Systematic Analysis of Transcriptomic Profile of Renal Cell Carcinoma under Long-Term Hypoxia Using Next-Generation Sequencing and Bioinformatics
Abstract
:1. Introduction
2. Results
2.1. Long-Term Hypoxia Promoted Colony Formation Ability and Transwell Migration Ability in the Von Hippel-Lindau (VHL)-Defective Clear Cell Renal Cell Carcinoma (ccRCC) Cell Line 786-O
2.2. Long-Term Hypoxia Altered the Expression Levels of Genes Involved in Various Biological Functions
2.3. Identification of Potential Genes Associated with Advanced Malignancy of RCC Progression
2.4. Analysis of Differentially Expressed microRNAs in 786-O under Long-Term Hypoxia
3. Discussion
4. Material and Methods
4.1. Cell Culture
4.2. Colony Formation Assay
4.3. Transwell Assay
4.4. QRT-PCR
4.5. Next-Generation Sequencing (NGS)
4.6. Gene Expression Omnibus (GEO) Database Analysis
4.7. SurvExpress Analysis
4.8. miRMap Database Analysis
4.9. DAVID Database Analysis
4.10. Gene Set Enrichment Analysis (GSEA)
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
RCC | renal cell carcinoma |
ccRCC | clear cell RCC |
HIF | hypoxia-inducible factor |
VHL | von Hippel-Lindau |
FPKM | fragments per kilobase of transcript per million mapped reads |
GSEA | gene set enrichment analysis |
ROS | reactive oxygen species |
CSF2 | colony stimulating factor 2 |
PTGS2 | prostaglandin-endoperoxide synthase 2 |
MAPT | microtubule-associated protein tau |
AUTS2 | autism susceptibility gene 2 protein |
References
- Murai, M.; Oya, M. Renal cell carcinoma: Etiology, incidence and epidemiology. Curr. Opin. Urol. 2004, 14, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Rathmell, W.K.; Godley, P. Renal cell carcinoma. Curr. Opin. Oncol. 2008, 20, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Cairns, P. Renal cell carcinoma. Cancer Biomark. 2010, 9, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Schraml, P.; Frew, I.J.; Thoma, C.R.; Boysen, G.; Struckmann, K.; Krek, W.; Moch, H. Sporadic clear cell renal cell carcinoma but not the papillary type is characterized by severely reduced frequency of primary cilia. Mod. Pathol. 2009, 22, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Pavlovich, C.P.; Schmidt, L.S. Searching for the hereditary causes of renal-cell carcinoma. Nat. Rev. Cancer 2004, 4, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Athar, U.; Gentile, T.C. Treatment options for metastatic renal cell carcinoma: A review. Can. J. Urol. 2008, 15, 3954–3966. [Google Scholar] [PubMed]
- Kume, H.; Takahashi, S.; Teramoto, S.; Isurugi, K. Risk factors for adult renal cell carcinoma: A systematic review and implications for prevention. BJU Int. 2001, 88, 804. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Smith, M.; Lutgendorf, S.K.; Sood, A.K. Impact of stress on cancer metastasis. Future Oncol. 2010, 6, 1863–1881. [Google Scholar] [CrossRef] [PubMed]
- Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med. 2007, 80, 51–60. [Google Scholar] [PubMed]
- Avni, R.; Cohen, B.; Neeman, M. Hypoxic stress and cancer: Imaging the axis of evil in tumor metastasis. NMR Biomed. 2011, 24, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Kondoh, M.; Ohga, N.; Akiyama, K.; Hida, Y.; Maishi, N.; Towfik, A.M.; Inoue, N.; Shindoh, M.; Hida, K. Hypoxia-induced reactive oxygen species cause chromosomal abnormalities in endothelial cells in the tumor microenvironment. PLoS ONE 2013, 8, e80349. [Google Scholar] [CrossRef] [PubMed]
