Recurrent Pneumonia in Children: A Reasoned Diagnostic Approach and a Single Centre Experience
Abstract
:1. Introduction
2. Which Children Should Undergo a Diagnostic Work-Up?
3. Which Underlying Diseases Should Be Suspected in Children with RP?
4. Which Diagnostic Approach to Pediatric RP?
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Bradley, J.S.; Byington, C.L.; Shah, S.S.; Alverson, B.; Carter, E.R.; Harrison, C.; Kaplan, S.L.; Mace, S.E.; McCracken, G.H., Jr.; Moore, M.R.; et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: Clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin. Infect. Dis. 2011, 53, e25–e76. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, E.; Sausenthaler, S.; Brockow, I.; Liese, J.; Herbarth, O.; Michael, B.; Schaaf, B.; Krämer, U.; von Berg, A.; Wichmann, H.E.; et al. Burden of otitis media and pneumoniain children up to 6 years of age: Results of the LISA birth cohort. Eur. J. Pediatr. 2009, 168, 1251–1257. [Google Scholar] [CrossRef] [PubMed]
- Wald, E.R. Recurrent and nonresolving pneumonia in children. Semin. Respir. Infect. 1993, 8, 46–58. [Google Scholar] [PubMed]
- Weigl, J.A.; Bader, H.M.; Everding, A.; Schmitt, H.J. Population-based burden of pneumonia before school entry in Schleswig-Holstein, Germany. Eur. J. Pediatr. 2003, 162, 309–316. [Google Scholar] [PubMed]
- Owayed, A.F.; Campbell, D.M.; Wang, E.E. Underlying causes of recurrent pneumonia in children. Arch. Pediatr. Adolesc. Med. 2000, 154, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Ciftçi, E.; Güneş, M.; Köksal, Y.; Ince, E.; Doğru, U. Underlying causes of recurrent pneumonia in Turkish children in a university hospital. J. Trop. Pediatr. 2003, 49, 212–215. [Google Scholar] [CrossRef] [PubMed]
- Lodha, R.; Puranik, M.; Natchu, U.C.; Kabra, S.K. Recurrent pneumonia in children: Clinical profile and underlying causes. Acta Paediatr. 2002, 91, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- Cabezuelo Huerta, G.; Vidal Micó, S.; Abeledo Gómez, A.; Frontera Izquierdo, P. Causas subyacentes de neumonìa recurrente. An. Pediatr. (Barc). 2005, 63, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Hoving, M.F.; Brand, P.L. Causes of recurrent pneumonia in children in a general hospital. J. Paediatr. Child Health 2013, 49, E208–E212. [Google Scholar] [CrossRef] [PubMed]
- Patria, F.; Longhi, B.; Tagliabue, C.; Tenconi, R.; Ballista, P.; Ricciardi, G.; Galeone, C.; Principi, N.; Esposito, S. Clinical profile of recurrent community-acquired pneumonia in children. BMC Pulm. Med. 2013, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Ostapchuk, M.; Roberts, D.M.; Haddy, R. Community-acquired pneumonia in infants and children. Am. Fam. Phys. 2004, 70, 899–908. [Google Scholar]
- Rubin, B.K. The evaluation of the child with recurrent chest infections. Pediatr. Infect. Dis. 1985, 4, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Brand, P.L.; Hoving, M.F.; de Groot, E.P. Evaluating the child with recurrent lower respiratory tract infections. Paediatr. Respir. Rev. 2012, 13, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Patria, M.F.; Esposito, S. Recurrent lower respiratory tract infections in children: A practical approach to diagnosis. Paediatr. Respir. Rev. 2013, 14, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Lucas, J.S.; Barbato, A.; Collins, S.A.; Goutaki, M.; Behan, L.; Caudri, D.; Dell, S.; Eber, E.; Escudier, E.; Hirst, R.A.; et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur. Respir. J. 2016. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Trujillo, V. New genetic discoveries and primary immune deficiencies. Clin. Rev. Allergy Immunol. 2014, 46, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, F.A.; Khan, D.A.; Ballas, Z.K.; Chinen, J.; Frank, M.M.; Hsu, J.T.; Keller, M.; Kobrynski, L.J.; Komarow, H.D.; Mazer, B.; et al. Practice parameter for the diagnosis and management of primary immunodeficiency. J. Allergy Clin. Immunol. 2015, 136, 1186–1205. [Google Scholar] [CrossRef] [PubMed]
