Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Analysis of Milk Thistle Seed Oils
2.2. Fatty Acid Composition
2.3. Oxidative Stability
2.4. Total Phenolic Content (TPC)
2.5. Phenolic Acids and Flavonoids
2.6. Tocopherols
2.7. Thermal Behavior
2.8. Colour
3. Materials and Methods
3.1. Seed Material
3.2. Oil Extraction
3.3. Proximate Analyses
3.3.1. Chemical Analysis
3.3.2. Fatty Acid Composition
3.3.3. Determination of Total Phenolic Content (TPC)
3.3.4. Identification and Quantification of Phenolic Acids and Flavonoids by HPLC-MS/MS
3.3.5. Tocopherol Composition
3.3.6. Differential Scanning Calorimetry (DSC)
3.3.7. Oxidative Stability
3.3.8. CIE L* a* b* Coordinates
3.3.9. Data Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barreto, J.F.A.; Wallace, S.N.; Carrier, D.J.; Clausen, E.C. Extraction of Nutraceuticals from milk thistle. Part I. Hot water extraction. Appl. Biochem. Biotechnol. 2003, 105–108, 881–889. [Google Scholar] [CrossRef]
- Fathi-Achachlouei, B.; Azadmard-Damirchi, S. Milk thistle seed oil constituents from different varieties grown in Iran. J. Am. Oil Chem. Soc. 2009, 86, 643–649. [Google Scholar] [CrossRef]
- Tukan, S.K.; Takruri, H.R.; Al-Eisawi, D.M. The use of wild edible plants in the Jordanian diet. Int. J. Food Sci. Nutr. 1998, 49, 1889–1895. [Google Scholar] [CrossRef]
- Kurkin, V.A. Saint-Mary thistle: A source of medicinals. Pharm. Chem. J. 2003, 37, 189–202. [Google Scholar] [CrossRef]
- Fraschini, F.; Demartini, G.; Esposti, D. Pharmacology of Silymarin. Clin. Drug Investig. 2002, 22, 51–65. [Google Scholar] [CrossRef]
- Alemardan, A.; Asadi, W.; Rezaei, M.; Tabrizi, L.; Mohammadi, S. Cultivation of Iranian seedless barberry (Berberis integerrima ‘Bidaneh’). A medicinal shrub. Ind. Crops Prod. 2013, 50, 276–287. [Google Scholar] [CrossRef]
- Nyiredy, S.; Szucs, Z.; Antus, S.; Samu, Z. New components from Silybum marianum L. Fruits: A theory comes true. Chromatography 2008, 68, 5–11. [Google Scholar] [CrossRef]
- Vaknin, Y.; Hadas, R.; Schafferman, D.; Murkhovsky, L.; Bashan, N. The potential of milk thistle (Silybum marianum L.), an Israeli native, as a source of edible sprouts rich in antioxidants. Int. J. Food Sci. Nutr. 2008, 59, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Skottova, N.; Vecera, R.; Urban, K.; Vana, P.; Walterova, D.; Cvak, L. Effects of polyphenolic fraction of silymarin on lipoprotein profile in rats fed cholesterol-rich diets. Pharmacol. Res. 2003, 47, 17–26. [Google Scholar] [CrossRef]
- Jacobs, B.P.; Dennehy, C.; Ramirez, G.; Sapp, J.; Lawrence, V.A. Milk thistle for the treatment of liver disease: A systematic review and meta-analysis. Am. J. Med. 2002, 113, 506–515. [Google Scholar] [CrossRef]
- Hadolin, M.; Skerget, M.; Knez, Z.; Bauman, D. High pressure extraction of vitamin E-rich oil from Silybum marianum. Food Chem. 2001, 74, 355–364. [Google Scholar] [CrossRef]
- Vojtisek, B.; Hronova, B.; Hamrik, J.; Jankova, B. Milk thistle (Silybum marianum in feed given to ketonic cows. Vet. Med. 1991, 36, 31–33. [Google Scholar]
- El-Mallah, M.H.; El-Shami, S.M.; Hassanein, M.M. Detailed studies on some lipids of Silybum marianum L. seed oil. Grasas Aceites 2003, 54, 397–402. [Google Scholar]