- Luoto, K.R.; Kumareswaran, R.; Bristow, R.G. Tumor hypoxia as a driving force in genetic instability. Genome Integr. 2013, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Foster, K.; Prowse, A.; van den Berg, A.; Fleming, S.; Hulsbeek, M.M.; Crossey, P.A.; Richards, F.M.; Cairns, P.; Affara, N.A.; Ferguson-Smith, M.A.; et al. Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. Hum. Mol. Genet. 1994, 3, 2169–2173. [Google Scholar] [CrossRef] [PubMed]
- Clifford, S.C.; Cockman, M.E.; Smallwood, A.C.; Mole, D.R.; Woodward, E.R.; Maxwell, P.H.; Ratcliffe, P.J.; Maher, E.R. Contrasting effects on HIF-1α regulation by disease-causing pVHL mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. Hum. Mol. Genet. 2001, 10, 1029–1038. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.A.; Ohh, M.; Yang, H.; Klco, J.M.; Ivan, M.; Kaelin, W.G., Jr. Von Hippel-Lindau protein mutants linked to type 2C VHL disease preserve the ability to downregulate HIF. Hum. Mol. Genet. 2001, 10, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Bayer, C.; Shi, K.; Astner, S.T.; Maftei, C.A.; Vaupel, P. Acute versus chronic hypoxia: Why a simplified classification is simply not enough. Int. J. Radiat. Oncol. Biol. Phys. 2011, 80, 965–968. [Google Scholar] [CrossRef] [PubMed]
- Alqawi, O.; Wang, H.P.; Espiritu, M.; Singh, G. Chronic hypoxia promotes an aggressive phenotype in rat prostate cancer cells. Free. Radic. Res. 2007, 41, 788–797. [Google Scholar] [CrossRef] [PubMed]
- Henze, A.T.; Acker, T. Feedback regulators of hypoxia-inducible factors and their role in cancer biology. Cell Cycle 2010, 9, 2749–2763. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.W.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8, R183. [Google Scholar] [CrossRef] [PubMed]
- Bell, E.L.; Klimova, T.A.; Eisenbart, J.; Moraes, C.T.; Murphy, M.P.; Budinger, G.R.; Chandel, N.S. The Qo site of the mitochondrial complex III is required for the transduction of hypoxic signaling via reactive oxygen species production. J. Cell Biol. 2007, 177, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S.; Maltepe, E.; Goldwasser, E.; Mathieu, C.E.; Simon, M.C.; Schumacker, P.T. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. USA 1998, 95, 11715–11720. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, X.; Cang, H.; Gao, F.; Yamamoto, T.; Osaki, T.; Yi, J. The endogenous reactive oxygen species promote NF-κB activation by targeting on activation of NF-κB-inducing kinase in oral squamous carcinoma cells. Free Radic. Res. 2007, 41, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Liu, Z.G. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Cao, S.S.; Kaufman, R.J. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 2014, 21, 396–413. [Google Scholar] [CrossRef] [PubMed]
- Zeeshan, H.M.; Lee, G.H.; Kim, H.R.; Chae, H.J. Endoplasmic Reticulum Stress and Associated ROS. Int. J. Mol. Sci. 2016, 17, 327. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.; Scholer-Dahirel, A.; Mechta-Grigoriou, F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin. Cancer Biol. 2014, 25, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Panieri, E.; Santoro, M.M. ROS homeostasis and metabolism: A dangerous liason in cancer cells. Cell Death Dis. 2016, 7, e2253. [Google Scholar] [CrossRef] [PubMed]