- Internal Clinical Guidelines Team (UK). Tuberculosis: Prevention, Diagnosis, Management and Service Organisation; National Institute for Health and Care Excellence: London, UK, 2016. [Google Scholar]
- Greenough, A.; Broughton, S. Chronic manifestation of respiratory syncytial virus infections in premature infants. Pediatr. Infect. Dis. J. 2005, 24, S184–S187. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, M.A.; Marr, S.H.; Yee, M.; McGrath-Morrow, S.A.; Lawrence, B.P. Neonatal hyperoxia enhances the inflammatory response in adult mice infected with influenza A virus. Am. J. Respir. Crit. Care Med. 2008, 177, 1103–1110. [Google Scholar] [CrossRef] [PubMed]
- Hellings, P.W.; Fokkens, W.J. Allergic rhinitis and its impact on otorhinolaryngology. Allergy 2006, 61, 656–664. [Google Scholar] [CrossRef] [PubMed]
- Laoukili, J.; Perret, E.; Willems, T.; Minty, A.; Parthoens, E.; Houcine, O.; Coste, A.; Jorissen, M.; Marano, F.; Caput, D.; et al. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells. J. Clin. Invest. 2001, 108, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Cook, D.G.; Strachan, D.P. Health effects of passive smoking-10: Summary of effects of parental smoking on the respiratory health of children and implications for research. Thorax 1999, 54, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Noakes, P.S.; Hale, J.; Thomas, R.; Lane, C.; Devadason, S.G.; Prescott, S.L. Maternal smoking is associated with impaired neonatal toll-like receptor-mediated immune response. Eur. Respir. J. 2006, 28, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Cheraghi, M.; Salvi, S. Environmental tobacco smoke (ETS) and respiratory health in children. Eur. J. Pediatr. 2009, 168, 897–905. [Google Scholar] [CrossRef] [PubMed]
- Polanska, K.; Hanke, W.; Ronchetti, R.; van den Hazel, P.; Zuurbier, M.; Koppe, J.G.; Bartonova, A. Enviromental tobacco smoke exposure and children’s health. Acta Paediatr. Suppl. 2006, 95, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Savitha, M.R.; Nandeeshwara, S.B.; Pradeep Kumar, M.J.; ul-Haque, F.; Raju, C.K. Modifiable risk factors for acute lower respiratory tract infections. Indian J. Pediatr. 2007, 74, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Po, J.Y.; FitzGerald, J.M.; Carlsten, C. Respiratory disease associated with solid biomass fuel exposure in rural women and children: Systematic review and meta-analysis. Thorax 2011, 66, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Searing, D.A.; Rabinovitch, N. Environmental pollution and lung effects in children. Curr. Opin. Pediatr. 2011, 23, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Geppert, E.F. Chronic and recurrent pneumonia. Semin. Respir. Infect. 1992, 7, 282–288. [Google Scholar] [PubMed]
- Stein, R.T.; Marostica, P.J.C. Community-acquired bacterial pneumonia. In Kendig’s Disorders of the Respiratory Tract in Children, 7th ed.; Chernick, V., Boat, T.F., Wilmott, R.W., Bush, A., Eds.; Saunders: Philadelphia, PA, USA, 2006. [Google Scholar]
- Heffelfinger, J.D.; Davis, T.E.; Gebrian, B.; Bordeau, R.; Schwartz, B.; Dowell, S.F. Evaluation of children with recurrent pneumonia diagnosed by World Health Organization criteria. Pediatr. Infect. Dis. J. 2002, 21, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Panitch, H.B. Evaluation of recurrent pneumonia. Pediatr. Infect. Dis. J. 2005, 24, 265–266. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, K.S.; Aiyappan, S.K.; Saxena, A.K.; Singh, M.; Rao, K.; Khandelwal, N. Utility of multidetector CT and virtual bronchoscopy in tracheobronchial obstruction in children. Acta Paediatr. 2010, 99, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Sathe, M.N.; Freeman, A.J. Gastrointestinal, pancreatic, and hepatobiliary manifestations of cystic fibrosis. Pediatr. Clin. North Am. 2016, 63, 679–698. [Google Scholar] [CrossRef] [PubMed]