- Parry, J.; Hao, Z.; Luther, M.; Su, L.; Zhou, K.; Yu, L.L. Characterization of cold-pressed onion, parsley, cardamom, mullein, roasted pumpkin and milk thistle seed oils. J. Am. Oil Chem. Soc. 2006, 83, 847–854. [Google Scholar] [CrossRef]
- Bahl, J.R.; Bansal, R.P.; Goel, R.; Kumar, S. Properties of the seed oil of a dwarf cultivar of the pharmaceutical silymarin producing plant Silybum marianum (L.) Gaertn. developed in India. Indian J. Nat. Prod. Resour. 2015, 6, 127–133. [Google Scholar]
- Khan, I.; Khattak, H.U.; Ullah, I.; Bangash, F.K. Study of the physicochemical properties of Silybum marianum seed oil. J. Chem. Soc. Pak. 2007, 29, 545–548. [Google Scholar]
- Eromosele, I.C.; Eromosele, C.O.; Innazo, P.; Njerim, P. Studies on some seeds and seed oils. Bioresour. Technol. 1997, 64, 245–247. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Recommended Internal Standards Edible Fats and Oils, 1st ed.; FAO/WHO: Rome, Italy, 1982; Volume XI. [Google Scholar]
- Ahmad, T.; Atta, S.; Ullah, I.; Zeb, A.; Nagra, S.A.; Perveen, S. Characteristics of Silybum marianum as a potential source of dietary oil and protein. Pak. J. Sci. Ind. Res. 2007, 50, 36–40. [Google Scholar]
- Arena, E.; Campisi, S.; Fallico, B.; Maccarone, E. Distribution of fatty acids and phytosterols as a criterion to discriminate geographic origin of pistachio seeds. Food Chem. 2007, 104, 403–408. [Google Scholar] [CrossRef]
- Nyam, K.L.; Tan, C.P.; Lai, O.M.; Long, K.; Che Man, Y.B. Physicochemical properties and bioactive compounds of selected seed oils. Food Sci. Technol. 2009, 42, 1396–1403. [Google Scholar] [CrossRef] [Green Version]
- Dabbour, I.R.; Al-Ismail, K.M.; Takruri, H.R.; Azzeh, F.S. Chemical characteristics and antioxidant content properties of cold pressed seed oil of wild milk thistle plant grown in Jordan. Pak. J. Nutr. 2014, 13, 67–78. [Google Scholar] [CrossRef]
- Hasanloo, T.; Bahmanei, M.; Sepehrifar, R.; Kalantari, F. Determination of tocopherols and fatty acids in seeds of Silybum marianum L. Gaerth. J. Med. Plants 2008, 7, 69–76. [Google Scholar]
- Aparicio, R.; Roda, L.; Albi, M.A.; Gutiérrez, F. Effect of various compounds on virgin olive oil stability measured by Rancimat. J. Agric. Food Chem. 1999, 47, 4150–4155. [Google Scholar] [CrossRef] [PubMed]
- Parry, J.; Su, L.; Luther, M.; Zhou, K.; Yurawecz, M.P.; Whittaker, P.; Yu, L. Fatty acid composition and antioxidant properties of cold-pressed marionberry, boysenberry, red raspberry and blueberry seed oils. J. Agric. Food Chem. 2005, 53, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Lucini, L.; Kane, D.; Pellizoni, M.; Ferrari, A.; Trevisi, E.; Ruzickova, G.; Arslan, D. Phenolic profile and in vitro antioxidant power of different milk thistle [Silybum marianum (L.) Gaertn]. Ind. Crops Prod. 2016, 83, 11–16. [Google Scholar] [CrossRef]
- Çelik, H.T.; Gürü, M. Extraction of oil and silybin compounds from milk thistle seeds using supercritical carbon dioxide. J. Supercrit. Fluid 2016, 100, 105–109. [Google Scholar] [CrossRef]
- Ghavani, N.; Ramin, A.A. Grain yield and active substances of milk thistle as affected by soil salinity. Commun. Soil Sci. Plant Anal. 2008, 39, 2608–2618. [Google Scholar] [CrossRef]
- Hevia, F.; Wilckens, R.L.; Berti, M.T.; Fischer, S.U. Quality of milk thistle (Silybum marianum (L.) Gaertn.) harvested in different phenological stages. Inf. Technol. 2007, 18, 69–74. [Google Scholar]