- Limoli, C.L.; Giedzinski, E. Induction of chromosomal instability by chronic oxidative stress. Neoplasia 2003, 5, 339–346. [Google Scholar] [CrossRef]
- Schwabe, R.F.; Brenner, D.A. Mechanisms of liver injury. I. TNF-α-induced liver injury: Role of IKK, JNK and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 2006, 290, G583–G589. [Google Scholar] [CrossRef] [PubMed]
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [PubMed]
- Rudisch, A.; Dewhurst, M.R.; Horga, L.G.; Kramer, N.; Harrer, N.; Dong, M.; van der Kuip, H.; Wernitznig, A.; Bernthaler, A.; Dolznig, H.; et al. High EMT signature score of invasive non-small cell lung cancer (NSCLC) cells correlates with NFκB driven colony-stimulating factor 2 (CSF2/GM-CSF) secretion by neighboring stromal fibroblasts. PLoS ONE 2015, 10, e0124283. [Google Scholar] [CrossRef] [PubMed]
- Park, B.K.; Zhang, H.; Zeng, Q.; Dai, J.; Keller, ET.; Giordano, T.; Gu, K.; Shah, V.; Pei, L.; Zarbo, R.J.; et al. Nf-kappab in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat. Med. 2007, 13, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Xia, D.; Dubois, R.N. The crosstalk of PTGS2 and EGF signaling pathways in colorectal cancer. Cancers 2011, 3, 3894–3908. [Google Scholar] [CrossRef] [PubMed]
- Srinath, P.; Rao, P.N.; Knaus, E.E.; Suresh, M.R. Effect of cyclooxygenase-2 (Cox-2) inhibitors on prostate cancer cell proliferation. Anticancer Res. 2003, 23, 3923–3928. [Google Scholar] [PubMed]
- Oue, E.; Lee, J.W.; Sakamoto, K.; Iimura, T.; Aoki, K.; Kayamori, K.; Michi, Y.; Yamashiro, M.; Harada, K.; Amagasa, T.; et al. CXCL2 synthesized by oral squamous cell carcinoma is involved in cancer-associated bone destruction. Biochem. Biophys. Res. Commun. 2012, 424, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ye, Y.L.; Li, M.X.; Ye, S.B.; Huang, W.R.; Cai, T.T.; He, J.; Peng, J.Y.; Duan, T.H.; Cui, J.; et al. CXCL2/MIF-CXCR2 signaling promotes the recruitment of myeloid-derived suppressor cells and is correlated with prognosis in bladder cancer. Oncogene 2017, 36, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Gui, S.L.; Teng, L.C.; Wang, S.Q.; Liu, S.; Lin, Y.L.; Zhao, X.L.; Liu, L.; Sui, H.Y.; Yang, Y.; Liang, L.C.; et al. Overexpression of CXCL3 can enhance the oncogenic potential of prostate cancer. Int. Urol. Nephrol. 2016, 48, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Chu, Q.; Shen, D.; He, L.; Wang, H.; Liu, C.; Zhang, W. Prognostic significance of SOCS3 and its biological function in colorectal cancer. Gene 2017, 627, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Iwahori, K.; Serada, S.; Fujimoto, M.; Nomura, S.; Osaki, T.; Lee, C.M.; Mizuguchi, H.; Takahashi, T.; Ripley, B.; Okumura, M.; et al. Overexpression of SOCS3 exhibits preclinical antitumor activity against malignant pleural mesothelioma. Int. J. Cancer 2011, 129, 1005–1017. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S.; Trzyna, W.C.; McClintock, D.S.; Schumacker, P.T. Role of oxidants in NF-κB activation and TNF-α gene transcription induced by hypoxia and endotoxin. J. Immunol. 2000, 165, 1013–1021. [Google Scholar] [CrossRef] [PubMed]
- Imtiyaz, H.Z.; Simon, M.C. Hypoxia-inducible factors as essential regulators of inflammation. Curr. Top. Microbiol. Immunol. 2010, 345, 105–120. [Google Scholar] [PubMed]
