) |
C20:3n-9 (mead acid) | 0.40 ‡ (0.26–0.86) | 0.45 ‡ (0.32–0.94) | 0.20 (0.10–0.40) |
n-6 polyunsaturated fatty acids | |||
C18:2n-6 (linoleic acid) | 18.63 ‡ (16.06–20.51) | 16.49 ‡ (15.38–20.24) | 21.49 (20.38–22.57) |
C18:3n-6 (γ-linolenic acid) | 0.31 ‡ (0.21–0.52) | 0.43 ‡ (0.36–0.61) | 0.17 (0.12–0.21) |
C20:2n-6 (eicosadienoic acid) | 0.28 † (0.22–0.34) | 0.28 † (0.21–0.37) | 0.33 (0.28–0.40) |
C20:3n-6 (dihomo-γ-linolenic acid) | 2.97 † (2.37–3.63) | 2.75 (2.09–3.63) | 2.63 (2.12–2.91) |
C20:4n-6 (arachidonic acid) | 7.80 ‡ (6.56–8.90) | 8.09 * (5.26–9.81) | 9.35 (8.62–10.23) |
C22:4n-6 (docosatetraenoic acid) | 0.30 * (0.22–0.39) | 0.32 * (0.23–0.42) | 0.26 (0.20–0.29) |
C22:5n-6 (docosapentaenoic acid n-6) | 0.26 (0.19–0.41) | 0.31 (0.18–0.48) | 0.27 (0.21–0.34) |
n-3 polyunsaturated fatty acids | |||
C18:3n-3 (α-linolenic acid) | 0.32 (0.24–0.42) | 0.30 (0.22–0.38) | 0.32 (0.26–0.42) |
C20:5n-3 (eicosapentaenoic acid) | 0.87 (0.61–1.10) | 0.80 (0.63–0.96) | 0.78 (0.67–0.90) |
C22:5n-3 (docosapentaenoic acid n-3) | 0.73 (0.56–0.91) | 0.70 (0.39–0.87) | 0.81 (0.58–0.92) |
C22:6n-3 (docosahexaenoic acid) | 1.98 ‡ (1.42–2.69) | 2.15 ‡ (1.22–2.84) | 3.03 (2.62–3.73) |
Ratios | |||
n-6/n-3 | 7.60 * (6.07–9.57) | 7.97 (5.93–10.19) | 6.66 (6.13–7.71) |
C18:3n-6/C18:2n-6 | 0.018 ‡ (0.011–0.031) | 0.028 ‡ (0.021–0.044) | 0.008 (0.005–0.010) |
C20:4n-6/C20:3n-6 | 2.54 ‡ (2.03–3.12) | 2.56 ‡ (2.03–3.19) | 3.42 (2.92–4.30) |
C22:5n-6/C22:4n-6 | 0.910 † (0.738–1.071) | 0.946 (0.706–1.321) | 1.087 (0.896–1.330) |
C22:6n-3/C22:5n-3 | 2.70 ‡ (2.05–3.68) | 3.04 † (2.41–3.90) | 3.88 (2.96–5.18) |
C20:4n-6/C18:2n-6 | 0.42 (0.34–0.51) | 0.45 (0.32–0.54) | 0.42 (0.37–0.47) |
C22:5n-6/C18:2n-6 | 0.014 (0.010–0.022) | 0.019 † (0.009–0.032) | 0.013 (0.010–0.017) |
C20:5n-3/C18:3n-3 | 2.52 (1.79–3.54) | 2.30 (1.78–3.71) | 2.53 (2.03–3.01) |
C22:6n-3/C18:3n-3 | 5.92 ‡ (4.21–8.94) | 5.78 † (4.33–9.40) | 9.17 (6.34–12.84) |
Age | Weight Z-Score | Height Z-Score | CFTR Genotype | Exocrine Pancreatic Insufficiency | Liver Disease | Diabetes | P. aeruginosa | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median (1st–3rd quartiles) | <18 | >18 | ≤−2 | >−2 | ≤−2 | >−2 | Severe/severe | Other | Yes | No | Yes | No | Yes | No | Yes | No |
n | 77 | 95 | 23 | 149 | 28 | 144 | 110 | 62 | 148 | 24 | 79 | 93 | 25 | 147 | 88 | 84 |
C14:0 | 0.60 (0.51–0.73) | 0.62 (0.49–0.82) | 0.67 (0.56–0.83) | 0.60 (0.48–0.76) | 0.68 * (0.57–0.86) | 0.58 * (0.47–0.76) | 0.62 (0.52–0.78) | 0.57 (0.44–0.77) | 0.62 (0.50–0.79) | 0.56 (0.43–0.67) | 0.64 * (0.54–0.82) | 0.57 * (0.47–0.73) | 0.57 (0.51–0.81) | 0.61 (0.49–0.76) | 0.62 (0.52–0.79) | 0.58 (0.48–0.76) |
