Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children
Abstract
:1. Introduction
2. Why Studies in Children with IGF-1 Are Important?
3. What Clinical Studies Have Been Carried Out?
3.1. Neonatal Asphyxia
3.2. The Finnish Study: Infantile Spasms, PEHO Syndrome, INCL Autistic Spectrum Disorder (ASD): Infantile Autism and Rett Syndrome
3.2.1. Infantile Spasms
3.2.2. PEHO Syndrome
3.2.3. Infantile Neuronal Ceroid Lipofuscinosis (INCL)
3.2.4. Autism
Head Growth in Autism
CSF IGF-1 and IGF-2 in Autism
Cerebellum and Autism
Serotonin and IGF in Autism
3.2.5. Rett Syndrome
3.3. Subacute Sclerosing Panecephalitis and Over-Expression of IGF-1 in Advanced Stage
4. IGF-Based Therapeutic Strategies
5. What Are the Therapeutic Approaches?
5.1. What Is the Current Status of IGF-1 Treatment?
5.2. Longevity of the Therapy and Long-Term Adverse Effects
5.2.1. How Long Should IGF-1 Therapy Be Used?
5.2.2. Long-Term Side-effects
5.3. Timing of Therapy
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Beck, K.L.; Powel-Braxton, L.; Widmer, H.-R.; Valverde, J.; Hefti, F. IGF-1 gene distruption results in reduced brain size, CNS hypomyelination, and loss of hippocampal granule and striatal paralbumin-containing neurons. Neuron 1995, 14, 717–730. [Google Scholar] [CrossRef]
- Leventhal, P.; Russel, J.; Feldman, E. IGFs and the nervous system. In The IGF System: Molecular Biology, Physiology and Clinical Application; Rosenfeld, C., Roberts, C., Eds.; Humana Press, Inc.: Totowa, NJ, USA, 1999; pp. 425–455. [Google Scholar]
- Schoenle, E.J.; Haselbacher, G.K.; Briner, J. Elevated concentrations of IGFII in brain tissue from an infant with macrocephaly. J. Pediatr. 1986, 108, 737–740. [Google Scholar] [CrossRef]
- Barres, B.; Hart, I.; Coles, H.; Burne, J.F.; Voyvodic, J.T.; Richardson, W.D.; Raff, M.C. Cell death and control of cell survival. Cell 1992, 70, 31–42. [Google Scholar] [CrossRef]
- Torres-Aleman, I.; Barrios, W.; Liedo, A.; Bericiano, J. The insulin-like growth factor I system in cerebellar degeneration. Ann. Neurol. 1996, 39, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Dopping, J.; Sand, J. Quantitative growth and development of human brain. Arch. Dis. Child. 1973, 43, 757–767. [Google Scholar] [CrossRef]
- Russo, V.; Gluckman, E.; Feldman, L.; Werther, G. The insulin-like growth factor system and its pleiotropic functions in brain. Endocr. Rev. 2005, 26, 916–943. [Google Scholar] [CrossRef] [PubMed]
- Johnston, B.; Mallard, E.A.; Williams, C.E.; Gluckman, P.D. Insulin-like growth factor is a potent neuronal rescue agent after hypoxic-ischemic injury in lambs. J. Clin. Investig. 1996, 97, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Custodio, R.J.; do Carmo Custodio, V.I.; Scrideli, C.A.; Sader Milani, S.L.; Cervi, M.C.; Cupo, P.; Martinelli, C.E., Jr. Impact of hypoxia on IGF-1, IGF-II, IGFB-3. ALS and IGFBP-1 regulation and on IGF1R gene expression in children. Growth Horm. IGF Res. 2012, 22, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Verhaeghe, J.; Van Herck, E.; Billen, J.; Moerman, P.; Van Assche, F.A.; Giudice, L.C. Regulation of insulin-like growth factor-I and insulin-like growth factor binding protein-1 concentrations in preterm fetuses. Am. J. Obstet. Gynecol. 2003, 188, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Clarke, A.; Yeomans, E.; Elsayed, K.; Medhurst, A.; Berger, P.; Skuza, E.; Tan, K. A randomised crossover trial of clinical algorithm for oxygen saturation targeting in preterm infants with frequent desaturation episodes. Neonatology 2015, 107, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Hansen-Pupp, I.; Hellstrom-Westas, L.; Cilio, C.M.; Andersson, S.; Fellman, V.; Ley, D. Inflammation at birth and the insulin-like growth factor system in very preterm infants. Acta Paediatr. 