Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work
Abstract
:1. Introduction
2. Advances in Microalgal Cultivation in Secondary Effluent
2.1. The Feasibility of Microalgal Cultivation in Secondary Effluent
2.2. Microalgal Lipid Production in Secondary Effluent
2.3. Microalgal Immobilization
2.4. Construction of a Microalgal Consortium
2.5. Pilot-Scale Culture of Microalgae in Secondary Effluent
3. Future Research into Microalgal Cultivation in Secondary Effluent
3.1. Screening Microalgae and Constructing the Microalgal Poly-Culture and Microalgal–Bacterial Co-Culture Consortium
3.2. Carbon Supplementation by CO2 Sequestration in Secondary Effluent
3.3. Improving the Use of Nitrogen in Secondary Effluent
3.4. Growth of Microalgae in Unsterilized Secondary Effluent
3.5. Development of Microalgal Harvesting Technologies
3.6. Use of Lipid-Extracted Algal Residues
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
A2/O | Anaerobic–anoxic–oxic |
AD | Anaerobic digestion |
ATS | Algal turf scrubber |
BDOC | Biodegradable dissolved organic carbon |
BNR | Biological nutrient removal |
BOD | Biochemical oxygen demand |
COD | Chemical oxygen demand |
DOC | Dissolved organic carbon |
HRAP | High rate alga pond |
LEA | Lipid-extracted algal residues |
RABR | Rotating algal biofilm reactor |
SS | Suspension solid |
TN | Total nitrogen |
TOC | Total organic carbon |
TP | Total phosphorous |
TPBR | Tubular photobioreactor |
UCT | University of Cape Town |
WWTPs | Wastewater treatment plants |
References
- Jin, L.; Zhang, G.; Tian, H. Current state of sewage treatment in China. Water Res. 2014, 66, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Loy, A. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 2002, 13, 218–227. [Google Scholar] [CrossRef]
- Wagner, M.; Rath, G.; Amann, R.; Koops, H.P.; Schleifer, K.H. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 1995, 18, 251–264. [Google Scholar] [CrossRef]
- Chambers, P.A.; McGoldrick, D.J.; Brua, R.B.; Vis, C.; Culp, J.M.; Benoy, G.A. Development of environmental thresholds for nitrogen and phosphorus in streams. J. Environ. Qual. 2012, 41, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Acero, J.L.; Benitez, F.J.; Real, F.J.; Teva, F. Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem. Eng. J. 2016, 289, 48–58. [Google Scholar] [CrossRef]
- Daigger, G.T.; Waltrip, G.D.; Romm, E.D.; Morales, L.M. Enhanced secondary treatment incorporating biological nutrient removal. J. Water Pollut. Control Fed. 1988, 60, 1833–1842. [Google Scholar]
- Kalkan, C.; Yapsakli, K.; Mertoglu, B.; Tufan, D.; Saatci, A. Evaluation of biological activated carbon (BAC) process in wastewater treatment secondary effluent for reclamation purposes. Desalination 2011, 265, 266–273. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Quan, Y.; Yin, Y.; Zheng, S. Effect of long-term organic removal on ion exchange properties and performance during sewage tertiary treatment by conventional anion exchange resins. Chemosphere 2015, 136, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yu, H.; Quan, X.; Chen, S.; Zhang, Y. Ceramic membrane separation coupled with catalytic ozonation for tertiary treatment of dyestuff wastewater in a pilot-scale study. Chem. Eng. J. 2016, 301, 19–26. [Google Scholar] [CrossRef]
- Zheng, S.K.; Chen, J.J.; Jiang, X.M.; Li, X.F. A comprehensive assessment on commercially available standard anion resins for tertiary treatment of municipal wastewater. Chem. Eng. J. 2011, 169, 194–199. [Google Scholar] [CrossRef]
- Arita, C.E.Q.; Peebles, C.; Bradley, T.H. Scalability of combining microalgae-based biofuels with wastewater facilities: A review. Algal Res. 2015, 9, 160–169. [Google Scholar] [CrossRef]
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Adewale, P.; Dumont, M.J.; Ngadi, M. Recent trends of biodiesel production from animal fat wastes and associated production techniques. Rene. Sustain Energy. Rev. 2015, 45, 574–588. [Google Scholar] [CrossRef]
- Beringer, T.I.M.; Lucht, W.; Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 2011, 3, 299–312. [Google Scholar] [CrossRef]
- Petrou, E.C.; Pappis, C.P. Biofuels: A survey on pros and cons. Energy Fuel 2009, 23, 1055–1066. [Google Scholar] [CrossRef]
