Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models
Abstract
:1. Introduction
2. Vitamin E
3. Vitamin E and Alzheimer’s Disease (AD)
3.1. Effects of Vitamin E Supplementation in AD Animal Models
3.2. The Combined Treatment with Vitamin E and Other Compounds in AD Animal Models
3.3 Vitamin E Supplementation in AD Patients
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Aβ | Amyloid-β |
NFTs | Neurofibrillary tangles |
PSEN1 | Presenilin 1 |
PSEN2 | Presenilin 2 |
APP | Amyloid precursor protein |
Apo E | Apolipoprotein E |
CTF | C-terminal fragment |
BACE1 | β-secretase 1 |
LRP1 | Low-density lipoprotein receptor related protein 1 |
IDE | Insulin-degrading enzyme |
H2O2 | Hydrogen peroxide |
ROS | Reactive oxygen species |
NMDA-R | N-methyl-d-aspartate receptor |
AVED | Ataxia with vitamin E deficiency |
TTP | α-Tocopherol transfer protein |
CNS | Central nervous system |
HNE | 4-Hydroxynonenal |
TBARS | Thiobarbituric acid reactive substances |
PARP | poly-ADP ribose polymerase |
nAChRs | Nicotinic acetylcholine receptors |
GLT-1 | Glutamate transporter-1 |
NPCs | Neural progenitor cells |
MDA | Malondialdehyde |
NGF | Nerve growth factor |
SOD | Superoxide dismutase |
GSH | Reduced glutathione |
WT | Wild-type |
PLTP | Phospholipid transfer protein |
PLTP-KO | Phospholipid transfer protein-knockout |
MAPK | mitogen-activated protein kinase |
GSSG | Oxidized glutathione |
α-TQ | α-Tocopherol quinine |
IL-6 | Interleukin 6 |
IL-1β | Interleukin 1β |
iNOS | Inducible nitric oxide synthase |
RCBI | Repetitive concussive brain injury |
STZ | Streptozotocin |
TRF | Tocotrienol-rich fraction |
GFAP | Glial fibrillary acidic protein |
PGE2 | Prostaglandin E2 |
TxB2 | Thromboxane A2 |
iPF2α-VI | Isoprostane F2α-VI |
nNOS | Neuronal nitric oxide synthase |
MCI | Mild cognitive impairment |
References
- Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med. 2012, 2, a006148. [Google Scholar] [CrossRef] [PubMed]
- Sadigh-Eteghad, S.; Sabermarouf, B.; Majdi, A.; Talebi, M.; Farhoudi, M.; Mahmoudi, J. Amyloid-β: A crucial factor in Alzheimer’s disease. Med. Princ. Pract. 2015, 24, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bloom, G.S. Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014, 71, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers 2015, 1, 15056. [Google Scholar] [CrossRef] [PubMed]
- Tanzi, R.E. The genetics of alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2. [Google Scholar] [CrossRef] [PubMed]
- Nalivaeva, N.N.; Turner, A.J. The amyloid precursor protein: A biochemical enigma in brain development, function and disease. FEBS Lett. 2013, 587, 2046–2054. [Google Scholar] [CrossRef] [PubMed]
- Swomley, A.M.; Forster, S.; Keeney, J.T.; Triplett, J.; Zhang, Z.; Sultana, R.; Butterfield, D.A. Aβ, oxidative stress in Alzheimer disease: Evidence based on proteomics studies. Biochim. Biophys. Acta 2014, 1842, 1248–1257. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, R.H.; Nagao, T.; Gouras, G.K. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathol. Int. 2017, 67, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Sanabria-Castro, A.; Alvarado-Echeverria, I.; Monge-Bonilla, C. Molecular pathogenesis of Alzheimer’s disease: An update. Ann. Neurosci. 2017, 24, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, D.A.; Swomley, A.M.; Sultana, R. Amyloid β-peptide (1–42)-induced oxidative stress in alzheimer disease: Importance in disease pathogenesis and progression. Antioxid. Redox Signal. 2013, 19, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Gouras, G.K.; Tsai, J.; Naslund, J.; Vincent, B.; Edgar, M.; Checler, F.; Greenfield, J.P.; Haroutunian, V.; Buxbaum, J.D.; Xu, H.; et al. Intraneuronal Aβ42 accumulation in human brain. Am. J. Pathol. 2000, 156, 15–20. [Google Scholar] [CrossRef]
- Stewart, K.L.; Radford, S.E. Amyloid plaques beyond Aβ: A survey of the diverse modulators of amyloid aggregation. Biophys. Rev. 2017, 9, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Yankner, B.A.; Lu, T. Amyloid β-protein toxicity and the pathogenesis of alzheimer disease. J. Biol. Chem. 2009, 284, 4755–4759. [Google Scholar] [CrossRef] [PubMed]
- Tomic, J.L.; Pensalfini, A.; Head, E.; Glabe, C.G. Soluble fibrillar oligomer levels are elevated in alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiol. Dis. 2009, 35, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Tamagno, E.; Bardini, P.; Guglielmotto, M.; Danni, O.; Tabaton, M. The various aggregation states of β-amyloid 1–42 mediate different effects on oxidative stress, neurodegeneration, and bace-1 expression. Free Radic. Biol. Med. 2006, 41, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of alzheimer’s disease. Oxid. Med. Cell. Longev. 2013, 2013, 316523. [Google Scholar] [CrossRef] [PubMed]