2007, 96, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Papastathi, C.; Mavrommatis, A.; Mentzelopoulos, S.; Konstandelou, E.; Alevizaki, M.; Zakynthinos, S. Insulin-like Growth Factor I and its binding protein 3 in sepsis. Growth Horm. IGF Res. 2013, 23, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Hellström, A.; Ley, D.; Hansen-Pupp, I.; Hallberg, B.; Löfqvist, C.; Van Marter, L.; van Weissenbruch, M.; Ramenghi, L.; Beardsali, K.; Dunger, D.; et al. Insulin-like growth factor 1 has multisystem effects on foetal and preterm infant development. Acta Pediatr. 2016, 105, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Panigrahy, A.; Wisnowski, J.L.; Furtado, A.; Lepore, N.; Paquette, L.; Bluml, S. Neuroimaging biomarkers of preterm brain injury: Toward developing the preterm connectome. Pediatr. Radiol. 2012, 42 (Suppl. 1), S33–S61. [Google Scholar] [CrossRef] [PubMed]
- Lofqvist, C.; Engstrom, E.; Sigurdsson, J.; Hard, A.L.; Niklasson, A.; Ewald, U.; Holmström, G.; Smith, L.E.; Hellström, A. Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit. Pediatrics 2006, 117, 1930–1938. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, L.; Riikonen, R.; Nawa, H.; Lindholm, D. Brain derived neurotrophic factor is increased in cerebrospinal fluid of children suffering from asphyxia. Neurosci. Lett. 1998, 240, 151–154. [Google Scholar] [CrossRef]
- Riikonen, R.S.; Korhonen, L.T.; Lindholm, D.B. Cerebrospinal nerve growth factor—A marker of asphyxia? Pediatr. Neurol. 1999, 20, 137–141. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Baram, T.Z.; Mitchell, W.G.; Snead, O.C., III; Horton, E.J.; Saito, M. Brain-adrenal axis hormones are altered in the CSF of infants with massive infantile spasms. Neurology 1992, 42, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Brunson, K.; Khan, B.S.; Eghbal-Ahmadi, M.; Baram, T.Z. Corticotropin (ACTH) acts directly on amygdala neurons to down-regulate corticotropin-releasing hormone gene expression. Ann. Neurol. 2001, 49, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Pitkänen, A. Drug-mediated neuroprotection and antiepileptogenesis: Animal data. Neurology 2002, 59, S27–S33. [Google Scholar] [CrossRef] [PubMed]
- Corvin, A.P.; Molinos, I.; Little, G.; Donohoe, G.; Gill, M.; Morris, D.W.; Tropea, D. Insulin-like growth factor 1 (IGF1) and its active peptide (1-3) IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms. Neurosci. Lett. 2012, 520, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.M.; Kelley, B.; Wang, J.; Strauss, D.; Eagles, D.A.; Bondy, C.A. A ketogenic diet increases brain insulin-like growth factor receptor and glucose transporter gene expression. Endocrinology 2003, 144, 2676–2682. [Google Scholar] [CrossRef] [PubMed]
- Agha, A.; Monson, J.P. Modulation of glucocorticoid metabolism by the growth hormone—IGF-1 axis. Clin. Endocrinol. 2007, 66, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.S.; Jääskeläinen, J.; Turpeinen, U. Insulin-like growth factor-1 is associated with cognitive outcome in infantile spasms. Epilepsia 2010, 51, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Szczesny, E.; Basta-Kaim, A.; Slusarczyk, J.; Trojan, E.; Glombik, K.; Regulska, M.; Leskiewicz, M.; Budziszewska, B.; Kubera, M.; Lason, W. The impact of prenatal stress on insulin-like growth factor-1 and pro-inflammatory cytokine expression in the brains of adult male rats: The possible role of suppressors of cytokine signaling proteins. J. Neuroimmunol. 2014, 276, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Rener-Primec, Z.; Lozar-Krivec, J.; Krivec, U.; Neubauer, D. Head growth in infants with infantile spasms may be temporarily reduced. Pediatr. Neurol. 2006, 35, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Saemundsen, E.; Ludvigsson, P.; Rafnsson, V. Risk of autism spectrum disorders after infantile spasms: A populationbased study nested in a cohort with seizures in the first year of life. Epilepsia 2008, 49, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Walters, K.; Boller, L.; Ghiasvand, S.; Liu, J.; Staley, K.; Pimentel, C.; Berdichevsky, Y. Neuroprotective levels of IGF-1 exacerbate epileptogenesis after brain injury. Sci. Rep. 2016, 6, 32095. [Google Scholar] [CrossRef] [PubMed]