- Ahmad, A.L.; Yasin, N.H.; Derek, C.J.C.; Lim, J.K. Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sustain Energy Rev. 2011, 15, 584–593. [Google Scholar] [CrossRef]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew. Sustain Energy. Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Hosseini, M.; Ju, L.K. Use of phagotrophic microalga Ochromonas danica to pretreat waste cooking oil for biodiesel production. J. Am. Oil Chem. Soc. 2015, 92, 29–35. [Google Scholar] [CrossRef]
- Nascimento, I.A.; Marques, S.S.I.; Cabanelas, I.T.D.; de Carvalho, G.C.; Nascimento, M.A.; de Souza, C.O.; Druzian, J.I.; Hussain, J.; Liao, W. Microalgae versus land crops as feedstock for biodiesel: Productivity, quality, and standard compliance. Bioenergy Res. 2014, 7, 1002–1013. [Google Scholar] [CrossRef]
- Demirbas, A.; Demirbas, M.F. Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 2011, 52, 163–170. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Bouwer, E. Biogas production from algae and cyanobacteria through anaerobic digestion: A review, analysis, and research needs. In Advanced Biofuels and Bioproducts; Lee, J.W., Ed.; Springer: New York, NY, USA, 2012; pp. 873–975. [Google Scholar]
- Harun, R.; Davidson, M.; Doyle, M.; Gopiraj, R.; Danquah, M.; Forde, G. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenergy 2011, 35, 741–747. [Google Scholar] [CrossRef]
- Sialve, B.; Bernet, N.; Bernard, O. Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 2009, 27, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.; Lee, Y.; Chang, K.S.; Lee, C.G.; Jin, E. Enhanced production of biomass and lipids by supplying CO2 in marine microalga Dunaliella sp. J. Microbiol. 2013, 51, 773–776. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.Y.; Chen, T.Y.; Chang, Y.B.; Chiu, T.W.; Lin, H.Y.; Chen, C.D.; Chang, J.H.; Lin, C.S. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresour. Technol. 2014, 166, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhao, L.; Qi, Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Appl. Energy 2015, 137, 282–291. [Google Scholar] [CrossRef]
- Zeng, X.; Guo, X.; Su, G.; Danquah, M.K.; Zhang, S.; Lu, Y.; Sun, Y.; Lin, L. Bioprocess considerations for microalgal-based wastewater treatment and biomass production. Renew. Sustain Energy. Rev. 2015, 42, 1385–1392. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.Y.; Gan, K.; Sun, Y.X. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010, 101, 5494–5500. [Google Scholar]
- Min, M.; Wang, L.; Li, Y.; Mohr, M.J.; Hu, B.; Zhou, W.; Chen, P.; Ruan, R. Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl. Biochem. Biotechnol. 2011, 165, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, H.; Zhong, Y.; Zhang, C.; Shen, Z.; Sang, W.; Yan, G.; Zhou, X. The effect of bacterial contamination on the heterotrophic cultivation of Chlorella pyrenoidosa in wastewater from the production of soybean products. Water Res. 2012, 46, 5509–5516. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhu, W.; Zhang, P.; Zhang, Z.; Wu, H.; Han, W. Comparison of AC/O3–BAC and O3–BAC processes for removing organic pollutants in secondary effluent. Chemosphere 2006, 62, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, H.Y.; Yang, J. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnol. 2010, 27, 59–63. [Google Scholar]
- Sawayama, S.; Minowa, T.; Dote, Y.; Yokoyama, S. Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl. Microbiol. Biotechnol. 1992, 38, 135–138. [Google Scholar] [CrossRef]
- Yang, J.; Li, X.; Hu, H.Y.; Zhang, X.; Yu, Y.; Chen, Y. Growth and lipid accumulation properties of a freshwater microalga, Chlorella ellipsoidea YJ1, in domestic secondary effluents. Appl. Energy 2011, 88, 3295–3299. [Google Scholar] [CrossRef]
- Chevalier, P.; Proulx, D.; Lessard, P.; Vincent, W.F.; de la Noüe, J. Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J. Appl. Phycol. 2000, 12, 105–112. [Google Scholar] [CrossRef]