- Pappolla, M.A.; Chyan, Y.J.; Omar, R.A.; Hsiao, K.; Perry, G.; Smith, M.A.; Bozner, P. Evidence of oxidative stress and in vivo neurotoxicity of β-amyloid in a transgenic mouse model of alzheimer’s disease: A chronic oxidative paradigm for testing antioxidant therapies in vivo. Am. J. Pathol. 1998, 152, 871–877. [Google Scholar] [PubMed]
- Sponne, I.; Fifre, A.; Drouet, B.; Klein, C.; Koziel, V.; Pincon-Raymond, M.; Olivier, J.-L.; Chambaz, J.; Pillot, T. Apoptotic neuronal cell death induced by the non-fibrillar amyloid-β peptide proceeds through an early reactive oxygen species-dependent cytoskeleton perturbation. J. Biol. Chem. 2003, 278, 3437–3445. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-H.; Surh, Y.-J. β-amyloid induces oxidative DNA damage and cell death through activation of c-jun N terminal kinase. Ann. N. Y. Acad. Sci. 2002, 973, 228–236. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.G.; Velasco, P.T.; Lambert, M.P.; Viola, K.; Fernandez, S.J.; Ferreira, S.T.; Klein, W.L. Aβ oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the alzheimer drug memantine. J. Biol. Chem. 2007, 282, 11590–11601. [Google Scholar] [CrossRef] [PubMed]
- Leuner, K.; Schutt, T.; Kurz, C.; Eckert, S.H.; Schiller, C.; Occhipinti, A.; Mai, S.; Jendrach, M.; Eckert, G.P.; Kruse, S.E.; et al. Mitochondrion-derived reactive oxygen species lead to enhanced amyloid β formation. Antioxid. Redox Signal. 2012, 16, 1421–1433. [Google Scholar] [CrossRef] [PubMed]
- Stancu, I.-C.; Vasconcelos, B.; Terwel, D.; Dewachter, I. Models of β-amyloid induced tau-pathology: The long and “folded” road to understand the mechanism. Mol. Neurodegener. 2014, 9, 51. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.G.; Wu, D.; Lambert, M.P.; Fernandez, S.J.; Velasco, P.T.; Lacor, P.N.; Bigio, E.H.; Jerecic, J.; Acton, P.J.; Shughrue, P.J.; et al. Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by a β oligomers. Neurobiol. Aging 2008, 29, 1334–1347. [Google Scholar] [CrossRef] [PubMed]
- Mietelska-Porowska, A.; Wasik, U.; Goras, M.; Filipek, A.; Niewiadomska, G. Tau protein modifications and interactions: Their role in function and dysfunction. Int. J. Mol. Sci. 2014, 15, 4671–4713. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Azzi, A.; Birringer, M.; Cook-Mills, J.M.; Eggersdorfer, M.; Frank, J.; Cruciani, G.; Lorkowski, S.; Ozer, N.K. Vitamin E: Emerging aspects and new directions. Free Radic. Biol. Med. 2017, 102, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; de Camargo, A.C. Tocopherols and tocotrienols in common and emerging dietary sources: Occurrence, applications, and health benefits. Int. J. Mol. Sci. 2016, 17, 1745. [Google Scholar] [CrossRef] [PubMed]
- Niki, E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: In vitro and in vivo evidence. Free Radic. Biol. Med. 2014, 66, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.Y.; Radhakrishnan, A.K. Tocotrienol research: Past into present. Nutr. Rev. 2012, 70, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Meganathan, P.; Fu, J.Y. Biological properties of tocotrienols: Evidence in human studies. Int. J. Mol. Sci. 2016, 17, 1682. [Google Scholar] [CrossRef] [PubMed]
- Di Donato, I.; Bianchi, S.; Federico, A. Ataxia with vitamin E deficiency: Update of molecular diagnosis. Neurol. Sci. 2010, 31, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Ulatowski, L.M.; Manor, D. Vitamin E and neurodegeneration. Neurobiol. Dis. 2015, 84, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Ulatowski, L.; Parker, R.; Warrier, G.; Sultana, R.; Butterfield, D.A.; Manor, D. Vitamin E is essential for purkinje neuron integrity. Neuroscience 2014, 260, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Igarashi, K.; Uchihara, T.; Jishage, K.; Tomita, H.; Inaba, A.; Li, Y.; Arita, M.; Suzuki, H.; Mizusawa, H.; et al. Delayed-onset ataxia in mice lacking α-tocopherol transfer protein: Model for neuronal degeneration caused by chronic oxidative stress. Proc. Natl. Acad. Sci. USA 2001, 98, 15185–15190. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Itoh, N.; Hayakawa, M.; Habuchi, Y.; Saito, Y.; Tsukamoto, Y.; Cynshi, O.; Jishage, K.