- Acharyya, S.; Oskarsson, T.; Vanharanta, S.; Malladi, S.; Kim, J.; Morris, P.G.; Manova-Todorova, K.; Leversha, M.; Hogg, N.; Seshan, V.E.; et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012, 150, 165–178. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Sun, H.; Wei, J.; Cen, B.; DuBois, R.N. CXCL1 is critical for premetastatic niche formation and metastasis in colorectal cancer. Cancer Res. 2017, 77, 3655–3665. [Google Scholar] [CrossRef] [PubMed]
- Le Rolle, A.F.; C.hiu, T.K.; Fara, M.; Shia, J.; Zeng, Z.; Weiser, M.R.; Paty, P.B.; Chiu, V.K. The prognostic significance of CXCL1 hypersecretion by human colorectal cancer epithelia and myofibroblasts. J. Transl. Med. 2015, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.W.; Xia, G.K.; Wu, Y.; Chen, W.; Xiang, Z.; Schwarz, R.E.; Brekken, R.A.; Awasthi, N.; He, Y.L.; Zhang, C.H. CXCL1 promotes tumor growth through VEGF pathway activation and is associated with inferior survival in gastric cancer. Cancer Lett. 2015, 359, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016, 37, 11553–11572. [Google Scholar] [CrossRef] [PubMed]
- Ancrile, B.; Lim, K.H.; Counter, C.M. Oncogenic Ras-induced secretion of il6 is required for tumorigenesis. Genes Dev. 2007, 21, 1714–1719. [Google Scholar] [CrossRef] [PubMed]
- Marsigliante, S.; Vetrugno, C.; Muscella, A. CCL20 induces migration and proliferation on breast epithelial cells. J. Cell. Physiol. 2013, 228, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Marsigliante, S.; Vetrugno, C.; Muscella, A. Paracrine CCL20 loop induces epithelial-mesenchymal transition in breast epithelial cells. Mol. Carcinog. 2016, 55, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhao, L.; Dai, S.; Li, L.; Wang, F.; Shan, B. CCL5 secreted by tumor associated macrophages may be a new target in treatment of gastric cancer. Biomed. Pharmacother. 2016, 77, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, G.J.; Yang, P.; Fu, J.; Michelotti, G.A.; Chen, R.; Sui, J.; Yang, B.; Qin, W.H.; Zhang, Z.; Wang, F.S.; et al. Inflammation-dependent IL18 signaling restricts hepatocellular carcinoma growth by enhancing the accumulation and activity of tumor-infiltrating lymphocytes. Cancer Res. 2016, 76, 2394–2405. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Woo, S.M.; Cho, S.G.; Moon, H.E.; Yun, Y.J.; Kim, J.W.; Noh, D.Y.; Jang, B.H.; Shin, Y.C.; Kim, J.H.; et al. Brain-metastatic triple-negative breast cancer cells regain growth ability by altering gene expression patterns. Cancer Genom. Proteom. 2013, 10, 265–275. [Google Scholar]
- Wu, T.C. The role of vascular cell adhesion molecule-1 in tumor immune evasion. Cancer Res. 2007, 67, 6003–6006. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Massague, J. Molecular pathways: VCAM-1 as a potential therapeutic target in metastasis. Clin. Cancer Res. 2012, 18, 5520–5525. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.E.; Wang, X.D.; Ernst, J.A.; Polakis, P.; Gao, W.Q. Regulation of epithelial branching morphogenesis and cancer cell growth of the prostate by Wnt signaling. PLoS ONE 2008, 3, e2186. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Dong, A.; Fernandez-Ruiz, V.; Shan, J.; Kawa, M.; Martinez-Anso, E.; Prieto, J.; Qian, C. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma. Cancer Res. 2009, 69, 6951–6959. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Li, Q.; Wang, G.; Huang, Y.; Mao, X.; Zhang, Y.; Wang, X. Inhibition of Wnt/β-catenin by anthelmintic drug niclosamide effectively targets growth, survival and angiogenesis of retinoblastoma. Am. J. Transl. Res. 2017, 9, 3776–3786. [Google Scholar] [PubMed]