- Tang, E.P.; Vincent, W.F.; Proulx, D.; Lessard, P.; de la Noüe, J. Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates. J. Appl. Phycol. 1997, 9, 371–381. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Pérez, C.; Perales, J.A. Capability of different microalgae species for phytoremediation processes: Wastewater tertiary treatment, CO2 bio-fixation and low cost biofuels production. Water Res. 2014, 49, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Sydney, E.B.; Da Silva, T.E.; Tokarski, A.; Novak, A.C.; de Carvalho, J.C.; Woiciecohwski, A.L.; Larroche, C.; Soccol, C.R. Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl. Energy 2011, 88, 3291–3294. [Google Scholar] [CrossRef]
- Park, K.C.; Whitney, C.; McNichol, J.C.; Dickinson, K.E.; MacQuarrie, S.; Skrupski, B.P.; Zou, J.T.; Wilson, K.E.; O’Leary, S.J.B.; McGinn, P.J. Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: Potential applications for wastewater remediation for biofuel production. J. Appl. Phycol. 2012, 24, 339–348. [Google Scholar] [CrossRef]
- Gómez-Serrano, C.; Morales-Amaral, M.M.; Acién, F.G.; Escudero, R.; Fernández-Sevilla, J.M.; Molina-Grima, E. Utilization of secondary-treated wastewater for the production of freshwater microalgae. Appl. Microbiol. Biotechnol. 2015, 99, 6931–6944. [Google Scholar] [CrossRef] [PubMed]
- Kaya, V.M.; de la Noüe, J.; Picard, G. A comparative study of four systems for tertiary wastewater treatment by Scenedesmus bicellularis: New technology for immobilization. J. Appl. Phycol. 1995, 7, 85–95. [Google Scholar] [CrossRef]
- Zhang, E.; Wang, B.; Wang, Q.; Zhang, S.; Zhao, B. Ammonia–nitrogen and orthophosphate removal by immobilized Scenedesmus sp. isolated from municipal wastewater for potential use in tertiary treatment. Bioresour. Technol. 2008, 99, 3787–3793. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Wang, B.; Ning, S.; Sun, H.; Yang, B.; Jin, M.; Hou, L. Ammonia-nitrogen and orthophosphate removal by immobilized Chlorella sp. isolated from municipal wastewater for potential use in tertiary treatment. Afr. J. Biotechnol. 2012, 11, 6529–6534. [Google Scholar]
- Chevalier, P.; de la Noüe, J. Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphate removal from wastewaters. Biotechnol. Lett. 1985, 7, 395–400. [Google Scholar] [CrossRef]
- De la Noüe, J.; Proulx, D. Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium. Appl. Microbiol. Biotechnol. 1988, 29, 292–297. [Google Scholar] [CrossRef]
- Kaya, V.M.; Picard, G. Stability of chitosan gel as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for tertiary treatment of wastewater. Bioresour. Technol. 1996, 56, 147–155. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Wong, Y.S. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ. Pollut. 2000, 107, 145–151. [Google Scholar] [CrossRef]
- Covarrubias, S.A.; de-Bashan, L.E.; Moreno, M.; Bashan, Y. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl. Microbiol. Biotechnol. 2012, 93, 2669–2680. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.; Flint, S.; Brooks, J. Bacterial cell attachment, the beginning of a biofilm. J. Ind. Microbiol. Biotechnol. 2007, 34, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Yang, Z.H.; Li, C.; Zeng, G.M.; Ma, D.H.; Zhou, L. A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. Bioresour. Technol. 2015, 179, 8–12. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Xue, G. Algal-based immobilization process to treat the effluent from a secondary wastewater treatment plant (WWTP). J. Hazard. Mater. 2010, 178, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Sukačová, K.; Trtílek, M.; Rataj, T. Phosphorus removal using a microalgal biofilm in a new biofilm photobioreactor for tertiary wastewater treatment. Water Res. 2015, 71, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Christenson, L.B.; Sims, R.C. Rotating algal biofilm reactor and spool harvester for wastewater treatment with biofuels by-products. Biotechnol. Bioeng. 2012, 109, 1674–1684. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Henry, W.; Michael, C.; Wen, Z. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest. Bioresour. Technol. 2013, 150, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Adey, W.H.; Kangas, P.C.; Mulbry, W. Algal turf scrubbing: Cleaning surface waters with solar energy while producing a biofuel. Bioscience 2011, 61, 434–441. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Chow, S.; Ketter, B.; Shek, C.F.; Yacar, D.; Tang, Y.; Bouwer, E.J. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae. Bioresour. Technol. 2016, 222, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Craggs, R.J.; Adey, W.H.; Jenson, K.R.; John, M.S.S.; Green, F.B.; Oswald, W.J. Phosphorus removal from wastewater using an algal turf scrubber. Water Sci. Technol. 1996, 33, 191–198. [Google Scholar] [CrossRef]