C16:0 | 30.74 (29.22–32.24) | 31.48 (29.27–32.88) | 31.71 (28.85–33.28) | 31.06 (29.31–32.60) | 31.37 (29.30–32.61) | 30.94 (29.23–32.70) | 31.20 (29.58–32.82) | 30.04 (28.90–32.48) | 31.10 (29.34–32.86) | 31.01 (29.01–32.24) | 31.29 * (29.41–33.44) | 30.58 * (29.18–32.49) | 31.98 (29.15–33.45) | 30.98 (29.32–32.57) | 31.14 (29.23–32.87) | 30.98 (29.31–32.56) |
C18:0 | 17.47 † (15.25–19.91) | 15.87 † (14.64–17.63) | 17.56 (15.46–18.56) | 16.17 (14.64–19.16) | 16.90 (15.68–18.55) | 16.26 (14.66–18.94) | 16.80 * (14.84–19.42) | 15.83 * (14.65–17.30) | 16.34 (14.59–18.88) | 16.20 (15.25–19.42) | 16.13 (14.78–18.75) | 16.43 (14.78–19.30) | 16.17 (14.78–17.76) | 16.34 (14.75–19.23) | 15.83 * (14.09–18.69) | 16.81 * (15.44–19.44) |
C16:1n-7 | 1.04 (0.78–1.42) | 1.03 (0.75–1.43) | 1.12 (0.73–1.47) | 1.02 (0.77–1.42) | 1.11 (0.79–1.66) | 1.01 (0.76–1.42) | 1.08 (0.78–1.46) | 0.96 (0.75–1.26) | 1.07 † (0.79–1.48) | 0.83 † (0.67–0.98) | 1.12 † (0.85–1.68) | 0.94 † (0.70–1.28) | 1.12 * (0.97–1.81) | 1.01 * (0.72–1.42) | 1.13 (0.76–1.62) | 0.97 (0.76–1.28) |
C18:1n-9 | 12.59 (10.73–14.86) | 13.44 (12.29–14.61) | 13.32 (10.45–16.85) | 13.22 (12.08–14.60) | 12.97 (12.09–15.55) | 13.22 (11.79–14.61) | 13.12 (11.66–14.77) | 13.48 (12.21–14.65) | 13.23 (11.97–14.82) | 12.50 (12.07–13.91) | 13.32 (11.81–14.74) | 12.98 (12.08–14.63) | 13.50 (12.28–14.83) | 13.22 (11.64–14.62) | 13.40 (12.21–15.11) | 13.03 (11.50–14.48) |
C20:1n-9 | 0.22 (0.15–0.34) | 0.17 (0.12–0.29) | 0.19 (0.13–0.31) | 0.20 (0.14–0.31) | 0.21 (0.14–0.37) | 0.19 (0.13–0.30) | 0.20 (0.14–0.34) | 0.20 (0.13–0.30) | 0.20 (0.13–0.33) | 0.17 (0.14–0.23) | 0.27 (0.21–0.34) | 0.21 (0.14–0.34) | 0.19 (0.11–0.33) | 0.20 (0.14–0.31) | 0.20 (0.14–0.30) | 0.17 (0.13–0.33) |
C20:3n-9 | 0.53 † (0.29–1.27) | 0.35 † (0.24–0.58) | 0.67 (0.34–1.11) | 0.37 (0.25–0.76) | 0.73 * (0.34–1.26) | 0.36 * (0.25–0.76) | 0.46 * (0.28–0.90) | 0.33 * (0.23–0.58) | 0.43 † (0.28–0.87) | 0.25 † (0.19–0.42) | 0.45 (0.29–0.83) | 0.35 (0.25–0.86) | 0.45 (0.33–0.67) | 0.37 (0.25–0.86) | 0.45 (0.29–0.80) | 0.33 (0.25–0.88) |
C18:2n-6 | 18.49 (14.98–21.00) | 18.64 (16.39–20.23) | 19.37 (16.73–21.53) | 18.63 (16.04–20.37) | 19.60 (15.40–20.91) | 18.51 (16.09–20.38) | 17.85 * (15.06–20.34) | 19.13 * (17.75–21.00) | 18.38 * (15.69–20.27) | 20.10 * (18.42–21.06) | 18.63 (15.76–19.84) | 18.64 (16.23–21.00) | 19.13 (16.61–19.56) | 18.53 (15.85–20.52) | 18.70 (16.42–20.30) | 18.46 (15.88–20.73) |