-I.; Arai, H.; Niki, E. The role of α-tocopherol in motor hypofunction with aging in α-tocopherol transfer protein knockout mice as assessed by oxidative stress biomarkers. J. Nutr. Biochem. 2010, 21, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K.; Nakamura, K.; Shirai, M.; Hirano, A.; Takatsu, H.; Urano, S. Long-term vitamin E-deficient mice exhibit cognitive dysfunction via elevation of brain oxidation. J. Nutr. Sci. Vitaminol. 2015, 61, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Boyd-Kimball, D.; Sultana, R.; Mohmmad-Abdul, H.; Butterfield, D.A. Rodent Aβ(1–42) exhibits oxidative stress properties similar to those of human Aβ(1–42): Implications for proposed mechanisms of toxicity. J. Alzheimers Dis. 2004, 6, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Yatin, S.M.; Varadarajan, S.; Butterfield, D.A. Vitamin E prevents alzheimer’s amyloid β-peptide (1–42)-induced neuronal protein oxidation and reactive oxygen species production. J. Alzheimers Dis. 2000, 2, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Tamagno, E.; Parola, M.; Guglielmotto, M.; Santoro, G.; Bardini, P.; Marra, L.; Tabaton, M.; Danni, O. Multiple signaling events in amyloid β-induced, oxidative stress-dependent neuronal apoptosis. Free Radic. Biol. Med. 2003, 35, 45–58. [Google Scholar] [CrossRef]
- Qi, X.-L.; Xiu, J.; Shan, K.-R.; Xiao, Y.; Gu, R.; Liu, R.-Y.; Guan, Z.-Z. Oxidative stress induced by β-amyloid peptide(1–42) is involved in the altered composition of cellular membrane lipids and the decreased expression of nicotinic receptors in human SH-SY5Y neuroblastoma cells. Neurochem. Int. 2005, 46, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Fukui, K.; Takatsu, H.; Shinkai, T.; Suzuki, S.; Abe, K.; Urano, S. Appearance of amyloid β-like substances and delayed-type apoptosis in rat hippocampus ca1 region through aging and oxidative stress. J. Alzheimers Dis. 2005, 8, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Scimemi, A.; Meabon, J.S.; Woltjer, R.L.; Sullivan, J.M.; Diamond, J.S.; Cook, D.G. Amyloid-β1–42 slows clearance of synaptically released glutamate by mislocalizing astrocytic GLT-1. J. Neurosci. 2013, 33, 5312–5318. [Google Scholar] [CrossRef] [PubMed]
- Mazur-Kolecka, B.; Golabek, A.; Nowicki, K.; Flory, M.; Frackowiak, J. Amyloid-β impairs development of neuronal progenitor cells by oxidative mechanisms. Neurobiol. Aging 2006, 27, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Rota, C.; Rimbach, G.; Minihane, A.-M.; Stoecklin, E.; Barella, L. Dietary vitamin E modulates differential gene expression in the rat hippocampus: Potential implications for its neuroprotective properties. Nutr. Neurosci. 2005, 8, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Pratico, D.; Uryu, K.; Leight, S.; Trojanoswki, J.Q.; Lee, V.M. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of alzheimer amyloidosis. J. Neurosci. 2001, 21, 4183–4187. [Google Scholar] [PubMed]
- Resende, R.; Moreira, P.I.; Proenca, T.; Deshpande, A.; Busciglio, J.; Pereira, C.; Oliveira, C.R. Brain oxidative stress in a triple-transgenic mouse model of alzheimer disease. Free Radic. Biol. Med. 2008, 44, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Tanaka, T.; Han, D.; Senzaki, K.; Kameyama, T.; Nabeshima, T. Protective effects of idebenone and alpha-tocopherol on β-amyloid-(1–42)-induced learning and memory deficits in rats: Implication of oxidative stress in β-amyloid-induced neurotoxicity in vivo. Eur. J. Neurosci. 1999, 11, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Jhoo, J.H.; Kim, H.-C.; Nabeshima, T.; Yamada, K.; Shin, E.-J.; Jhoo, W.-K.; Kim, W.; Kang, K.-S.; Jo, S.A.; Woo, J.I. β-amyloid (1–42)-induced learning and memory deficits in mice: Involvement of oxidative burdens in the hippocampus and cerebral cortex. Behav. Brain Res. 2004, 155, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Yokota, T.; Takahashi, T.; Uchihara, T.; Jishage, K.-I.; Mizusawa, H. Deletion of vitamin E enhances phenotype of alzheimer disease model mouse. Biochem. Biophys. Res. Commun. 2006, 350, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Nishida, Y.; Ito, S.; Ohtsuki, S.; Yamamoto, N.; Takahashi, T.; Iwata, N.; Jishage, K.-I.; Yamada, H.; Sasaguri, H.; Yokota, S.; et al. Depletion of vitamin E increases amyloid β accumulation by decreasing its clearances from brain and blood in a mouse model of alzheimer disease. J. Biol. Chem. 2009, 284, 33400–33408. [Google Scholar] [CrossRef] [PubMed]