- Bush, A. Recurrent respiratory infections. Pediatr. Clin. North Am. 2009, 56, 67–100. [Google Scholar] [CrossRef] [PubMed]
- Gattuso, J.M.; Kamm, M.A. Adverse effects of drugs used in the management of constipation and diarrhoea. Drug Saf. 1994, 10, 47–65. [Google Scholar] [CrossRef] [PubMed]
- Yao, T.C.; Hung, I.J.; Jaing, T.H.; Yang, C.P. Pitfalls in the diagnosis of idiopathic pulmonaryhaemosiderosis. Arch. Dis. Child. 2002, 86, 436–438. [Google Scholar] [CrossRef] [PubMed]
- Birnkrant, D.J. The assessment and management of the respiratory complicationsof pediatric neuromuscular diseases. Clin. Pediatr. (Phila). 2002, 41, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Finder, J.D. Airway clearance modalities in neuromuscular disease. Paediatr. Respir. Rev. 2010, 11, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Panitch, H.B. Airway clearance in children with neuromuscular weakness. Curr. Opin. Pediatr. 2006, 18, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Montella, S.; Pietrobelli, A. Obesity and pulmonary disease: Unanswered questions. Obes. Rev. 2012, 13, 822–833. [Google Scholar] [CrossRef] [PubMed]
- Manson, D.E. Magnetic resonance imaging of the mediastinum, chest wall and pleura in children. Pediatr. Radiol. 2016, 46, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Montella, S.; Santamaria, F.; Salvatore, M.; Pignata, C.; Maglione, M.; Iacotucci, P.; Mollica, C. Assessment of chest high-field magnetic resonance imaging in children and young adults with noncystic fibrosis chronic lung disease: Comparison to high-resolution computed tomography and correlation with pulmonary function. Invest. Radiol. 2009, 44, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Montella, S.; Mollica, C.; Finocchi, A.; Pession, A.; Pietrogrande, M.C.; Trizzino, A.; Ranucci, G.; Maglione, M.; Giardino, G.; Salvatore, M.; et al. Non invasive assessment of lung disease in ataxia telangiectasia by high-field magnetic resonance imaging. J. Clin. Immunol. 2013, 33, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.P.; Maher, M.M.; O’Connor, O.J. Imaging of cystic fibrosis and pediatric bronchiectasis. AJR Am. J. Roentgenol. 2016, 206, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Pao, C.S.; Healy, M.J.; McKenzie, S.A. Airway resistance by the interrupter technique: Which algorithm for measuring pressure? Pediatr. Pulmonol. 2004, 37, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, P.M.; Aurora, P.; Lindblad, A. Evaluation of ventilation maldistribution as an early indicator of lung disease in children with cystic fibrosis. Eur. Respir. J. 2003, 22, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Aurora, P.; Bush, A.; Gustafsson, P.; Oliver, C.; Wallis, C.; Price, J.; Stroobant, J.; Carr, S.; Stocks, J.; London Cystic Fibrosis Collaboration. Multiple breath washout as a marker of lung disease in preschool children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2005, 171, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Lum, S.; Gustafsson, P.; Ljungberg, H.; Hülskamp, G.; Bush, A.; Carr, S.B.; Castle, R.; Hoo, A.F.; Price, J.; Ranganathan, S.; et al. Early detection of cystic fibrosis lung disease: Multiple-breath washout vs. raised volume tests. Thorax 2007, 62, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Santamaria, F.; Montella, S.; Camera, L.; Palumbo, C.; Greco, L.; Boner, A.L. Lung structure abnormalities, but normal lung function in pediatric bronchiectasis. Chest 2006, 130, 480–486. [Google Scholar] [CrossRef] [PubMed]