C18:3n-6 | 0.48 ‡ (0.27–0.65) | 0.26 ‡ (0.18–0.38) | 0.42 * (0.30–0.64) | 0.29 * (0.20–0.510 | 0.48 † (0.30–0.66) | 0.28 † (0.20–0.49) | 0.34 (0.21–0.52) | 0.28 (0.19–0.50) | 0.33 (0.21–0.52) | 0.27 (0.19–0.52) | 0.34 (0.21–0.51) | 0.28 (0.20–0.53) | 0.30 (0.20–0.52) | 0.32 (0.21–0.52) | 0.35 (0.21–0.52) | 0.28 (0.19–0.51) |
C20:2n-6 | 0.29 (0.24–0.34) | 0.28 (0.21–0.34) | 0.24 * (0.20–0.29) | 0.29 * (0.23–0.34) | 0.25 (0.20–0.32) | 0.29 (0.23–0.34) | 0.28 (0.22–0.34) | 0.29 (0.23–0.34) | 0.28 (0.21–0.34) | 0.28 (0.24–0.31) | 0.27 (0.21–0.34) | 0.28 (0.23–0.34) | 0.25 * (0.18–0.34) | 0.29 * (0.23–0.34) | 0.28 (0.21–0.34) | 0.28 (0.23–0.34) |
C20:3n-6 | 3.12 * (2.61–3.81) | 2.73 * (2.24–3.49) | 2.88 (2.44–3.41) | 3.00 (2.37–3.68) | 2.81 (2.34–3.49) | 3.02 (2.39–3.68) | 3.03 (2.43–3.68) | 2.88 (2.25–3.37) | 3.03 (2.41–3.68) | 2.67 (2.21–3.05) | 3.02 (2.36–3.69) | 2.93 (2.39–3.57) | 2.76 (2.11–3.37) | 3.03 (2.40–3.69) | 2.89 (2.39–3.66) | 3.02 (2.37–3.58) |
C20:4n-6 | 7.57 (6.50–9.02) | 8.08 (6.61–8.88) | 6.84 * (5.78–7.99) | 8.03 * (6.68–9.02) | 6.66 † (5.77–7.65) | 8.08 † (6.84–9.14) | 7.53 * (6.49–8.66) | 8.47 * (6.86–9.66) | 7.77 (6.57–8.86) | 8.33 (6.36–9.60) | 7.47 * (6.20–8.59) | 8.20 * (6.68–9.57) | 7.28 * (45.06–8.57) | 7.89 * (6.68–9.07) | 7.59 (6.45–8.76) | 7.96 (6.89–9.50) |
C22:4n-6 | 0.31 * (0.24–0.44) | 0.27 * (0.21–0.37) | 0.24 (0.21–0.35) | 0.30 (0.22–0.40) | 0.27 (0.21–0.34) | 0.30 (0.22–0.41) | 0.31 (0.22–0.42) | 0.28 (0.21–0.35) | 0.30 * (0.22–0.41) | 0.26 * (0.20–0.31) | 0.30 (0.24–0.39) | 0.30 (0.20–0.41) | 0.24 (0.20–0.33) | 0.30 (0.22–0.41) | 0.30 (0.22–0.38) | 0.29 (0.22–0.41) |
C22:5n-6 | 0.34 ‡ (0.24–0.44) | 0.23 ‡ (0.17–0.32) | 0.23 (0.19–0.34) | 0.27 (0.19–0.43) | 0.23 (0.19–0.41) | 0.26 (0.19–0.41) | 0.28 (0.20–0.43) | 0.24 (0.17–0.36) | 0.27 † (0.19–0.44) | 0.20 † (0.16–0.26) | 0.26 (0.20–0.43) | 0.25 (0.18–0.40) | 0.23 (0.18–0.28) | 0.27 (0.19–0.43) | 0.24 (0.19–0.36) | 0.29 (0.19–0.44) |
C18:3n-3 | 0.30 (0.22–0.44) | 0.33 (0.25–0.42) | 0.29 (0.26–0.34) | 0.33 (0.24–0.43) | 0.31 (0.27–0.52) | 0.32 (0.23–0.42) | 0.31 (0.24–0.42) | 0.33 (0.24–0.31) | 0.31 (0.24–0.42) | 0.31 (0.24–0.42) | 0.31 (0.23–0.42) | 0.33 (0.24–0.42) | 0.32 (0.23–0.38) | 0.32 (0.24–0.43) | 0.33 (0.24–0.39) | 0.31 (0.23–0.44) |
C20:5n-3 | 0.86 (0.58–1.10) | 0.87 (0.63–1.07) | 0.69 (0.47–1.00) | 0.87 (0.65–1.11) | 0.73 (0.50–1.01) | 0.88 (0.64–1.11) | 0.91 (0.57–1.14) | 0.83 (0.68–0.98) | 0.88 (0.61–1.12) | 0.81 (0.60–0.96) | 0.81 (0.52–1.07) | 0.91 (0.67–1.10) | 0.70 (0.51–0.97) | 0.88 (0.63–1.11) | 0.81 (0.54–1.04) | 0.91 (0.70–1.13) |