- Mendes, O.; Kim, H.T.; Lungu, G.; Stoica, G. MMP2 role in breast cancer brain metastasis development and its regulation by TIMP2 and ERK1/2. Clin. Exp. Metastasis 2007, 24, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes. Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.L.; Zeng, Z.L.; Yang, J.; Ren, C.; Wang, D.S.; Wu, W.J.; Xu, R.H. L1cam promotes tumor progression and metastasis and is an independent unfavorable prognostic factor in gastric cancer. J. Hematol. Oncol. 2013, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Raveh, S.; Gavert, N.; Ben-Ze’ev, A. L1 cell adhesion molecule (L1CAM) in invasive tumors. Cancer Lett. 2009, 282, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Dellinger, T.H.; Smith, D.D.; Ouyang, C.; Warden, C.D.; Williams, J.C.; Han, E.S. L1CAM is an independent predictor of poor survival in endometrial cancer—An analysis of the cancer genome atlas (TCGA). Gynecol. Oncol. 2016, 141, 336–340. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, Y.; Lu, L.; Yang, L.; Yin, S.; Wang, Y.; Qi, Z.; Meng, J.; Zang, R.; Yang, G. Fibrillin-1, induced by Aurora-A but inhibited by BRCA2, promotes ovarian cancer metastasis. Oncotarget 2015, 6, 6670–6683. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Song, Y.; Zhang, H.; Wu, X.; Xia, P.; Dang, C. Detection of hypermethylated fibrillin-1 in the stool samples of colorectal cancer patients. Med. Oncol. 2013, 30, 695. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Taira, N.; Hara, F.; Fujita, T.; Yamamoto, H.; Soh, J.; Toyooka, S.; Nogami, T.; Shien, T.; Doihara, H.; et al. The estrogen receptor influences microtubule-associated protein tau (MAPT) expression and the selective estrogen receptor inhibitor fulvestrant downregulates MAPT and increases the sensitivity to taxane in breast cancer cells. Breast. Cancer Res. 2010, 12, R43. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Huang, M.; Lu, M.; Zhu, W.; Shu, Y.; Cao, P.; Liu, P. Regulation of microtubule-associated protein tau (MAPT) by mir-34c-5p determines the chemosensitivity of gastric cancer to paclitaxel. Cancer Chemother. Pharmacol. 2013, 71, 1159–1171. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ru, G.Q.; Mo, X.; Wang, H.J.; Ma, Y.; He, X.L.; Yan, Z.; Huang, D. AUTS2 is a potential therapeutic target for pancreatic cancer patients with liver metastases. Med. Hypotheses 2015, 85, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Kelley, M.R.; Fishel, M.L. DNA repair proteins as molecular targets for cancer therapeutics. Anticancer Agents Med. Chem. 2008, 8, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Narayanan, L.; Rockwell, S.; Glazer, P.M. Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low ph. Cancer Res. 2000, 60, 4372–4376. [Google Scholar] [PubMed]
- Glazer, P.M.; Hegan, D.C.; Lu, Y.; Czochor, J.; Scanlon, S.E. Hypoxia and DNA repair. Yale J. Biol. Med. 2013, 86, 443–451. [Google Scholar] [PubMed]