- Maglione, M.; Bush, A.; Montella, S.; Mollica, C.; Manna, A.; Esposito, A.; Santamaria, F. Progression of lung disease in primary ciliary dyskinesia: Is spirometry less accurate than CT? Pediatr. Pulmonol. 2012, 47, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Montella, S.; Alving, K.; Maniscalco, M.; Sofia, M.; de Stefano, S.; Raia, V.; Santamaria, F. Measurement of nasal nitric oxide by hand-held and stationary devices. Eur. J. Clin. Invest. 2011, 41, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Rosen, R.; Fritz, J.; Nurko, A.; Simon, D.; Nurko, S. Lipid-laden macrophage index is not an indicator of gastroesophageal reflux-related respiratory disease in children. Pediatrics 2008, 121, e879–e884. [Google Scholar] [CrossRef] [PubMed]
- Farrell, S.; McMaster, C.; Gibson, D.; Shields, M.D.; McCallion, W.A. Pepsin in bronchoalveolar lavage fluid: A specific and sensitive method of diagnosing gastro-oesophageal reflux-related pulmonary aspiration. J. Pediatr. Surg. 2006, 41, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Mirra, V.; Maglione, M.; di Micco, L.L.; Montella, S.; Santamaria, F. Longitudinal follow-up of chronic pulmonary manifestations in esophageal atresia: A clinical algorithm and review of the literature. Pediatr. Neonatol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Jennings, C.A.; King, T.E., Jr.; Tuder, R.; Cherniack, R.M.; Schwarz, M.I. Diffuse alveolar hemorrhage with underlying isolated, pauciimmune pulmonary capillaritis. Am. J. Respir. Crit. Care Med. 1997, 155, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Coderre, S.; Mandin, H.; Harasym, P.H.; Fick, G.H. Diagnostic reasoning strategies and diagnostic success. Med. Educ. 2003, 37, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Groves, M.; O’Rourke, P.; Alexander, H. The clinical reasoning characteristics of diagnostic experts. Med. Teach. 2003, 25, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Norman, G.; Young, M.; Brooks, L. Non-analytical models of clinical reasoning: The role of experience. Med. Educ. 2007, 41, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Maglione, M.; Bush, A.; Nielsen, K.G.; Hogg, C.; Montella, S.; Marthin, J.K.; di Giorgio, A.; Santamaria, F. Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. Pediatr. Pulmonol. 2014, 49, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
Condition | Proposed Underlying Mechanisms |
---|---|
Prematurity/bronchopulmonary dysplasia [19,20] | Inadequate immunity due to low maternal antibodies levels |
Impaired lung function | |
Altered innate immunoregulatory response of the lungs to respiratory pathogens secondary to neonatal hyperoxia | |
Atopy [21,22] | Defective innate immune response of epithelial cells |
Interleukin 13-dependant reduced mucociliary clearance | |
Tobacco smoke exposure [23,24,25,26] | Neonatal low lung volume and impaired toll-like receptor-mediated immune response |
Suppressed phagocytic activity of neutrophils and monocytes/macrophage cells secondary to reduced production of oxygen radicals | |
Increased bacterial adherence | |
Impaired lung function | |
Over-crowding [27] | Increased exposure to respiratory pathogens |
Indoor and outdoor pollution [28,29] | Distal bronchial and alveolar inflammation |
Pointers in the History | - Unexplained death, severe infections or multisystem disease in the family |
- Unusual organisms or any feature of a systemic immunodeficiency | |
- Respiratory infection plus extrapulmonary infections or other disease | |
- Chronic rhinosinusitis and/or otitis media from the first months of age | |
- Very sudden onset of symptoms | |
- Chronic moist cough/sputum production | |