- Craggs, R.J.; Adey, W.H.; Jessup, B.K.; Oswald, W.J. A controlled stream mesocosm for tertiary treatment of sewage. Ecol. Eng. 1996, 6, 149–169. [Google Scholar] [CrossRef]
- Cruz, I.; Bashan, Y.; Hernàndez-Carmona, G.; de-Bashan, L.E. Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl. Microbiol. Biotechnol. 2013, 97, 9847–9858. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.P. Wastewater treatment with suspended and nonsuspended algae. J. Phycol. 1998, 34, 757–763. [Google Scholar] [CrossRef]
- Ruiz-Marin, A.; Mendoza-Espinosa, L.G.; Stephenson, T. Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 2010, 101, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Mahdavi, H.; Prasad, V.; Liu, Y.; Ulrich, A.C. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae–bacteria consortium. Bioresour. Technol. 2015, 187, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Maza-Márquez, P.; Martinez-Toledo, M.V.; Fenice, M.; Andrade, L.; Lasserrot, A.; Gonzalez-Lopez, J. Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int. Biodeterior. Biodegrad. 2014, 88, 69–76. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Huang, S.; Qiu, D.; Schideman, L.; Chai, X.; Zhao, Y. Characterization of microalgae-bacteria consortium cultured in landfill leachate for carbon fixation and lipid production. Bioresour. Technol. 2014, 156, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Subashchandrabose, S.R.; Ramakrishnan, B.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnol. Adv. 2011, 29, 896–907. [Google Scholar] [CrossRef] [PubMed]
- De-Bashan, L.E.; Hernandez, J.P.; Morey, T.; Bashan, Y. Microalgae growth-promoting bacteria as “helpers” for microalgae: A novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 2004, 38, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.F.; Yu, Y.; Hu, H.Y. Effects on the growth characteristic by mixed culture of three energy microalgae species using domestic secondary effluent. Ecol. Environ. Sci. 2014, 23, 642–648. (In Chinese) [Google Scholar]
- Van Coillie, R.; del la Noue, J.; Thellen, C.; Pouliot, Y. Tertiary domestic waste water treatment by Scenedesmus sp. pilot-scale culture. Revue des Sciences de l’Eau 1990, 3, 441–455. (In French) [Google Scholar] [CrossRef]
- McGinn, P.J.; Dickinson, K.E.; Park, K.C.; Whitney, C.G.; MacQuarrie, S.P.; Black, F.J.; Frigon, J.C.; Guiot, S.R.; O’Leary, S.J.B. Assessment of the bioenergy and bioremediation potentials of the microalga Scenedesmus sp. AMDD cultivated in municipal wastewater effluent in batch and continuous mode. Algal Res. 2012, 1, 155–165. [Google Scholar] [CrossRef]
- Arbib, Z.; Ruiz, J.; Álvarez-Díaz, P.; Garrido-Pérez, C.; Barragan, J.; Perales, J.A. Long term outdoor operation of a tubular airlift pilot photobioreactor and a high rate algal pond as tertiary treatment of urban wastewater. Ecol. Eng. 2013, 52, 143–153. [Google Scholar] [CrossRef]
- Wu, Y.H.; Hu, H.Y.; Yu, Y.; Zhang, T.Y.; Zhu, S.F.; Zhuang, L.L.; Zhang, X.; Lu, Y. Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. Renew. Sustain Energy Rev. 2014, 33, 675–688. [Google Scholar] [CrossRef]
- Chiu, S.Y.; Kao, C.Y.; Chen, T.Y.; Chang, Y.B.; Kuo, C.M.; Lin, C.S. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour. Technol. 2015, 184, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Maity, J.P.; Bundschuh, J.; Chen, C.Y.; Bhattacharya, P. Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: Present and future perspectives–A mini review. Energy 2014, 78, 104–113. [Google Scholar] [CrossRef]
- Órpez, R.; Martínez, M.E.; Hodaifa, G.; El Yousfi, F.; Jbari, N.; Sánchez, S. Growth of the microalga Botryococcus braunii in secondarily treated sewage. Desalination 2009, 246, 625–630. [Google Scholar] [CrossRef]