C22:5n-3 | 0.74 (0.56–0.94) | 0.68 (0.57–0.90) | 0.51 † (0.39–0.78) | 0.74 † (0.59–0.93) | 0.66 (0.42–0.86) | 0.74 (0.58–0.93) | 0.76 (0.53–0.94) | 0.67 (0.59–0.89) | 0.74 (0.58–0.93) | 0.61 (0.53–0.87) | 0.72 (0.52–0.90) | 0.73 (0.59–0.93) | 0.60 * (0.44–0.78) | 0.74 * (0.58–0.93) | 0.71 (0.51–0.90) | 0.73 (0.60–0.94) |
C22:6n-3 | 2.02 (1.38–2.88) | 1.91 (1.44–2.54) | 1.51 * (1.23–2.09) | 2.00 * (1.53–2.71) | 1.65 (1.24–2.29) | 2.00 (1.54–2.72) | 1.95 (1.37–2.51) | 2.09 (1.55–2.83) | 1.97 (1.42–2.70) | 2.09 (1.51–2.59) | 1.70 † (1.25–2.44) | 2.12 † (1.64–2.78) | 1.55 * (1.25–2.03) | 2.01 * (1.52–2.70) | 1.77 * (1.32–2.54) | 2.04 * (1.63–2.72) |
p Model | Dependent Variable | Independent Variable | P | β |
---|---|---|---|---|
0.0161 | C16:0 | CFTR genotype | 0.0068 | −0.2806 |
Sex | 0.0268 | −0.1768 | ||
0.0017 | C18:2n-6 | CFTR genotype | 0.0173 | 0.2410 |
Sex | 0.0338 | 0.1656 | ||
FEV1 | 0.0475 | 0.1889 | ||
0.0015 | C18:3n-6 | Age | 0.0002 | −0.3718 |
Diabetes | 0.0218 | −0.2051 | ||
0.0176 | C20:3n-6 | Pancreatic insufficiency | 0.0183 | 0.2377 |
0.0041 | C20:4n-6 | Age | 0.0280 | 0.2191 |
0.0014 | C22:5n-6 | Liver disease | 0.0065 | −0.2296 |
Pancreatic insufficiency | 0.0227 | 0.2238 | ||
0.0346 | C22:6n-3 | Pancreatic insufficiency | 0.0099 | 0.2622 |
CFTR genotype | 0.0072 | 0.2809 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drzymała-Czyż, S.; Krzyżanowska, P.; Koletzko, B.; Nowak, J.; Miśkiewicz-Chotnicka, A.; Moczko, J.A.; Lisowska, A.; Walkowiak, J. Determinants of Serum Glycerophospholipid Fatty Acids in Cystic Fibrosis. Int. J. Mol. Sci. 2017, 18, 185. https://doi.org/10.3390/ijms18010185
Drzymała-Czyż S, Krzyżanowska P, Koletzko B, Nowak J, Miśkiewicz-Chotnicka A, Moczko JA, Lisowska A, Walkowiak J. Determinants of Serum Glycerophospholipid Fatty Acids in Cystic Fibrosis. International Journal of Molecular Sciences. 2017; 18(1):185. https://doi.org/10.3390/ijms18010185
Chicago/Turabian StyleDrzymała-Czyż, Sławomira, Patrycja Krzyżanowska, Berthold Koletzko, Jan Nowak, Anna Miśkiewicz-Chotnicka, Jerzy A. Moczko, Aleksandra Lisowska, and Jarosław Walkowiak. 2017. "Determinants of Serum Glycerophospholipid Fatty Acids in Cystic Fibrosis" International Journal of Molecular Sciences 18, no. 1: 185. https://doi.org/10.3390/ijms18010185
APA StyleDrzymała-Czyż, S., Krzyżanowska, P., Koletzko, B., Nowak, J., Miśkiewicz-Chotnicka, A., Moczko, J. A., Lisowska, A., & Walkowiak, J. (2017). Determinants of Serum Glycerophospholipid Fatty Acids in Cystic Fibrosis. International Journal of Molecular Sciences, 18(1), 185. https://doi.org/10.3390/ijms18010185