- Bindra, R.S.; Schaffer, P.J.; Meng, A.; Woo, J.; Maseide, K.; Roth, M.E.; Lizardi, P.; Hedley, D.W.; Bristow, R.G.; Glazer, P.M. Alterations in DNA repair gene expression under hypoxia: Elucidating the mechanisms of hypoxia-induced genetic instability. Ann. N. Y. Acad. Sci. 2005, 1059, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Pires, I.M.; Bencokova, Z.; Milani, M.; Folkes, L.K.; Li, J.L.; Stratford, M.R.; Harris, A.L.; Hammond, E.M. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability. Cancer Res. 2010, 70, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Verpy, E.; Leibovici, M.; Zwaenepoel, I.; Liu, X.Z.; Gal, A.; Salem, N.; Mansour, A.; Blanchard, S.; Kobayashi, I.; Keats, B.J.; et al. A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies usher syndrome type 1c. Nat. Genet. 2000, 26, 51–55. [Google Scholar] [PubMed]
- Henson, B.J.; Bhattacharjee, S.; O’Dee, D.M.; Feingold, E.; Gollin, S.M. Decreased expression of miR-125b and miR-100 in oral cancer cells contributes to malignancy. Genes Chromosomes Cancer 2009, 48, 569–582. [Google Scholar] [CrossRef] [PubMed]
- Giangreco, A.A.; Vaishnav, A.; Wagner, D.; Finelli, A.; Fleshner, N.; Van der Kwast, T.; Vieth, R.; Nonn, L. Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prev. Res. 2013, 6, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.M.; Zhang, F.; Chen, X.B.; Jun, C.M.; Jing, X.; Wei, D.X.; Xia, Y.; Zhou, Y.B.; Xiao, X.Q.; Jia, R.Q.; et al. miR-100 suppresses the proliferation and tumor growth of esophageal squamous cancer cells via targeting CXCR7. Oncol. Rep. 2016, 35, 3453–3459. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Chen, B.; Ji, X.X.; Zhou, S.W.; Zheng, D. Overexpression of miR-100 inhibits cancer growth, migration and chemosensitivity in human NSCLC cells through fibroblast growth factor receptor 3. Tumour Biol. 2016, 37, 15517–15524. [Google Scholar] [CrossRef] [PubMed]
- Wotschofsky, Z.; Liep, J.; Meyer, H.A.; Jung, M.; Wagner, I.; Disch, A.C.; Schaser, K.D.; Melcher, I.; Kilic, E.; Busch, J.; et al. Identification of metastamirs as metastasis-associated microRNAs in clear cell renal cell carcinomas. Int. J. Biol. Sci. 2012, 8, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Fei, B.; Wu, H. miR-378 inhibits progression of human gastric cancer MGC-803 cells by targeting MAPK1 in vitro. Oncol. Res. 2012, 20, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Zeng, M.; Zhu, L.; Li, L.; Kang, C. miR-378 suppresses the proliferation, migration and invasion of colon cancer cells by inhibiting sdad1. Cell. Mol. Biol. Lett. 2017, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.G.; Zhou, W.; Han, T.; Du, S.Q.; Li, Z.H.; Zhang, Z.; Shan, G.Y.; Kong, C.Z. miR-378 suppresses prostate cancer cell growth through downregulation of MAPK1 in vitro and in vivo. Tumour Biol. 2016, 37, 2095–2103. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Lin, J.; Qian, J.; Qian, W.; Yin, J.; Yang, B.; Tang, Q.; Chen, X.; Wen, X.; Guo, H.; Deng, Z. miR-378 promotes the migration of liver cancer cells by down-regulating FUS expression. Cell. Physiol. Biochem. 2014, 34, 2266–2274. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Liu, D.; Qu, H. Systematic review of next-generation sequencing simulators: Computational tools, features and perspectives. Brief. Funct. Genom. 2017, 16, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol. 2016, 1418, 93–110. [Google Scholar] [PubMed]