- Lizzul, A.M.; Hellier, P.; Purton, S.; Baganz, F.; Ladommatos, N.; Campos, L. Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour. Technol. 2014, 151, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Bohutskyi, P.; Liu, K.; Nasr, L.K.; Byers, N.; Rosenberg, J.N.; Oyler, G.A.; Betenbaugh, M.J.; Bouwer, E.J. Bioprospecting of microalgae for integrated biomass production and phytoremediation of unsterilized wastewater and anaerobic digestion centrate. Appl. Microbiol. Biotechnol. 2015, 99, 6139–6154. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Luong, T.T.; Lee, D.; Oh, Y.K.; Lee, T. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresour. Technol. 2011, 102, 8639–8645. [Google Scholar] [CrossRef] [PubMed]
- Cabanelas, I.T.D.; Ruiz, J.; Arbib, Z.; Chinalia, F.A.; Garrido-Pérez, C.; Rogalla, F.; Nascimento, I.A.; Perale, J.A. Comparing the use of different domestic wastewaters for coupling microalgal production and nutrient removal. Bioresour. Technol. 2013, 131, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.K.; Abou-Shanab, R.A.; Kim, S.H.; Salama, E.S.; Lee, S.H.; Kabra, A.N.; Lee, Y.S.; Hong, S.; Jeon, B.H. Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol. Eng. 2013, 58, 142–148. [Google Scholar] [CrossRef]
- Ebrahimian, A.; Kariminia, H.R.; Vosoughi, M. Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renew. Energ. 2014, 71, 502–508. [Google Scholar] [CrossRef]
- Samorì, G.; Samorì, C.; Guerrini, F.; Pistocchi, R. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: Part I. Water Res. 2013, 47, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Lan, C.Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 2011, 102, 5639–5644. [Google Scholar] [CrossRef] [PubMed]
- Martınez, M.E.; Sánchez, S.; Jimenez, J.M.; El Yousfi, F.; Munoz, L. Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 2000, 73, 263–272. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.Y.; Zhang, Y.P. Effect of inorganic carbon supplement on the growth and lipid accumulation properties of Scenedesmus sp. LX1. Environ. Sci. 2011, 32, 2260–2266. (In Chinese) [Google Scholar]
- Kaya, V.M.; Goulet, J.; de la Noüe, J.; Picard, G. Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzym. Microb. Technol. 1996, 18, 550–554. [Google Scholar] [CrossRef]
- Xu, M.; Li, P.; Tang, T.; Hu, Z. Roles of SRT and HRT of an algal membrane bioreactor system with a tanks-in-series configuration for secondary wastewater effluent polishing. Ecol. Eng. 2015, 85, 257–264. [Google Scholar] [CrossRef]
- Wu, Y.H.; Li, X.; Yu, Y.; Hu, H.Y.; Zhang, T.Y.; Li, F.M. An integrated microalgal growth model and its application to optimize the biomass production of Scenedesmus sp. LX1 in open pond under the nutrient level of domestic secondary effluent. Bioresour. Technol. 2013, 144, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Lynch, F.; Santana-Sánchez, A.; Jämsä, M.; Sivonen, K.; Aro, E.M.; Allahverdiyeva, Y. Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. Algal Res. 2015, 11, 411–420. [Google Scholar] [CrossRef]
- Choi, Y.E.; Hwang, H.; Kim, H.S.; Ahn, J.W.; Jeong, W.J.; Yang, J.W. Comparative proteomics using lipid over-producing or less-producing mutants unravels lipid metabolisms in Chlamydomonas reinhardtii. Bioresour. Technol. 2013, 145, 108–115. [Google Scholar] [CrossRef] [PubMed]
- De Lomana, A.L.G.; Schäuble, S.; Valenzuela, J.; Imam, S.; Carter, W.; Bilgin, D.D.; Price, N.D. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol. Biofuels 2015, 8, 207. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Wang, Y.; Shen, Y.; Yan, D.; He, X.; Dai, J.; Wu, Q. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genom. 2014, 15, 582. [Google Scholar] [CrossRef] [PubMed]
- Fouilland, E. Biodiversity as a tool for waste phycoremediation and biomass production. Rev. Environ. Sci. Biol. 2012, 11, 1–4. [Google Scholar] [CrossRef]
- Cheah, W.Y.; Show, P.L.; Chang, J.S.; Ling, T.C.; Juan, J.C. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 2015, 84, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Van Den Hende, S.; Vervaeren, H.; Boon, N. Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities. Biotechnol. Adv. 2012, 30, 1405–1424. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.; Su, Y. Process effect of microalgal-carbon dioxide fixation and biomass production: A review. Renew. Sustain Energy. Rev. 2014, 31, 121–132. [Google Scholar] [CrossRef]