- Miltiadous, P.; Stamatakis, A.; Koutsoudaki, P.N.; Tiniakos, D.G.; Stylianopoulou, F. IGF-I ameliorates hippocampal neurodegeneration and protects against cognitive deficits in an animal model of temporal lobe epilepsy. Exp. Neurol. 2011, 231, 223–235. [Google Scholar] [CrossRef] [PubMed]
- Salonen, R.; Somer, M.; Haltia, M.; Lorentz, M.; Norio, R. Progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO syndrome). Clin. Genet. 1991, 39, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R. Infantile spasms in siblings. J. Pediatr. Neurosci. 1987, 3, 235–244. [Google Scholar]
- Somer, M. Diagnostic criteria and genetics of the PEHO syndrome. J. Med. Genet. 1993, 30, 932–936. [Google Scholar] [CrossRef] [PubMed]
- Anttonen, A.K.; Laari, A.; Kousi, M.; Yang, Y.J.; Jääskeläinen, T.; Somer, M.; Siintola, E.; Jakkula, E.; Tegelberg, S.; Lönnqvist, T.; et al. ZNHIT3 is defective in PEHO syndrome, a severe encephalopathy with cerebellar granule neuron loss. Brain 2017. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.; Somer, M.; Turpeinen, U. Low insulin-like growth factor (IGF-1) in children with progressive encephalopathy, hypsarrhythmia, and optic atrophy (PEHO) syndrome and cerebellar degeneration. Epilepsia 1999, 40, 1642–1648. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, S.; Riikonen, R. Markedly elevated nitrate/nitrite levels in the cerebrospinal fluid of children with progressive encephalopathy with edema, hypsarrhythmia and optic atrophy and cerebellar degeneration. Epilepsia 2000, 41, 705–708. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R. The PEHO syndrome. Brain Dev. 2001, 23, 765–769. [Google Scholar] [CrossRef]
- Riikonen, R. Low high-density cholesterol in patients with progressive encephalopathy with edema, hypsarrhythmia, and optic atrophy (PEHO) syndrome and PEHO-like patients. J. Int. Child Neurol. Assoc. 2015, 1, 1–4. [Google Scholar]
- Järvelä, I.; Schleutker, J.; Haataja, L.; Santavuori, P.; Puhakka, L.; Manninen, T.; Palotie, A.; Sandkuijl, L.A.; Renlund, M.; White, R. Infantile form of neuronal lipofuscinosis (CLN1) maps to the short arm of chromosome 1. Genomics 1991, 9, 170–173. [Google Scholar] [CrossRef]
- Tyynelä, J.; Baumann, M.; Henseler, M.; Sandhoff, K.; Haltia, M. Sphingolipid activator proteins (SAPs) are stored together with glycosphingolipids in the infantile neuronal ceroid-lipofuscinosis (INCL). Am. J. Med. Genet. 1995, 57, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Pedraza, L.; Owens, G.; Green, L.A.; Salzer, J.L. The myelin-associated glycoproteins: Membranr disposition, evidence of a novel disulfitide linkage between immunoglobulin-like domains, and posttranslational palmitylation. J. Cell Biol. 1990, 111, 2651–2661. [Google Scholar] [CrossRef] [PubMed]
- Vanhanen, S.-L.; Raininko, R.; Santavuori, P. MRI evaluation of the brain in infantile ceroid lipofuscinosis. Part 2: MRI findings in 21 patients. J. Child. Neurol. 1995, 10, 445–550. [Google Scholar]
- Haltia, M.; Rapola, J.; Santavuori, P. Infantile type of so-called neuronal ceroid lipofuscinosis. Histological and electron microscopical studies. Acta Neuropathol. 1973, 26, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.; Vanhanen, S.L.; Tyynelä, P.; Santavuori, P.; Turpeinen, U. CSF insulin-like growth factor-1 in infantile ceroid lipofuscinosis. Neurology 2000, 54, 1828–1832. [Google Scholar] [CrossRef] [PubMed]
- Huhtala, T.; Rytkönen, J.; Jalanko, A.; Kaasalainen, M.; Salonen, J.; Riikonen, R.; Närvänen, A. Native and complexed IGF-1: Biodistribution and pharmacokinetics in infantile neuronal ceroid lipofuscinosis. J. Drug Deliv. 2012. [Google Scholar] [CrossRef] [PubMed]