- Martin, R.J.; Lauren, D.R.; Smith, W.A.; Jensen, D.J.; Deo, B.; Douglas, J.A. Factors influencing silymarin content and composition in variegated thistle (Silybum marianum). J. Crop Hortic. Sci. 2006, 34, 239–245. [Google Scholar] [CrossRef]
- O’Brien, R.D. Fats and Oils: Formulations and Processing for Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Ferrari, C.; Angiuli, M.; Tombari, E.; Righetti, M.C.; Matteoli, E.; Salvetti, G. Promoting calorimetry for olive oil authentication. Thermochim. Acta 2007, 459, 58–63. [Google Scholar] [CrossRef]
- Tan, C.P.; Che Man, Y.B. Differential scanning calorimetric analysis of edible oils: Comparison of thermal properties and chemical composition. J. Am. Oil Chem. Soc. 2000, 77, 142–155. [Google Scholar]
- Tan, C.P.; Che Man, Y.B. Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation. Phytochem. Anal. 2002, 13, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Jiménez Márquez, A.; Beltrán Maza, G. Application of differential scanning calorimetry (DSC) at the characterization of the virgin olive oil. Grasas Aceites 2003, 54, 403–409. [Google Scholar] [CrossRef]
- Chiavaro, E.; Vittadini, E.; Rodriguez-Estrada, M.T.; Cerretani, L.; Bendini, A. Monovarietal extra virgin olive oils: Correlation between thermal properties and chemical composition: Heating thermograms. J. Agric. Food Chem. 2008, 56, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.Y.; Yu, S.H. Comparisons on 11 plant oil fat substitutes for low-fat kung-wans. J. Food Eng. 2002, 51, 215–220. [Google Scholar] [CrossRef]
- American Oil Chemists’ Society (AOCS). Official Methods and Recommended Practices of the American Oil Chemist’s Society, 5th ed.; AOCS Press: Champaign, IL, USA, 1997. [Google Scholar]
- European Economic Community (EEC). Characteristics of olive and olive pomace oils and their analytical methods. Regulation EEC/2568/1991. J. Eur. Commun. 1991, L248, 1–82. [Google Scholar]
- Yu, L.; Perret, J.; Harris, M.; Wilson, J.; Haley, S. Antioxidant properties of bran extracts from “Akron” wheat grown at different locations. J. Agric. Food Chem. 2003, 51, 1566–1570. [Google Scholar] [CrossRef] [PubMed]
- Rezig, L.; Chouaibi, M.; Msaada, K.; Hamdi, S. Chemical composition and profile characterisation of pumpkin (Cucurbita maxima) seed oil. Ind. Crops Prod. 2012, 37, 82–87. [Google Scholar] [CrossRef]
- International Organization for Standardization (ISO). Association Française de Normalisation, European Norm, NF EN ISO 9936 Octobre 2006; French Norm T60-239: Animal and Vegetable Fats and Oils-Determination of Tocopherols and Tocotrienols Contents-Method Using High-Performance Liquid Chromatography; ISO: Geneve, Switzerland, 2006; 17p. [Google Scholar]
- Halbault, L.; Barbé, C.; Aroztegui, M.; de la Torre, C. Oxidative stability of semi-solid excipient mixtures with corn oil and its implication in the degradation of vitamin A. Int. J. Pharm. 1997, 147, 31–41. [Google Scholar] [CrossRef]
- Statsoft Inc. STATISTICA for Windows (Computer Program Electronic Manuel); Statsoft Inc.: Tulsa, OK, USA, 1998. [Google Scholar]
Region | Bizerte | Zaghouan | Sousse |
---|---|---|---|
Refractive index (40 °C) | 1.47 ± 0.12 a | 1.46 ± 0.11 b | 1.47 ± 0.13 a |
Specific gravity (25 °C) | 0.91 ± 0.08 a | 0.91 ± 0.08 a | 0.91 ± 0.08 a |
Acid value (mg KOH/g oil) | 5.48 ± 0.51 c | 7.59 ± 0.61 b | 8.34 ± 0.77 a |