- Desrumaux, C.; Pisoni, A.; Meunier, J.; Deckert, V.; Athias, A.; Perrier, V.; Villard, V.; Lagrost, L.; Verdier, J.-M.; Maurice, T. Increased amyloid-β peptide-induced memory deficits in phospholipid transfer protein (pltp) gene knockout mice. Neuropsychopharmacology 2013, 38, 817–825. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.; Yao, Y.; Uryu, K.; Yang, H.; Lee, V.M.Y.; Trojanowski, J.Q.; Pratico, D. Early vitamin E supplementation in young but not aged mice reduces Aβ levels and amyloid deposition in a transgenic model of alzheimer’s disease. FASEB J. 2004, 18, 323–325. [Google Scholar] [PubMed]
- Nakashima, H.; Ishihara, T.; Yokota, O.; Terada, S.; Trojanowski, J.Q.; Lee, V.M.Y.; Kuroda, S. Effects of α-tocopherol on an animal model of tauopathies. Free Radic. Biol. Med. 2004, 37, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Feijoo, C.; Campbell, D.G.; Jakes, R.; Goedert, M.; Cuenda, A. Evidence that phosphorylation of the microtubule-associated protein tau by SAPK4/p38δ at Thr50 promotes microtubule assembly. J. Cell Sci. 2005, 118, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Giraldo, E.; Lloret, A.; Fuchsberger, T.; Vina, J. Aβ and tau toxicities in alzheimer’s are linked via oxidative stress-induced p38 activation: Protective role of vitamin E. Redox Biol. 2014, 2, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; Liu, M.; Nguyen, X.V.; Bing, G. P38 map kinase is activated at early stages in Alzheimer’s disease brain. Exp. Neurol. 2003, 183, 394–405. [Google Scholar] [CrossRef]
- Veinbergs, I.; Mallory, M.; Sagara, Y.; Masliah, E. Vitamin E supplementation prevents spatial learning deficits and dendritic alterations in aged apolipoprotein E-deficient mice. Eur. J. Neurosci. 2000, 12, 4541–4546. [Google Scholar] [PubMed]
- Ishihara, Y.; Itoh, K.; Mitsuda, Y.; Shimada, T.; Kubota, T.; Kato, C.; Song, S.Y.; Kobayashi, Y.; Mori-Yasumoto, K.; Sekita, S.; et al. Involvement of brain oxidation in the cognitive impairment in a triple transgenic mouse model of alzheimer’s disease: Noninvasive measurement of the brain redox state by magnetic resonance imaging. Free Radic. Res. 2013, 47, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Alloza, M.; Dodwell, S.A.; Meyer-Luehmann, M.; Hyman, B.T.; Bacskai, B.J. Plaque-derived oxidative stress mediates distorted neurite trajectories in the alzheimer mouse model. J. Neuropathol. Exp. Neurol. 2006, 65, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-G.; Wang, W.-Y.; Ling, T.-J.; Feng, Y.; Du, X.-T.; Zhang, X.; Sun, X.-X.; Zhao, M.; Xue, D.; Yang, Y.; et al. α-tocopherol quinone inhibits β-amyloid aggregation and cytotoxicity, disaggregates preformed fibrils and decreases the production of reactive oxygen species, no and inflammatory cytokines. Neurochem. Int. 2010, 57, 914–922. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-W.; Yang, S.-G.; Liu, W.; Zhang, Y.-X.; Xu, P.-X.; Wang, T.; Ling, T.-J.; Liu, R.-T. α-tocopherol quinine ameliorates spatial memory deficits by reducing β-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer’s disease. Behav. Brain Res. 2016, 296, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Uryu, K.; Laurer, H.; McIntosh, T.; Pratico, D.; Martinez, D.; Leight, S.; Lee, V.M.Y.; Trojanowski, J.Q. Repetitive mild brain trauma accelerates Aβ deposition, lipid peroxidation, and cognitive impairment in a transgenic mouse model of alzheimer amyloidosis. J. Neurosci. 2002, 22, 446–454. [Google Scholar] [PubMed]
- Conte, V.; Uryu, K.; Fujimoto, S.; Yao, Y.; Rokach, J.; Longhi, L.; Trojanowski, J.Q.; Lee, V.M.Y.; McIntosh, T.K.; Pratico, D. Vitamin E reduces amyloidosis and improves cognitive function in Tg2576 mice following repetitive concussive brain injury. J. Neurochem. 2004, 90, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, V.; Kuhad, A.; Bishnoi, M.; Chopra, K. Chronic treatment with tocotrienol, an isoform of vitamin E, prevents intracerebroventricular streptozotocin-induced cognitive impairment and oxidative-nitrosative stress in rats. Pharmacol. Biochem. Behav. 2009, 93, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, N.F.; Yanagisawa, D.; Durani, L.W.; Hamezah, H.S.; Damanhuri, H.A.; Wan Ngah, W.Z.; Tsuji, M.; Kiuchi, Y.; Ono, K.; Tooyama, I. Tocotrienol-rich fraction modulates amyloid pathology and improves cognitive function in Aβpp/ps1 mice. J. Alzheimers Dis. 2017, 55, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Chinnici, C.; Tang, H.; Trojanowski, J.Q.; Lee, V.M.; Pratico, D. Brain inflammation and oxidative stress in a transgenic mouse model of alzheimer-like brain amyloidosis. J. Neuroinflamm. 2004, 1, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niki, E. Interaction of ascorbate and α-tocopherol. Ann. N. Y. Acad. Sci. 1987, 498, 186–199. [Google Scholar] [CrossRef] [PubMed]