- Canitano, R. New experimental treatments for core social domain in autism spectrum disorders. Front. Pediatr. 2014, 2, 61. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Fakhari, D.; Sahin, M. Autism and the synapse: Emerging mechanisms and mechanism-based therapies. Curr. Opin. Neurol. 2015, 28, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Voineagu, I.; Wang, X.; Johnston, P.; Lowe, J.K.; Tian, Y.; Horvath, S.; Mill, J.; Cantor, R.M.; Blencowe, B.J.; Geschwind, D.H. Transcriptomic analysis of autistic brain reveals convergant molecular pathology. Nature 2011, 474, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Ebert, D.; Greenberg, M. Activity-dependent neuronal signaling and autism spectrum disorder. Nature 2013, 493, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Vanhala, R.; Turpeinen, U.; Riikonen, R. Low levels of insulin-like growth factor-I in cerebrospinal fluid in children with autism. Dev. Med. Child Neurol. 2001, 43, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.; Makkonen, I.; Vanhala, R.; Turpeinen, U.; Kuikka, J.; Kokki, H. Cerebrospinal fluid growth actors IGF-1 and IGF-2 in infantile autism. Dev. Med. Child Neurol. 2006, 48, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Rodier, P.; Ingram., J.; Tisdale, B.; Nelson, S.; Romano, J. Embryological origin for autism; developmental anomalies of the cranial nerve motor nuclei. J. Comp. Neurol. 1996, 370, 247–261. [Google Scholar] [CrossRef]
- Rapin, I.; Katzman, R. Neurobiology of autism. Ann. Neurol. 1998, 43, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Bauman, M.; Kemper, T. Histoanatomic observations in the brain in early infantile autism. Neurology 1985, 35, 866–874. [Google Scholar] [CrossRef] [PubMed]
- Casanova, M.; Buxhoeveden, D.; Switala, A.; Roy, E. Minicolumnar pathology in autism. Neurology 2002, 58, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Courchesne, E.; Pierce, K. Brain overgrowth in autism during a critical time in developmental implications for frontal pyramidal neuron and interneuron development and connectivity. Int. J. Dev. Neurosci. 2005, 23, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Redcay, E.; Courchesne, E. When is the brain enlarged in autism? A meta-analysis of all brain size reports. Biol. Psychiatry 2005, 58, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Piven, J.; Saliba, K.; Bailey, J.; Arndt, S. An MRI study of autism. The cerebellum revisted. Neurology 1997, 49, 44546–44551. [Google Scholar] [CrossRef]
- Vargas, D.; Nascimbene, C.; Krishnan, C.; Krishnan, C.; Zimmerman, A.W.; Pardo, C.A. Neurogial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005, 57, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Sparks, B.; Friedman, S.; Shaw, D.; Aylward, E.; Echelard, D.; Arthru, A.; Marvilla, K.; Giedd, J.; Munson, J.; Dawson, G.; et al. Brain structural abnormalities in young children with autism spectrum disorder. Neurology 2012, 59, 184–192. [Google Scholar] [CrossRef]
- Herbert, M.; Ziegler, A.; Markris, N.; Filipek, P.; Kemper, T.; Normandin, J.; Sanders, H.; Kennedy, D.; Caviness, V. Localization of white matter increase in autism and developmental language disorder. Ann. Neurol. 2004, 55, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Davincovitch, M.; Patterson, B.; Gartside, P. Head circumfrence measurements in children with autism. J. Child. Neurol. 1996, 11, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.D.; Nordahl, C.W.; Young, G.S.; Wootton-Gorges, S.L.; Lee, A.; Liston, S.E.; Ozonoff, S.; Amaral, D.G. Early brain enlargement and elevated extra-axial fluid in infants who develop autism spectrum disorder. Brain 2013, 136, 2825–2835. [Google Scholar] [CrossRef] [PubMed]