- Krasner, S.W.; Westerhoff, P.; Chen, B.; Rittmann, B.E.; Nam, S.N.; Amy, G. Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter. Environ. Sci. Technol. 2009, 43, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Pochana, K.; Keller, J. Study of factors affecting simultaneous nitrification and denitrification (SND). Water Sci. Technol. 1999, 39, 61–68. [Google Scholar] [CrossRef]
- Zhang, B.; Yamamoto, K. Seasonal change of microbial population and activities in a building wastewater reuse system using a membrane separation activated sludge process. Water Sci. Technol. 1996, 34, 295–302. [Google Scholar] [CrossRef]
- Xiong, J.; Guo, G.; Mahmood, Q.; Yue, M. Nitrogen removal from secondary effluent by using integrated constructed wetland system. Ecol. Eng. 2011, 37, 659–662. [Google Scholar] [CrossRef]
- Abe, K.; Komada, M.; Ookuma, A.; Itahashi, S.; Banzai, K. Purification performance of a shallow free-water-surface constructed wetland receiving secondary effluent for about 5 years. Ecol. Eng. 2014, 69, 126–133. [Google Scholar] [CrossRef]
- Lee, K.Y.; Ng, T.W.; Li, G.; An, T.; Kwan, K.K.; Chan, K.M.; Huang, G.; Yip, H.Y.; Wong, P.K. Simultaneous nutrient removal, optimised CO2 mitigation and biofuel feedstock production by Chlorogonium sp. grown in secondary treated non-sterile saline sewage effluent. J. Hazard. Mater. 2015, 297, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.Y.; Wu, Y.H.; Hu, H.Y. Domestic wastewater treatment and biofuel production by using microalga Scenedesmus sp. ZTY1. Water Sci. Technol. 2014, 69, 2492–2496. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hong, Y. Comparison in growth, lipid accumulation, and nutrient removal capacities of Chlorella sp. in secondary effluents under sterile and non-sterile conditions. Water Sci. Technol. 2012, 69, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Wu, Y.H.; Zhu, S.F.; Hu, H.Y. The bioavailability of the soluble algal products of different microalgal strains and its influence on microalgal growth in unsterilized domestic secondary effluent. Bioresour. Technol. 2015, 180, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Bohutskyi, P.; Chow, S.; Ketter, B.; Betenbaugh, M.J.; Bouwer, E.J. Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion. Appl. Energ. 2015, 154, 718–731. [Google Scholar] [CrossRef]
- Bohutskyi, P.; Ketter, B.; Chow, S.; Adams, K.J.; Betenbaugh, M.J.; Allnutt, F.T.; Bouwer, E.J. Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour. Technol. 2015, 183, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Bohutskyi, P.; Kligerman, D.C.; Byers, N.; Nasr, L.K.; Cua, C.; Chow, S.; Su, C.; Tang, Y.; Betenbaugh, M.J.; Bouwer, E.J. Effects of inoculum size, light intensity, and dose of anaerobic digestion centrate on growth and productivity of Chlorella and Scenedesmus microalgae and their poly-culture in primary and secondary wastewater. Algal Res. 2016, 19, 278–290. [Google Scholar] [CrossRef]
- Chinnasamy, S.; Bhatnagar, A.; Hunt, R.W.; Das, K.C. Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour. Technol. 2010, 101, 3097–3105. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.H.; Ye, X.; Hasunuma, T.; Chang, J.S.; Kondo, A. Perspectives on engineering strategies for improving biofuel production from microalgae-A critical review. Biotechnol. Adv. 2014, 32, 1448–1459. [Google Scholar] [CrossRef] [PubMed]
- Passero, M.L.; Cragin, B.; Hall, A.R.; Staley, N.; Coats, E.R.; McDonald, A.G.; Feris, K. Ultraviolet radiation pre-treatment modifies dairy wastewater, improving its utility as a medium for algal cultivation. Algal Res. 2014, 6, 98–110. [Google Scholar] [CrossRef]
- Olguín, E.J. Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol. Adv. 2012, 30, 1031–1046. [Google Scholar] [CrossRef] [PubMed]
- Amaro, H.M.; Guedes, A.; Malcata, F.X. Advances and perspectives in using microalgae to produce biodiesel. Appl. Energy 2011, 88, 3402–3410. [Google Scholar] [CrossRef]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 2011, 88, 3411–3424. [Google Scholar] [CrossRef]