- Harrison, F.E.; Allard, J.; Bixler, R.; Usoh, C.; Li, L.; May, J.M.; McDonald, M.P. Antioxidants and cognitive training interact to affect oxidative stress and memory in app/psen1 mice. Nutr. Neurosci. 2009, 12, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, C.P.; Bicca, M.A.; Latini, A.; Prediger, R.D.S.; Medeiros, R.; Calixto, J.B. Folic acid plus α-tocopherol mitigates amyloid-β-induced neurotoxicity through modulation of mitochondrial complexes activity. J. Alzheimers Dis. 2011, 24, 61–75. [Google Scholar] [PubMed]
- Thakurta, I.G.; Banerjee, P.; Bagh, M.B.; Ghosh, A.; Sahoo, A.; Chattopadhyay, S.; Chakrabarti, S. Combination of N-acetylcysteine, α-lipoic acid and α-tocopherol substantially prevents the brain synaptosomal alterations and memory and learning deficits of aged rats. Exp. Gerontol. 2014, 50, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Thakurta, I.G.; Chattopadhyay, M.; Ghosh, A.; Chakrabarti, S. Dietary supplementation with N-acetyl cysteine, α-tocopherol and α-lipoic acid reduces the extent of oxidative stress and proinflammatory state in aged rat brain. Biogerontology 2012, 13, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Sinha, M.; Bir, A.; Banerjee, A.; Bhowmick, P.; Chakrabarti, S. Multiple mechanisms of age-dependent accumulation of amyloid β protein in rat brain: Prevention by dietary supplementation with N-acetylcysteine, alpha-lipoic acid and alpha-tocopherol. Neurochem. Int. 2016, 95, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Chen, X.; Liu, Y.; Shu, Y.; Chen, T.; Xu, L.; Li, M.; Guan, X. Do low-serum vitamin E levels increase the risk of alzheimer disease in older people? Evidence from a meta-analysis of case-control studies. Int. J. Geriatr. Psychiatry 2017. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Jimenez, F.J.; de Bustos, F.; Molina, J.A.; Benito-Leon, J.; Tallon-Barranco, A.; Gasalla, T.; Orti-Pareja, M.; Guillamon, F.; Rubio, J.C.; Arenas, J.; et al. Cerebrospinal fluid levels of α-tocopherol (vitamin E) in alzheimer’s disease. J. Neural Trans. 1997, 104, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Mangialasche, F.; Kivipelto, M.; Mecocci, P.; Rizzuto, D.; Palmer, K.; Winblad, B.; Fratiglioni, L. High plasma levels of vitamin E forms and reduced alzheimer’s disease risk in advanced age. J. Alzheimers Dis. 2010, 20, 1029–1037. [Google Scholar] [CrossRef] [PubMed]
- Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, C.W.; Pfeiffer, E.; et al. A controlled trial of selegiline, α-tocopherol, or both as treatment for alzheimer’s disease. The alzheimer’s disease cooperative study. N. Engl. J. Med. 1997, 336, 1216–1222. [Google Scholar] [CrossRef] [PubMed]
- Dysken, M.W.; Sano, M.; Asthana, S.; Vertrees, J.E.; Pallaki, M.; Llorente, M.; Love, S.; Schellenberg, G.D.; McCarten, J.R.; Malphurs, J.; et al. Effect of vitamin E and memantine on functional decline in Alzheimer disease: The TEAM-AD VA cooperative randomized trial. JAMA 2014, 311, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Farina, N.; Isaac, M.G.E.K.N.; Clark, A.R.; Rusted, J.; Tabet, N. Vitamin E for alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst. Rev. 2012, 11, CD002854. [Google Scholar] [PubMed]
- Petersen, R.C.; Thomas, R.G.; Grundman, M.; Bennett, D.; Doody, R.; Ferris, S.; Galasko, D.; Jin, S.; Kaye, J.; Levey, A.; et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 2005, 352, 2379–2388. [Google Scholar] [CrossRef] [PubMed]
- Lloret, A.; Badia, M.-C.; Mora, N.J.; Pallardo, F.V.; Alonso, M.-D.; Vina, J. Vitamin E paradox in alzheimer’s disease: It does not prevent loss of cognition and may even be detrimental. J. Alzheimers Dis. 2009, 17, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Farina, N.; Llewellyn, D.; Isaac, M.G.E.K.N.; Tabet, N. Vitamin E for alzheimer’s dementia and mild cognitive impairment. Cochrane Database Syst. Rev. 2017, 4, CD002854. [Google Scholar] [PubMed]