- Wotschofsky, Z.; Gummlich, L.; Liep, J.; Stephan, C.; Kilic, E.; Jung, K.; Billaud, J.N.; Meyer, H.A. Integrated microrna and mRNA signature associated with the transition from the locally confined to the metastasized clear cell renal cell carcinoma exemplified by miR-146–5p. PLoS ONE 2016, 11, e0148746. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Choudhury, Y.; Lim, W.K.; Anema, J.; Kahnoski, R.J.; Lane, B.; Ludlow, J.; Takahashi, M.; Kanayama, H.O.; Belldegrun, A.; et al. Recognizing the Continuous Nature of Expression Heterogeneity and Clinical Outcomes in Clear Cell Renal Cell Carcinoma. Sci. Rep. 2017, 7, 7342. [Google Scholar] [CrossRef] [PubMed]
- Aguirre-Gamboa, R.; Gomez-Rueda, H.; Martinez-Ledesma, E.; Martinez-Torteya, A.; Chacolla-Huaringa, R.; Rodriguez-Barrientos, A.; Tamez-Pena, J.G.; Trevino, V. Survexpress: An online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE 2013, 8, e74250. [Google Scholar] [CrossRef] [PubMed]
- Collett, D. Modelling Survival Data in Medical Research; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Vejnar, C.E.; Zdobnov, E.M. miRmap: Comprehensive prediction of microrna target repression strength. Nucleic Acids Res. 2012, 40, 11673–11683. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Nat. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
Condition | KEGG Pathway | Counts | p-Value | Up Genes | Down Genes | Fold Enrichment |
---|---|---|---|---|---|---|
Short-term hypoxia | TNF signaling pathway | 5 | 0.024267 | CSF2, PTGS2, SOCS3, CXCL3, CXCL2 | - | 4.46497803 |
Long-term hypoxia | Basal cell carcinoma | 8 | 0.000622 | FZD8, WNT7B, TCF7, WNT3, WNT5B | WNT5A, PTCH1, GLI1 | 5.374818 |
TNF signaling pathway | 9 | 0.007555 | CXCL1, CSF2, IL6, PTGS2, CCL20, CCL5 | VCAM1, IL18R1, MAPK13 | 3.137423 | |
Pathways in cancer | 19 | 0.018474 | JUP, FZD8, WNT7B, IL6, TCF7, WNT3, WNT5B, PTGS2, PGF, VEGFA, EGLN3, GNG4, MMP2 | WNT5A, PDGFRB, PTCH1, FGF12, MMP1, GLI1 | 1.786477 | |
Proteoglycans in cancer | 12 | 0.018829 | FZD8, WNT7B, WNT3, WNT5B, ANK3, VEGFA, MMP2 | WNT5A, MAPK13, HPSE, LUM, PTCH1 | 2.217112 | |
Glycerolipid metabolism | 6 | 0.019391 | ALDH2, DGKI | DGKA, DGAT1, AKR1B10, PNPLA3 | 3.822607 |
Normoxia vs. Long-Term_Hypoxia (Class A vs. Class B) | ||||||
---|---|---|---|---|---|---|
GSEA Set Name | MSigDB | Counts | ES | NES | NOM p-Value | FDR q-Value |
REGULATION_OF_CELL_PROLIFERATION | C5 | 15 | −0.39 | −1.64 | 0.021 | 0.241 |
CELL_PROLIFERATION_GO_0008283 | C5 | 22 | −0.33 | −1.61 | 0.047 | 0.215 |
miRNA ID | Gene Symbol | miRmap | TargetScan | miRDB | miRNA ID | Gene Symbol | miRmap | TargetScan | miRDB |
---|---|---|---|---|---|---|---|---|---|
hsa-mir-100-3p | CEP97 | + | + | - | hsa-mir-939-5p | DGKI | + | + | + |
hsa-mir-125b-2-3p | PYGO1 | + | + | - | hsa-mir-939-5p | OAS1 | + | - | - |
hsa-mir-1306-5p | STRA6 | + | - | - | hsa-mir-939-5p | CAMK1D | + | - | - |
hsa-mir-1306-5p | CDC42BPG | + | - | - | hsa-mir-939-5p | KCNK3 | + | + | - |
hsa-mir-1306-5p | PAQR7 | + | - | + | hsa-mir-939-5p | HMGA1 | + | + | - |
hsa-mir-1306-5p | PGM2L1 | + | + | - | hsa-mir-939-5p | AFAP1 | + | + | - |
hsa-mir-1306-5p | GPRC5B | + | - | - | hsa-mir-939-5p | OLFML2A | + | + | - |
hsa-mir-1306-5p | EGLN3 | + | - | - | hsa-mir-939-5p | CHRDL1 | + | + | - |
hsa-mir-148a-5p | EIF4E3 | + | + | - | hsa-mir-939-5p | ALPK3 | + | + | + |
hsa-mir-149-5p | MDGA1 | + | - | - | hsa-mir-939-5p | LIMD2 | + | + | - |
hsa-mir-149-5p | RAB3IL1 | + | + | + | hsa-mir-939-5p | CRABP2 | + | + | - |
hsa-mir-149-5p | GNG4 | + | - | - | hsa-mir-939-5p | TCF7 | + | + | + |
hsa-mir-149-5p | TANC2 | + | - | - | hsa-mir-939-5p | GPRC5B | + | + | - |
hsa-mir-188-5p | GDAP1 | + | - | + | hsa-mir-939-5p | INHBB | + | + | - |