- Rawat, I.; Kumar, R.R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Adav, S.S.; Lee, D.J.; Show, K.Y.; Tay, J.H. Aerobic granular sludge: Recent advances. Biotechnol. Adv. 2008, 26, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Liu, Y.; Tay, J.H. The role of SBR mixed liquor volume exchange ratio in aerobic granulation. Chemosphere 2006, 62, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Valigore, J.M.; Gostomski, P.A.; Wareham, D.G.; O’Sullivan, A.D. Effects of hydraulic and solids retention times on productivity and settleability of microbial (microalgal–bacterial) biomass grown on primary treated wastewater as a biofuel feedstock. Water Res. 2012, 46, 2957–2964. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.H.; Show, P.L.; Chang, J.S.; Ling, T.C.; Lan, J.C.W. Novel approaches of producing bioenergies from microalgae: A recent review. Biotechnol. Adv. 2015, 33, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Conde, J.L.; Moro, L.E.; Travieso, L.; Sanchez, E.P.; Leiva, A.; Dupeiron, R.; Escobedo, R. Biogas purification process using intensive microalgae cultures. Biotechnol. Lett. 1993, 15, 317–320. [Google Scholar] [CrossRef]
- Heubeck, S.; Craggs, R.J.; Shilton, A. Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci. Technol. 2007, 55, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Doušková, I.; Kaštánek, F.; Maléterová, Y.; Kaštánek, P.; Doucha, J.; Zachleder, V. Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: Biogas-cogeneration-microalgae-products. Energy Convers. Manag. 2010, 51, 606–611. [Google Scholar] [CrossRef]
- Holm-Nielsen, J.B.; Al Seadi, T.; Oleskowicz-Popiel, P. The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 2009, 100, 5478–5484. [Google Scholar] [CrossRef] [PubMed]
Microalgae Species | Free Cell (F) or Immobilization (I) | Preliminary Treatment of Wastewater | The Volume of the Cultivation (L) | Cultivation Time (h) | CO2 (%) | Biomass Energy | Nutrients Removal Efficiency (%) | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass Production (g·L−1) | Biomass Productivity (mg·L−1·day−1) | Lipid Productivity (mg·L−1·day−1) | Lipid Content (%) | COD | TN | NH4+ | NO3− | TP | |||||||
a natural algal bloom | F | no treatment | 2 | 240 | 5 | 1.884 | 200.4 | - | 26.82 | - | 79 | - | - | >98 | [38] |
Botryococcus braunii | F | filtration (0.2 µm) and autoclaving | 3 | 240 | 1 | 0.35 | - | - | - | - | - | - | >99 | >99 | [34] |
Botryococcus braunii | F | filtration | 0.5 | 1000 | - | - | 288–345.6 | - | 17.85 | - | - | - | - | - | [75] |
Botryococcus braunii | F | no treatment | 9 | 336 | 5 | 1.88 | - | - | 36.14 | - | - | - | 79.63 | 100 | [39] |
Chlorella ellipsoidea YJ1 | F | filtration (0.45 µm) and autoclaving | 0.3 | 528 | - | 0.425 | - | 12.7 | 43 | - | >99 | - | - | >90 | [35] |
Chlorella kessleri | F | no treatment | 2 | 240 | 5 | 1.172 | 132.3 | - | 20.55 | - | >90 | - | - | >98 | [38] |
Chlorella sorokiniana | F | autoclaving | 1 | 96 | 12 | 0.25 | 62.5 | 8 | 32 | - | - | - | 100 | 0 | [76] |
Chlorella sorokiniana | F | no treatment | 0.45 | 240 | - | 0.1 | - | - | - | - | 80 | - | - | 40 | [77] |
Chlorella sp. 227 | F | filtration (0.45 µm) or UV-radiation | 0.5 | 216 | - | 0.41–0.67 | - | 6.9–22.9 | 15–31 | 13.8–24.8 | 75–92 | - | - | 84–86 | [78] |
Chlorella vulgaris | F | no treatment | 2 | 120 | - | 0.76–0.82 | 73.88–79.82 | - | - | - | - | - | - | 92 | [79] |
Chlorella vulgaris | F | filtration (0.2 µm) | 0.2 | 168 | 15 | 0.29 | - | - | 30 | - | >99 | - | - | >99 | [80] |
Chlorella vulgaris | F | no treatment | 2 | 240 | 5 | 1.303 | 116 | - | 22.02 | - | >90 | - | - | >98 | [38] |
Chlorella vulgaris | F | filtration | 2 | 168 | air a | 1.03 | 171.33 | 43.52 | 27.6 | - | - | - | 94 | - | [81] |
Desmodesmus communis | F | filtration | 1 | 360 | 2 | 0.79 | 23 | - | 9.3 | 100 | [82] | ||||
Neochloris oleoabundans | F | filtration (1.2 µm) and autoclaving | 0.4 | 240 | 5 | 2.1 | 233.3 | - | - | - | - | >90 | 78–99 | 100 | [83] |
Ourococcus multisporus | F | filtration (0.2 µm) | 0.2 | 168 | 15 | 0.31 | - | - | 31 | - | >99 | - | - | >99 | [80] |
Scenedesmus obliquus | F | filtration and autoclaving | 1 | 192 | - | - | - | - | 31.4 | - | - | >90 | - | >90 | [84] |