- Kryscio, R.J.; Abner, E.L.; Caban-Holt, A.; Lovell, M.; Goodman, P.; Darke, A.K.; Yee, M.; Crowley, J.; Schmitt, F.A. Association of antioxidant supplement use and dementia in the prevention of Alzheimer’s disease by vitamin E and selenium trial (preadvise). JAMA Neurol. 2017, 74, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.R., III; Pastor-Barriuso, R.; Dalal, D.; Riemersma, R.A.; Appel, L.J.; Guallar, E. Meta-analysis: High-dosage vitamin E supplementation may increase all-cause mortality. Ann. Intern. Med. 2005, 142, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Pavlik, V.N.; Doody, R.S.; Rountree, S.D.; Darby, E.J. Vitamin E use is associated with improved survival in an alzheimer’s disease cohort. Dement. Geriatr. Cogn. Disord. 2009, 28, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Abner, E.L.; Schmitt, F.A.; Mendiondo, M.S.; Marcum, J.L.; Kryscio, R.J. Vitamin E and all-cause mortality: A meta-analysis. Curr. Aging Sci. 2011, 4, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Devore, E.E.; Grodstein, F.; van Rooij, F.J.A.; Hofman, A.; Stampfer, M.J.; Witteman, J.C.M.; Breteler, M.M.B. Dietary antioxidants and long-term risk of dementia. Arch. Neurol. 2010, 67, 819–825. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Bienias, J.L.; Tangney, C.C.; Wilson, R.S. Vitamin E and cognitive decline in older persons. Arch. Neurol. 2002, 59, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Evans, D.A.; Tangney, C.C.; Bienias, J.L.; Wilson, R.S.; Aggarwal, N.T.; Scherr, P.A. Relation of the tocopherol forms to incident alzheimer disease and to cognitive change. Am. J. Clin. Nutr. 2005, 81, 508–514. [Google Scholar] [PubMed]
- Morris, M.C.; Schneider, J.A.; Li, H.; Tangney, C.C.; Nag, S.; Bennett, D.A.; Honer, W.G.; Barnes, L.L. Brain tocopherols related to alzheimer’s disease neuropathology in humans. Alzheimers Dement. 2015, 11, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Cook, N.; Manson, J.; Buring, J.E.; Grodstein, F. A randomized trial of vitamin E supplementation and cognitive function in women. Arch. Intern. Med. 2006, 166, 2462–2468. [Google Scholar] [CrossRef] [PubMed]
- Engelhart, M.J.; Geerlings, M.I.; Ruitenberg, A.; van Swieten, J.C.; Hofman, A.; Witteman, J.C.M.; Breteler, M.M.B. Dietary intake of antioxidants and risk of alzheimer disease. JAMA 2002, 287, 3223–3229. [Google Scholar] [CrossRef] [PubMed]
- Basambombo, L.L.; Carmichael, P.-H.; Cote, S.; Laurin, D. Use of vitamin E and C supplements for the prevention of cognitive decline. Ann. Pharmacother. 2017, 51, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Zandi, P.P.; Anthony, J.C.; Khachaturian, A.S.; Stone, S.V.; Gustafson, D.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A.; Breitner, J.C.S.; Cache County Study Group. Reduced risk of alzheimer disease in users of antioxidant vitamin supplements: The cache county study. Arch. Neurol. 2004, 61, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Grodstein, F.; Chen, J.; Willett, W.C. High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am. J. Clin. Nutr. 2003, 77, 975–984. [Google Scholar] [PubMed]
- Fillenbaum, G.G.; Kuchibhatla, M.N.; Hanlon, J.T.; Artz, M.B.; Pieper, C.F.; Schmader, K.E.; Dysken, M.W.; Gray, S.L. Dementia and Alzheimer’s disease in community-dwelling elders taking vitamin C and/or vitamin E. Ann. Pharmacother. 2005, 39, 2009–2014. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.T.; Holmes, C.; Jones, M.; Jones, R.; Livingston, G.; McKeith, I.; Mittler, P.; Passmore, P.; Ritchie, C.; Robinson, L.; et al. Clinical practice with anti-dementia drugs: A revised (third) consensus statement from the British association for psychopharmacology. J. Psychopharmacol. 2017, 31, 147–168. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, B.; Ulatowski, L.M. Vitamin E and alzheimer’s disease-is it time for personalized medicine? Antioxidants 2017, 6. [Google Scholar] [CrossRef] [PubMed]
Animal Model | Vitamin E Administration | Results | Ref. |
---|---|---|---|
Wistar rats infused with Aβ1–42 (300 pmol/day) | α-tocopherol (150 mg/kg) was administered orally for 23 consecutive days, from 3 days before the start of Aβ1–42 infusion | Vitamin E prevented learning and memory deficits. | [47] |
C57BL/6 mice with intracerebroventricular injection of Aβ1–42 | α-tocopherol (150 mg/kg) was administered orally in a volume of 1 mL/kg for 27 days, starting 7 days before Aβ1–42 injection | α-tocopherol significantly attenuated Aβ1–42 induced oxidative stress and memory deficits | [48] |
Ttpa−/−APPsw mice | α-tocopherol supplemented diet (750 mg/kg) | α-tocopherol partially reversed the onset and severity of cognitive dysfunction and decreased Aβ deposits | [49] |