- Hazlett, H.C.; Gu, H.; Munsell, B.C.; Kim, S.H.; Styner, M.; Wolff, J.J.; Elison, J.T.; Swanson, M.R.; Zhu, H.; Botteron, K.N.; et al. Early brain development in infants at high risk for autism spectrum disorder. Nature 2017, 542, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Hazlett, H.; Poe, M.; Gerig, G.; Styner, M.; Smith, R.; Vachet, C.; Piven, J. Early brain overgrowth in autism associated with an increase in cortical surface area before age of 2. Arch. Gen. Psychiatry 2012, 68, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Nelson, K.; Grether, J.; Groen, L.; Dambrosia, J.M.; Dickens, B.F.; Jelliffe, L.L.; Hansen, R.L.; Phillips, T.M. Neuropeptides and neurotrophins in neonatal fluid of children with autism and mental retardation. Ann. Neurol. 2001, 49, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.T.; Hull, C.; Chu, Y.; Greene-Colozzi, E.; Sadowski, A.R.; Leech, J.M.; Steinberg, J.; Crawley, J.N.; Regehr, W.G.; Sahin, M. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 2012, 488, 647–651. [Google Scholar] [CrossRef] [Green Version]
- Reith, R.M.; McKenna, J.; Wu, H.; Hashmi, S.S.; Cho, S.H.; Dash, P.K.; Gambello, M.J. Loss of Tsc2 in Purkinje cells is associated with autistic-like behavior in a mouse model of tuberous sclerosis complex. Neurobiol. Dis. 2013, 51, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Torres-Aleman, I.; Villaba, M.; Nieto-Bona, M. Insulin-like growth factor-1 modulation of cerebellar cell populations is developmentally stage-dependent and mediated by specific intracellular pathways. Neuroscience 1998, 83, 321–334. [Google Scholar] [CrossRef]
- Torres-Aleman, I. Insulin-like growth factor-1 and central neurodegenerative diseases. Endocrinol. Metab. Clin. N. Am. 2012, 41, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.; Courchesne, E.; Covington, J.; Westerfield, M.; Harris, N.S.; Lyden, P.; Lowry, T.P.; Press, G.A. Spatial attention deficits in patients with acquired or developmental cerebellar abnormality. J. Neurosci. 1999, 19, 5632–5643. [Google Scholar] [PubMed]
- Allen, G.; Muller, R.; Courchesne, E. Cerebellar function in autism: Functional magnetic resonance image activation during a simple motor task. Biol. Psychiatry 2004, 56, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Adrien, J.L.; Rossignol-Deletang, N.; Martineau, J.; Couturier, G.; Barthelemy, C. Regulation of cognitive activity and early communication development in young autistic, mentally retarded, and young normal children. Dev. Psychobiol. 2001, 39, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Limperopoulos, C.; Bassan, H.; Gauvreau, K.; Robertson, R., Jr.; Sullivan, N.; Benson, C.; Avery, L.; Stewart, J.; Soul, J.; Ringer, S.; et al. Does Cerebellar Injury in Premature Infants Contribute to the High Prevalence of Long-term Cognitive, Learning, and Behavioral Disability in Survivors? Pediatrics 2007, 120, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Mills, J.; Hediger, M.; Molley, C.; Chrousos, G.P.; Manning-Courtney, P.; Yu, K.F.; Brasington, M.; England, L.J. Elevated levels of growth related hormones in autism and autism spectrum disorder. Clin. Endocrinol. 2007, 67, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R. Treatment of autistic spectrum disorder with insulin-like growth factors. Eur. J. Paediatr. Neurol. 2016, 20, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Blue, M.; Johnston, M.; Moloney, C.; Hohmann, C. Serotonin dysfunction in autism. In Autism Current Theories and Evidence; Zimmerman, A., Ed.; Humana Press: Totova, NJ, USA, 2008; pp. 111–182. [Google Scholar]
- Chugani, D.; Muzik, O.; Behen, M.; Rothermel, R.; Janisse, J.J.; Lee, J.; Chugani, H.T. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann. Neurol. 1999, 45, 287–295. [Google Scholar] [CrossRef]