hsa-mir-193a-3p | OLFML2A | + | - | - | hsa-mir-939-5p | SLC7A6 | + | + | - |
hsa-mir-193a-3p | SLC5A3 | + | - | - | hsa-mir-939-5p | TIMP2 | + | + | + |
hsa-mir-218-5p | MDGA1 | + | + | + | hsa-mir-939-5p | VEGFA | + | + | + |
hsa-mir-218-5p | LOX | + | - | + | hsa-mir-9-5p | FBN1 | + | + | + |
hsa-mir-218-5p | LRIG1 | + | + | + | hsa-mir-9-5p | EIF4E3 | + | + | - |
hsa-mir-3200-3p | CDH13 | + | + | + | hsa-mir-9-5p | SPTLC2 | + | + | + |
hsa-mir-378a-3p | OTUB2 | + | + | + | hsa-mir-6511b-5p | DIRAS2 | + | + | - |
hsa-mir-378a-3p | ALPK3 | + | + | - | hsa-mir-6511b-5p | MDGA1 | + | + | + |
hsa-mir-378a-5p | PLXNA2 | + | + | + | hsa-mir-6511b-5p | APLN | + | + | - |
hsa-mir-378d | OTUB2 | + | + | + | hsa-mir-6511b-5p | KCNK3 | + | + | - |
hsa-mir-378d | ALPK3 | + | + | - | hsa-mir-6511b-5p | AFAP1 | + | + | - |
hsa-mir-378i | OTUB2 | + | + | + | hsa-mir-6511b-5p | SPNS3 | + | + | + |
hsa-mir-378i | ALPK3 | + | + | - | hsa-mir-6511b-5p | GNG4 | + | + | + |
hsa-mir-5094 | EPB41L4B | + | - | + | hsa-mir-6511b-5p | WNT7B | + | + | - |
hsa-mir-5094 | SPOCK1 | + | + | - | hsa-mir-6511b-5p | KIAA0513 | + | + | + |
hsa-mir-873-3p | WNT3 | + | + | + | hsa-mir-6511b-5p | SPTLC2 | + | + | - |
hsa-mir-939-5p | CYP26B1 | + | + | + |
miRNA ID | Gene Symbol | miRmap | TargetScan | miRDB |
---|---|---|---|---|
hsa-mir-122-5p | CYBRD1 | + | - | + |
hsa-mir-195-5p | IL17RE | + | + | - |
hsa-mir-195-5p | LIN7A | + | + | - |
hsa-mir-195-5p | PLSCR4 | + | + | + |
hsa-mir-195-5p | SEMA3A | + | + | + |
hsa-mir-195-5p | MOCS1 | + | + | - |
hsa-mir-195-5p | KSR1 | + | + | - |
hsa-mir-195-5p | PDK4 | + | + | + |
hsa-mir-195-5p | BTG2 | + | + | + |
hsa-mir-195-5p | CLDN2 | + | + | + |
hsa-mir-195-5p | PTCH1 | + | + | - |
hsa-mir-195-5p | SYNJ1 | + | + | + |
hsa-mir-195-5p | CACNA2D1 | + | + | - |
hsa-mir-204-5p | SAMD12 | + | + | - |
hsa-mir-204-5p | MAPT | + | - | - |
hsa-mir-204-5p | EGR1 | + | - | + |
hsa-mir-381-3p | ULK2 | + | - | + |
hsa-mir-381-3p | CACNA2D1 | + | - | - |
hsa-mir-411-5p | LUM | + | - | - |
hsa-mir-486-5p | NTRK3 | + | - | - |
hsa-mir-767-5p | VASH1 | + | + | - |
hsa-mir-943 | PLSCR4 | + | + | - |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.-C.; Chen, F.-W.; Hsu, Y.-L.; Kuo, P.-L. Systematic Analysis of Transcriptomic Profile of Renal Cell Carcinoma under Long-Term Hypoxia Using Next-Generation Sequencing and Bioinformatics. Int. J. Mol. Sci. 2017, 18, 2657. https://doi.org/10.3390/ijms18122657
Chen S-C, Chen F-W, Hsu Y-L, Kuo P-L. Systematic Analysis of Transcriptomic Profile of Renal Cell Carcinoma under Long-Term Hypoxia Using Next-Generation Sequencing and Bioinformatics. International Journal of Molecular Sciences. 2017; 18(12):2657. https://doi.org/10.3390/ijms18122657
Chicago/Turabian StyleChen, Szu-Chia, Feng-Wei Chen, Ya-Ling Hsu, and Po-Lin Kuo. 2017. "Systematic Analysis of Transcriptomic Profile of Renal Cell Carcinoma under Long-Term Hypoxia Using Next-Generation Sequencing and Bioinformatics" International Journal of Molecular Sciences 18, no. 12: 2657. https://doi.org/10.3390/ijms18122657
APA StyleChen, S. -C., Chen, F. -W., Hsu, Y. -L., & Kuo, P. -L. (2017). Systematic Analysis of Transcriptomic Profile of Renal Cell Carcinoma under Long-Term Hypoxia Using Next-Generation Sequencing and Bioinformatics. International Journal of Molecular Sciences, 18(12), 2657. https://doi.org/10.3390/ijms18122657