Scenedesmus obliquus | F | filtration (0.2 µm) | 0.2 | 168 | 15 | 0.31 | - | - | 27 | - | >99 | - | - | >99 | [80] |
Scenedesmus obliquus | F | no treatment | 2 | 240 | 5 | 1.684 | 201.4 | - | 19.38 | - | >90 | - | - | >98 | [38] |
Scenedesmus sp. AMDD | F | filtration (0.2 µm) | 0.15 | 288 | unknown concentration | 0.13 | 127.22–132.73 | - | 11.72–12.08 | - | - | >90 | - | >90 | [40] |
Scenedesmus sp. LX1 | F | filtration (0.45 µm) and autoclaving | 0.2 | 360 | - | 0.11 | - | 35 | 31–33 | - | 98.5 | - | - | 98 | [33] |
Scenedesmus sp. LX1 | F | autoclaving | 0.2 | 336 | 5 | 0.77 | - | - | 35 | - | - | - | - | - | [85] |
Chlorella sp. | I | filtration and autoclaving | 0.35 | 8 | air | - | - | - | - | - | - | 100 | - | 100 | [44] |
Phormidium sp. | I | no treatment | 0.5 | 24 | - | - | - | - | - | - | - | >90 | >90 | >90 | [46] |
Scenedesmus bicellularis | I | unknown | unknown | 2 | - | 1.57–1.86 | - | - | - | - | - | 100 | - | 88–100 | [42] |
Scenedesmus bicellularis | I | autoclaving | 2.5 | 2 | 750–1500 b | - | - | - | - | - | - | 42.1–100 | - | 19.1–99.1 | [86] |
Seenedesmus quadricauda | I | roughly screened | 1 | 3 | - | - | - | - | - | - | - | 85–100 | - | - | [45] |
Scenedesmus sp. | I | filtration and autoclaving | 0.35 | 4 | air | - | - | - | - | - | - | 100 | - | 100 | [43] |
Scenedesmus sp. | I | no treatment | 96 | 72 | - | - | - | - | - | 0 | 47.86 | 96 | - | >90 | [52] |
Microalgae Species | Free cell (F) or Immobilization (I) | Cultivation Time (d) | Hydraulic Retention Time (d) | Biomass Energy | Nutrients Removal Efficiency (%) | References | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biomass Production (g·L−1) | Biomass Productivity (mg·L−1·day−1) | Lipid Productivity (mg·L−1·day−1) | Lipid Content (%) | COD | TN | NH4+ | NO3− | TP | |||||
Chlorella vulgaris | F | 240 | 0.04–2 | 0.69–1.289 a | 47.5–131.7 | - | - | - | 54–95.3 | - | - | 84.4–94.9 | [87] |
Scenedesmus sp. AMDD | F | 24 | 1.48 | 0.312–0.356 | 234–267 | 11.91–15.19 | 5.14–5.70 | - | - | 100 | - | 100 | [70] |
Scenedesmus obliquus | F | 112 | 5 | - | 21.76 b | - | 20.8 | - | 89.68 | - | - | 86.71 | [71] |
Scenedesmus obliquus | F | 104 | 10 | - | 8.26 b | - | 20.8 | - | 58.78 | - | - | 58.78 | [71] |
Scenedesmus sp. | F | - | 5.2 | 0.5 | 20 b | - | - | - | - | - | - | - | [88] |
Scenedesmus sp. | I | 91 | 2 | 0.1–0.3 | - | - | - | 21–48.36 | 36 | 24–55 | - | 40–80 | [52] |
The Number of Secondary Effluent | COD (mg/L) | TOC (mg/L) | BOD (mg/L) | TN (mg/L) | NH4+-N (mg/L) | NO3−-N (mg/L) | TP (mg/L) | NO3−-N/NH4+-N | References |
---|---|---|---|---|---|---|---|---|---|
1 | - | 7.4 | - | 6.3 | <0.01 | 4.48 | 0.39 | >448 | [34] |
2 | - | 5.5 | - | 8.9 | 0.17 | 7.67 | 0.04 | 45.11 | [34] |
3 | 45–60 | - | - | 12.5–23.8 | 3.8–7.6 | - | 0.82–1.67 | - | [52] |
4 | 24 | - | - | 15.5 | 2.5 | - | 0.5 | - | [33] |
5 | - | - | - | - | 0.24 | 4.94 | <0.01 | 20.58 | [82] |
6 | 56 | - | - | 22.13 | 4.10 | 15.12 | - | 3.69 | [100] |
7 | - | - | - | 20.0 | 7.6 | 10.3 | 1.95 | 1.36 | [101] |
8 | 24 | - | - | 7.0 | 0.50 | - | 0.46 | - | [35] |
9 | 22.1 | - | - | 15.5 | 2.5 | - | 0.05 | - | [35] |
10 | 24.5 | - | - | 16.7 | 3.7 | - | 0.08 | - | [35] |
11 | 49.7 | - | - | 11.9 | 15.0 | 0.9 | 11.5 | 0.06 | [75] |
12 | - | - | 10–19 | - | 21.62–28.85 | - | 2.22–3.51 | - | [70] |
13 | - | 8.1 | - | 8.7 | 9.4 | 8.5 | 1.71 | 0.90 | [80] |
14 | 100 | - | - | - | 21 | 1.6 | 5.6 | 0.08 | [38] |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Feng, J.; Liu, Q.; Xie, S. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work. Int. J. Mol. Sci. 2017, 18, 79. https://doi.org/10.3390/ijms18010079
Lv J, Feng J, Liu Q, Xie S. Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work. International Journal of Molecular Sciences. 2017; 18(1):79. https://doi.org/10.3390/ijms18010079
Chicago/Turabian StyleLv, Junping, Jia Feng, Qi Liu, and Shulian Xie. 2017. "Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work" International Journal of Molecular Sciences 18, no. 1: 79. https://doi.org/10.3390/ijms18010079
APA StyleLv, J., Feng, J., Liu, Q., & Xie, S. (2017). Microalgal Cultivation in Secondary Effluent: Recent Developments and Future Work. International Journal of Molecular Sciences, 18(1), 79. https://doi.org/10.3390/ijms18010079