- Chugani, H.; Muzik, O.; Rothermel, R.; Molley, C.; Behen, M.; Chakraborty, P.; Magner, T.; de Silva, E.A.; Chugani, H.T. Altered serotonin synthesis in denththalamic pathway in autistic boys. Ann. Neurol. 1997, 42, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Castren, E. Neurotrophic effects of antidepressant drugs. Curr. Opin. Pharmacol. 2004, 4, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Makkonen, I.; Riikonen, R.; Kuikka, J.; Kokki, H.; Bressler, J.; Marshall, C.; Kaufmann, W. Brain derived neurotrophic factor and serotonin transporter binding as markers of clinical response to fluoxetine therapy in children with autism. J. Pediatr. Neurol. 2011, 9, 1–8. [Google Scholar]
- Schilling, C.; Blum, W.F.; Heuser, I.; Paslakis, G.; Wudy, S.A.; Deuschle, M. Treatment with antidepressants increases insulin-like growth factor-1 in cerebrospinal fluid. J. Clin. Psychopharmacol. 2011, 31, 390–391. [Google Scholar] [CrossRef] [PubMed]
- Hollander, E.; Phillips, A.; Chaplin, W.; Zagurski, K.; Novotny, S.; Wasserman, S.; Iyengar, R. A placebo-controlled crossover trial of liquid fluoxetine on repetative behaviors in childhood and adolescent autism. Neuropsychopharmacology 2005, 30, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Makkonen, I.; Riikonen, R.; Kokki, H.; Airaksinen, M.; Kuikka, J. Serotonin and dopamine transporter binding in children and adolescents with autism. Dev. Med. Child Neurol. 2008, 50, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Anlar, B.; Oktem, F.; Bakkaloglu, B.; Haliloglu, M.; Oguz, H.; Unal, F.; Pehlivanturk, B.; Gokler, B.; Ozbesler, C.; Yordam, N. Urinary epidermal and insulin-like growth factor excretion in autistic children. Neuropediatrics 2007, 38, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.V.; Jeon, O.H.; Pevsner, J.; Blue, M.E.; Naidu, S. Neurobiology of Rett syndrome: A genetic disorder of synapse development. Brain Dev. 2001, 23 (Suppl. 1), S206–S213. [Google Scholar] [CrossRef]
- Johnston, M.; Blue, M.E.; Naidu, S. Recent advances in understanding synaptic abnormalities in Rett syndrome. F1000Research 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D. The neuropathology of Rett syndrome-overview 1994. Neuropediatrics 1995, 26, 100–104. [Google Scholar] [CrossRef] [PubMed]
- Wenk, G.; Hauss-Wegryniak, B. Altered cholinergic function in the basal forebrain of girls with Rett syndrome. Neuropediatrics 1999, 30, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.H., Jr.; Courchesne, R.; Lord, C.; Cox, N.J.; Yan, S.; Lincoln, A.; Haas., R.; Courchesne, E.; Leventhal, B.L. Evidence of linkage between the serotonin transporter and autistic disorder. Mol. Psychiatry 1997, 2, 247–250. [Google Scholar] [PubMed]
- Raymond, G.; Bauman, M.; Kemper, T. Hippocampus in autism: A golgi analysis. Acta Neuropatol. 1996, 91, 117–119. [Google Scholar] [CrossRef]
- Reiss, A.; Faruque, F.; Naidu, S.; Abrams, M.; Beauty, T.; Bryan, R.; Moser, H. Neuroanatomy of Rett syndrome: A volumetric imaging study. Ann. Neurol. 1993, 34, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Lipani, J.D.; Bhattacharjee, M.B.; Corey, D.M.; Lee, D.J. Reduced nerve growth factor in Rett syndrome postmortem brain tissue. Neuropathol. Exp. Neurol. 2000, 59, 889–895. [Google Scholar] [CrossRef]
- Lappalainen, R.; Liewendahl, K.; Sainio, K.; Riikonen, R.S. Brain perfusion SPECT and EEG findings in Rett syndrome. Acta Neurol. Scand. 1997, 95, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, R.; Lindholm, D.; Riikonen, R. Low levels of nerve growth factor in cerebrospinal fluid of patients with Rett syndrome. J. Child. Neurol. 1996, 11, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Riikonen, R.; Vanhala, R. Levels of cerebrospinal fluid nerve-growth factor differ in infantile autism and Rett syndrome. Dev. Med. Child Neurol. 2000, 15, 797–802. [Google Scholar]
- Yilmaz, D.; Yuksel, D.; Gökkurt, D.; Oguz, H.; Anlar, B. Increased insulin-like growth factor-1 in cerebrospinal fluid of advanced subacute sclerosing panencephalitis patients. Eur. J. Paediatr. Neurol. 2016, 20, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.; Madathi, S.; Sama, D.; Goo, X.; Chen, J.; Saatman, K. Conditional Overexpression of Insulin-Like Growth Factor-1 Enhances Hippocampal Neurogenesis and Restores Immature Neuron Dendritic Processes after Traumatic Brain Injury. J. Neuropathol. Exp. Neurol. 2014, 73, 734–746. [Google Scholar] [CrossRef] [PubMed]