Ttpa−/−APPsw mice | α-tocopherol supplemented diet (750 mg/kg) | α-tocopherol deficiency impaired Aβ clearance from the brain and blood, causing Aβ accumulation in Ttpa−/−APPsw mouse brain and plasma, that was reduced in mice fed with α-tocopherol supplemented diet | [50] |
PLTP-KO mice with intracerebroventricular injection of oligomeric Aβ25–35 peptide | Vitamin E-supplemented chow diet (800 mg/kg α-tocopherol acetate) | Vitamin E supplemented diet prevented Aβ25–35-induced memory deficits and oxidative stress in PLTP-KO mice | [51] |
Tg2576 mice | Vitamin E supplemented diet (2 IU/g; diet average intake of vitamin E was ~8–10 IU/day) from 5 to 13 or 14 to 20 months of age | Early vitamin E administration reduced Aβ levels and amyloid deposits. Vitamin E supplementation reduced 8,12-iso-iPF2α-VI level | [52] |
Tau transgenic mice | α-tocopherol-supplemented diet (160 or 1500 IU/kg) | α-tocopherol improved tau pathology and motor function, and decreased oxidative stress | [53] |
APP/PS1 transgenic mice | α-tocopheryl acetate supplemented diet (800 IU/kg) for 21 days | Vitamin E abolished the increase in phospho-p38 (MAPK) levels in the hippocampus | [55] |
Apolipoprotein E-deficient mice | 1% of α-tocopherol added to the mouse chow for 12 months | Better behavioral performance associated with reduced oxidative stress. Preservation of the dendritic structure | [57] |
Transgenic mice expressing the mutant human genes APP, presenilin1 and tau | Mice were divided in two groups and received a diet supplemented with α-tocopherol (1.342 mg/g diet) or a normal diet (0.076 mg α-tocopherol/g diet) from 2 to 6 months of age. | Dietary supplementation with α-tocopherol mitigated the reduction of GSH levels and the increase of GSSG and TBARS. Moreover, α-tocopherol supplementation improves cognitive function in 6 months old AD mice. α-tocopherol supplementation decreased the levels of reactive radicals in the brains. | [58] |
APPswe/PS1d9 mice | Trolox (210 mg/kg) administered by gavage for 15 days | Trolox showed a trend toward a reduction of Aβ plaque-induced oxidative stress and of structural changes in neurites | [59] |
APPswe/PS1dE9 mice | α-tocopherol quinine (100 mg/kg) administered by gavage daily for 4 weeks | α-tocopherol quinine reduced Aβ oligomers levels in AD mouse brains. Microglial activation was inhibited by α-TQ, blocking NF-κB pathway. α-TQ administration counteracted oxidative stress and improved memory and cognitive dysfunction | [61] |
Tg2576 mice subjected to RCBI | Mice received a regular chow or chow-supplemented with vitamin E (2 IU/g diet) for 4 weeks, and subjected to RCBI. The same diet was maintained for 8 weeks post-injury | Mice receiving vitamin E supplemented diet showed increased vitamin E brain levels and decreased brain lipid peroxidation levels. After RBCI, mice receiving vitamin E did not show an increase in Aβ peptides while learning deficits were mitigated | [63] |
Intracerebroventricular streptozotocin (STZ) (3 mg/kg) treated rats | Oral administration of α-tocopherol (100 mg/kg) and a mixture of α-, β-, γ-tocotrienol (50 and 100 mg/kg) for 21 days starting from the day of STZ injection | α-tocopherol and tocotrienol improved cognitive impairment, prevented the reduction of GSH and catalase, reduced MDA, nitrite and cholinesterase activity in the brains of STZ rats in a dose dependent manner. Tocotrienol showed a stronger action | [64] |
APPswe/PS1dE9 mice | TRF contained α-tocotrienol (196.0 mg/g), β-tocotrienol (24.0 mg/g), γ-tocotrienol (255.0 mg/g), δ-tocotrienol (75.0 mg/g), and α-tocopherol (168.0 mg/g) and was orally administered to mice (60 mg/kg body weight) daily from 5 to 15 months of age | TRF blocks Aβ fibrils and Aβ oligomers formation in vitro in a dose dependent manner. In addition, TRF mitigated Aβ depositions, thioflavin-S-positive fibrillar type plaques and improved cognitive function, but TRF did not exert anti-inflammatory action | [65] |
Animal Model | Compound Administration | Results | Ref. |
---|---|---|---|
Tg2576 mice | Diet supplemented with α-tocopherol (2 IU/mg diet) and indomethacin (10 mg/L in drinking water) from 8 to 15 months of age. Given that each mouse eats about 4–5 mg chow/day, and drinks 3 to 4 mL water/day, the estimated average vitamin E and indomethacin intake for each animal was ~8–10 IU/day and 30–40 ng, respectively | Mice receiving the supplemented diet presented increased brain levels of vitamin E and a suppression of brain oxidative stress and inflammatory responses (reduction of GFAP, IL-1β, PGE2, TxB2, iPF2α-VI and protein carbonyls). Reduction of soluble and insoluble Aβ1–40 and Aβ1–42 and Aβ deposits | [66] |