Peroxide value (meq O2/kg oil) | 2.83 ± 0.24 c | 3 ± 0.27 b | 4.20 ± 0.38 a |
Iodine value (g I2/100 g oil) | 112.41 ± 11.02 c | 118.32 ± 10.84 a | 116.10 ± 10.46 b |
Saponification value (mg KOH/g oil) | 205.16 ± 18.75 a | 194.72 ± 18.42 b | 128.08 ±11.59 c |
Unsaponifiable matter (%) | 1.57 ± 0.465 c | 4.96 ± 0.24 b | 5.84 ± 0.17 a |
Oil stability index (h) | 5.83 ± 0.48 b | 8.75 ± 0.77 a | 4.55 ± 0.35 c |
K232 | 2.17 ± 0.20 a | 1.89 ± 0.15 c | 2.02 ± 0.21 b |
K270 | 0.30 ± 0.02 b | 0.24 ± 0.02 c | 0.45 ± 0.03 a |
Region | Bizerte | Zaghouan | Sousse | |
---|---|---|---|---|
Fatty acids | Composition | |||
Palmitic (C16:0) | 7.00 ± 0.68 b | 5.50 ± 0.41 c | 11.40 ± 1.21 a | |
Stearic (C18:0) | 4.50 ± 0.35 b | 4.75 ± 0.39 a | 2.90 ± 0.24 c | |
Oleic (C18:1) | 15.50 ± 1.48 c | 21.50 ± 2.11 b | 22.40 ± 2.21 a | |
Linoleic (C18:2) | 57.00 ± 6.28 c | 60.00 ± 5.94 b | 60.30 ± 6.58 a | |
Arachidic (C20:0) | 2.50 ± 0.19 b | 2.90 ± 0.20 a | 1.80 ± 0.17 c | |
Eicosenoic acid (C20:1) | 0.72 ± 0.06 b | 0.85 ± 0.07 a | tr. | |
Behenic acid (C22:0) | 2.25 ± 0.21 b | 2.50 ± 0.20 a | 0.92 ± 0.08 c | |
Lignoceric acid (C24:0) | 0.55 ± 0.04 c | 0.60 ± 0.05 b | 0.92 ± 0.07 a | |
SAFA | 16.81 ± 1.45 b | 16.26 ± 1.58 c | 17.95 ± 1.84 a | |
MUFA | 16.23 ± 1.28 c | 22.36 ± 3.12 b | 22.41 ± 2.69 a | |
PUFA | 57.00 ± 4.58 b | 60.00 ± 5.73 ab | 60.31 ± 6.12 a | |
Tocopherol | Composition | |||
α | 47.65 ± 3.54 c | 286.22 ± 25.49 a | 278.47 ± 24.64 b | |
β | 1.91 ± 0.21 c | 3.58 ± 0.37 b | 6.66 ± 0.74 a | |
γ | 0.00 | 14.24 ± 1.25 b | 23.94 ± 2.14 a | |
δ | 0.00 | 14.24 ± 1.22 a | 5.23 ± 0.61 b | |
Total | 49.57 ± 5.11 c | 318.29 ± 28.45 a | 314.31 ± 30.77 b | |
Total Phenolic Content | Composition | |||
3.59 ± 0.14 c | 8.12 ± 0.75 a | 4.73 ± 0.39 b | ||
Phenolic acids and flavonoids | Composition | Fragments MS/MS (m/z) | ||
p-coumaric acid | 0.34 ± 0.16 b | 0.26 ± 0.07 c | 0.90 ± 0.03 a | 148.7/130.8/119.9/84.7 |
vanillic acid | ni | 83 ± 2.4 a | 40.20 ± 1.8 b | 159.1/139.7/123.8/97.8/75.9 |
Sylibine | * | * | ni | 452.6/434.6/354.8/300.7/282.7/256.8/214.8/186.8 |
L* | a* | b* | |
---|---|---|---|
Bizerte | 66.07 ± 6.25 a | −0.85 ± 0.21 c | 12.10 ± 1.11 b |
Zaghouan | 59.93 ± 2.763 a | 0.35 ± 0.02 c | 5.78 ± 0.62 b |
Sousse | 41.94 ± 4.11 a | 1.53 ± 0.14 c | 14.95 ± 1.32 b |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meddeb, W.; Rezig, L.; Abderrabba, M.; Lizard, G.; Mejri, M. Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils. Int. J. Mol. Sci. 2017, 18, 2582. https://doi.org/10.3390/ijms18122582
Meddeb W, Rezig L, Abderrabba M, Lizard G, Mejri M. Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils. International Journal of Molecular Sciences. 2017; 18(12):2582. https://doi.org/10.3390/ijms18122582
Chicago/Turabian StyleMeddeb, Wiem, Leila Rezig, Manef Abderrabba, Gérard Lizard, and Mondher Mejri. 2017. "Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils" International Journal of Molecular Sciences 18, no. 12: 2582. https://doi.org/10.3390/ijms18122582
APA StyleMeddeb, W., Rezig, L., Abderrabba, M., Lizard, G., & Mejri, M. (2017). Tunisian Milk Thistle: An Investigation of the Chemical Composition and the Characterization of Its Cold-Pressed Seed Oils. International Journal of Molecular Sciences, 18(12), 2582. https://doi.org/10.3390/ijms18122582