- Bozdagi, O.; Tavassoli, T.; Buxbaum, J. Insulin-like growth factor-1 rescues synaptic and motor deficits in a mouse model of autism and developmental delay. Mol. Autism 2013, 4, 9. [Google Scholar] [CrossRef] [PubMed]
- Tropea, D.; Giacometti, E.; Wilson, N.; Beard, C.; McCurry, C.; Fu, D.D.; Flannery, R.; Jaenisch, R.; Sur, M. Partial reversal of Rett syndrome-like symptoms in MECP2 mutant mice. Proc. Natl. Acad. Sci. USA 2009, 106, 2029–2034. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, W.; Li, M.; Wang, P.; Wen, J.; Liang, M.; Su, B.; Yin, Y. IGF-1 allevates NMDA-induced excitotocity in cultured hippocampal neurons against autophagy via NR2B/Pi3K-AKT-mTOR pathway. J. Cell Physiol. 2014, 229, 1618–1629. [Google Scholar] [CrossRef] [PubMed]
- Marchetto, M.C.; Belinson, H.; Tian, Y.; Freitas, B.C.; Fu, C.; Vandodaria, K.C.; Beltrao-Braga, P.C.; Trujillo, C.A.; Mendes, A.P.D.; Padmannabhan, K.; et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol. Psychiatry 2017, 22, 820–835. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, O.; Ho, E.; Barnes, K.; O’Leary, H.M.; Pereira, L.M.; Finkelstein, Y.; Nelson, C.A., III; Vogel-Farley, V.; DeGregorio, G.; Holm, I.A.; et al. Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for treatment of Rett syndrome. Proc. Natl. Acad. Sci. USA 2014, 25, 4596–4601. [Google Scholar] [CrossRef] [PubMed]
- Krady, J.; Lin, H.; Liberto, C.; Basu, A.; Kremlev, S.G.; Levison, S.W. Ciliary neurotrophic factor and interleukin-6 differently activate microglia. J. Neurosci. Res. 2008, 86, 1538–1547. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-E.; Dantzer, R.; Kelley, K.; McCusker, R.H. Central administration of insulin-like growth factor-1 decreases depressive-like behavior and brain cytokine expression in mice. J. Neuroinflamm. 2010, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Alberts, I.; Li, X. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int. J. Dev. Neurosci. 2014, 35, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Durand, C.M.; Betancur, C.; Boeckers, T.M.; Bockmann, J.; Chaste, P.; Fauchereau, F.; Nygren, G.; Rastam, M.; Gillberg, I.C.; Anckarsäter, H.; et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet. 2007, 39, 25–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolevzon, A.; Bush, L.; Wang, A.T.; Halpern, D.; Frank, Y.; Grodberg, D.; Rapaport, R.; Tavassoli, T.; Chaplin, W.; Soorya, L.; et al. A pilot controlled trial ofinsulin-like growth factor-1 in children with Phelan-McDermid syndrome. Mol. Autism 2014, 5, 54. [Google Scholar] [CrossRef] [PubMed]
- Shcheglovitov, A.; Schleglotiva, O.; Yazawa, M.; Portmann, T.; Shu, R.; Sebastiano, V.; Krawisz, A.; Froehlich, W.; Bernstein, J.A.; Hallmayer, J.F.; et al. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome. Nature 2013, 503, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Hughes, V. Microglia: The constant gardeners. Nature 2012, 485, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Chernausek, S.D.; Backeljauw, P.F.; Frane, J.; Kuntze, J.; Underwood, L.E. Long-term treatment with recombinant insulin-like growth factor (IGF)-I in children with severe IGF-I deficiency due to growth hormone insensitivity. GH Insensitivity Syndrome Collaborative Group et al. J. Clin. Endocrinol. Metab. 2007, 92, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Guevara-Arguire, J.; Balasubramanian, P.; Guevara-Aguire, M.; Wei, M.; Madia, F.; Cheng, C.W.; Hwang, D.; Martin-Montalvo, A.; Saavedra, J.; Ingles, S.; et al. Growth hormone receptor deficiency is associated with a major reduction in pro-aging, cancer, and diabetes in humans. Sci. Transl. Med. 2011, 3. [Google Scholar] [CrossRef]