APPswe/PS1dE9 mice | Diet supplemented with vitamin C alone (3 g/kg diet) or in combination with a high (750 IU/kg diet) or low (400 IU/kg diet) dose of vitamin E. Considering the normal food intake of the mice, with the high dose of vitamin E diet administration, mice received about 50 mg/kg body weight/day vitamin E, and 100 mg/kg vitamin C. | Vitamin C with the low dose of vitamin E reduced oxidative stress and improved spatial memory deficits. The combination of vitamin C with a high dose of vitamin E was less effective. However, amyloid deposition was not influenced by vitamin treatment. | [68] |
Mice subjected to intracerebroventricular injection with Aβ1–40 | Oral administration of folic acid (25, 50 or 100 mg/kg) with α-tocopherol (250, 500 or 1000 mg/kg), daily for 14 days | The treatment with of folic acid and α-tocopherol improved Aβ1-40 induced spatial learning deficits and cognitive decline through a reduction of the synaptic dysfunction process. The combination of folic acid and α-tocopherol exerted antioxidant effects and induced a decrease in the activity of mitochondrial complexes I and IV, but not complex II | [69] |
Young (4–6 months) and aged (22–24 months) rats | Diet supplemented with a combination of N-acetylcysteine (50 mg/100 g body weight), α-lipoic acid (3 mg/100 g body weight) and α-tocopherol (1.5 mg/100 g body weight) from 18 months until they were 22–24 months old | The combination of N-acetylcysteine, α-lipoic acid and α-tocopherol to aged rats prevented oxidative stress and inflammation in the brain | [71] |
Young (4–6 months) and aged (22–24 months) rats | Combination of N-acetylcysteine (50 mg/100 g body weight), α-lipoic acid (3 mg/100 g body weight) and α-tocopherol (1.5 mg/100 g body weight) administered orally with the diet from 18 months until they were 22–24 months old | The combination of N-acetylcysteine, α-lipoic acid and α-tocopherol to aged rats prevented changes in synaptosomal parameters together with a reduction of lipid peroxidation, and improved learning and memory functions | [70] |
Young (4–6 months) and aged (22–24 months) rats | Diet supplemented with N-acetylcysteine (50 mg/100 g body weight), α-lipoic acid (3 mg/100 g body weight) and α-tocopherol (1.5 mg/100 g body weight) from the age of 18 months until they were 22–24 months old | The supplemented diet with N-acetylcysteine, α-lipoic acid and α-tocopherol prevented the spatial learning and memory impairment and these rats showed a reduction of APP, β-secretase activity and Aβ42 compared to rats with a normal diet, while neprilysin increased. | [72] |
Subjects | Vitamin E Treatment | Duration | Results | Ref. |
---|---|---|---|---|
341 AD patients | 2000 IU/day dl-α-tocopherol | 2 years | Vitamin E slowed disease progression. | [76] |
613 patients with mild to moderate AD | 2000 IU/day of α-tocopherol (dl-α-tocopheryl acetate) | 6 months to 4 years | Patients treated with α-tocopherol showed a slower cognitive functional decline. No side effects associated with vitamin E. | [77] |
769 patients with mild cognitive impairment | 1000 IU/day for 6 weeks and after 2000 IU/day | 3 years | Vitamin E treatment did not influence AD progression. | [79] |
33 AD patients | 800 IU/day | 6 months | Vitamin E respondents had a lower oxidative stress and did not show loss of cognition. Non-respondents showed a reduction of cognitive function. | [80] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gugliandolo, A.; Bramanti, P.; Mazzon, E. Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models. Int. J. Mol. Sci. 2017, 18, 2504. https://doi.org/10.3390/ijms18122504
Gugliandolo A, Bramanti P, Mazzon E. Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models. International Journal of Molecular Sciences. 2017; 18(12):2504. https://doi.org/10.3390/ijms18122504
Chicago/Turabian StyleGugliandolo, Agnese, Placido Bramanti, and Emanuela Mazzon. 2017. "Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models" International Journal of Molecular Sciences 18, no. 12: 2504. https://doi.org/10.3390/ijms18122504
APA StyleGugliandolo, A., Bramanti, P., & Mazzon, E. (2017). Role of Vitamin E in the Treatment of Alzheimer’s Disease: Evidence from Animal Models. International Journal of Molecular Sciences, 18(12), 2504. https://doi.org/10.3390/ijms18122504