- Fintini, D.; Brufani, C.; Cappa, M. Profile of mecasermin for the long-term treatment of growth failure in children and adolescents with severe primary IGF-1 deficiency. Ther. Clin. Risk Manag. 2009, 5, 553–559. [Google Scholar] [PubMed]
- Laron, Z. Lessons from 50 years of study of Laron syndrome. Endocrinol. Pract. 2015, 21, 1395–1402. [Google Scholar] [CrossRef] [PubMed]
- Kurtzhals, P.; Schäffer, L.; Sorensen, A.; Kristensen, C.; Jonassen, I.; Schmid, C.; Trüb, T. Correlations of receptor binding and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 2000, 49, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Pini, L.; Scusa, M.; Congiu, L.; Congiu, L.; Benincasa, A.; Morescalchi, P.; Bottiglioni, I.; Di Marco, P.; Borelli, P.; Bonuccelli, U.; et al. IGF1 as a potential treatment for Rett syndrome; safety assessment in six Rett patients. Autism Res. Treat. 2012, 2012, 679801. [Google Scholar] [CrossRef] [PubMed]
- Pini, G.; Scusa, M.; Benincasa, A.; Bottiglioni, I.; Congiu, L.; Vadhatpour, C.; Romanelli, A.M.; Gemo, I.; Puccetti, C.; McNamara, R.; et al. Repeated insulin-like growth factor 1 treatment in a patient with Rett syndrome: A single case study. Front. Pediatr. 2014, 2, 52. [Google Scholar] [CrossRef] [PubMed]
- Walton, P.E.; Dunshea, F.R.; Ballard, F.J. In Vivo actions of IGF analogues with poor affinities for IGFBPs: Metabolic and growth effects in pigs of different ages and GH responsiveness. Prog. Growth Factor Res. 1995, 6, 385–395. [Google Scholar] [CrossRef]
- Castro, J.; Garcia, R.; Kwok, S.; Banarjee, A.; Petravicz, J.; Woodson, J.; Mellios, N.; Tropea, D.; Sur, M. Functional recovery with recombinant human IGF1 treatment in a mouse model of Rett syndrome. Proc Natl. Acad. Sci. USA 2014, 111, 9941–9946. [Google Scholar] [CrossRef] [PubMed]
- McGraw, C.; Samaco, R.; Zoghbi, H. Adult function requires MeCP2. Science 2011, 333, 186. [Google Scholar] [CrossRef] [PubMed]
- Pollack, M.; Schernhammer, E.; Hankinson, S. Insulin-like growth factors in neoplasia. Nat. Rev. Cancer 2004, 4, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Pinzi, V.; Bourhis, J.; Deutsch, E. Mechanisms of Disease: Signaling of the insulin-like growth factor 1 receptor pathway therapeutic perspectives in cancer. Nat. Clin. Pract. Oncol. 2007, 4, 591–602. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Di Somma, C.; Cascella, T.; Pivonello, R.; Vitale, G.; Grasso, L.F.; Lombardi, G.; Savastano, S. Relationships between serum IGF1 levels, blood pressure, and glucose tolerance: An observational, exploratory study in 404 subjects. Eur. J. Endocrinol. 2008, 159, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Callagher, E.; LeRoith, D. Is grow hormone resistance/IGF-1 reduction good for you? Cell Metab. 2011, 13, 355–356. [Google Scholar] [CrossRef] [PubMed]
- Peters, C.; Dattani, M. How to use insulin-like factor 1 (IGF1). Arch. Dis. Child Educ. Pract. Ed. 2012, 97, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Pozzo-Miller, L.; Pati, S.; Percy, A. Rett syndrome: Reaching for clinical trials. Neurotherapeutics 2015, 12, 631–640. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riikonen, R. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. Int. J. Mol. Sci. 2017, 18, 2056. https://doi.org/10.3390/ijms18102056
Riikonen R. Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. International Journal of Molecular Sciences. 2017; 18(10):2056. https://doi.org/10.3390/ijms18102056
Chicago/Turabian StyleRiikonen, Raili. 2017. "Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children" International Journal of Molecular Sciences 18, no. 10: 2056. https://doi.org/10.3390/ijms18102056
APA StyleRiikonen, R. (2017). Insulin-Like Growth Factors in the Pathogenesis of Neurological Diseases in Children. International Journal of Molecular Sciences, 18(10), 2056. https://doi.org/10.3390/ijms18102056