- More severe symptoms or irritability after feeds and when lying down | |
- Continuous, unremitting, or worsening symptoms | |
Pointers in the Physical Examination | - Severe infection |
- Persistent infection and failure of expected recovery | |
- Prolonged interstitial pneumonia with no detectable infective cause | |
- Digital clubbing, signs of weight loss, failure to thrive | |
- Unusually severe chest deformity | |
- Fixed monophonic wheeze or asymmetric wheeze | |
- Signs of cardiac or systemic disease | |
- Persistence of lung crackles on auscultation for more than eight weeks |
Right Middle Lobe Syndrome |
Localized airway obstruction |
Endobronchial foreign body |
Localized malacia or bronchiectasis |
Congenital malformation; congenital webs; complete cartilage rings |
Mucus plug |
Carcinoid or other pedunculated tumor; intramural airway tumor |
Inflammatory pseudotumor secondary to previous intubation |
Localized airway compression |
Vascular ring; pulmonary artery sling |
Enlarged lymphnodes |
Enlarged cardiac chamber due to right-to-left shunting; cardiomyopathy |
Fibrosing mediastinitis |
Mediastinal cancer |
Parenchimal disease |
Congenital malformation |
Infection in residual cystic change after a cavitating pneumonia or tuberculosis |
Lung cancer |
Systemic Immune Disorders |
Primary immunodeficiency |
Acquired immunodeficiency |
Local immune disorders (subtle abnormalities of mucosal defense) |
Genetic diseases |
Cystic fibrosis |
Primary ciliary dyskinesia |
Neuromuscular disorders |
Central neurologic disease |
Peripheral nerve or muscle disease |
Conditions causing weakness of expiratory muscles |
Airway anomalies |
Postinfective or idiopathic bronchiectasis |
Multiple complete cartilage rings |
Generalized bronchomalacia |
Major airway obstruction |
Airway compression by enlarged heart or great vessels |
Vascular rings and slings |
Recurrent aspiration |
Severe gastroesophageal reflux |
Isolated, late-presenting H-type fistula |
Esophageal dysmotility syndromes |
Oily medication and nose drops inhalation |
Laryngeal cleft |
Autoimmune diseases |
Pulmonary hemorrhagic syndromes |
Allergic bronchopulmonary aspergillosis |
Granulomatous disease |
Recurrent pulmonary edema (cardiac left-to-right shunting; heart failure) |
Drug toxicity |
Clinical Feature | RP in the Same Area | RP in Different Areas |
---|---|---|
(n = 28) | (n = 85) | |
Males (%) | 43 | 53 |
Age at first pneumonia (years) * | 1.5 (0.1–6.0) | 0.2 (0.1–15.6) |
Age at diagnosis of underlying disease (years) | 4.7 (1.0–11.8) | 6.5 (0.1–37.2) |
Underlying diseases (%) | ||
Middle lobe syndrome | 61 | 0 |
Localized malacia | 11 | 0 |
Congenital lung malformation | 21 | 0 |
Tuberculosis | 7 | 0 |
Primary immunodeficiency | 0 | 9 |
Cystic fibrosis | 0 | 5 |
Primary ciliary dyskinesia | 0 | 51 |
Severe gastroesophageal reflux | 0 | 2 |
Esophageal dysmotility | 0 | 5 |
Pulmonary hemorrhagic syndrome | 0 | 1 |
Autoimmune disease | 0 | 2 |
Vascular ring/sling | 0 | 2 |
Unknown | 0 | 22 |
Risk factors for RP (%) | ||
Prematurity | 18 | 9 |
Atopy | 25 | 27 |
Tobacco smoke exposure | 29 | 36 |
Over-crowding | 4 | 15 |
Variable | Current Series | Owayed et al. [5] | Ciftçi et al. [6] | Lodha et al. [7] | Cabezuelo et al. [8] | Hoving et al. [9] | Patria et al. [10] |
---|---|---|---|---|---|---|---|
Number of patients | 113 | 238 | 71 | 70 | 106 | 62 | 146 |
Setting | Tertiary care centre | Tertiary care centre | Tertiary care centre | Tertiary care centre | Tertiary care centre | General hospital | Tertiary care centre |
Country | Italy | Canada | Turkey | India | Spain | The Netherlands | Italy |
Diagnosis rate (%) | 83 | 92 | 85 | 84 | 87 | 69 | NA |
Underlying causes (%) | |||||||
Lung/airway disease | 26 | 8 | 6 | 9 | 2 | 16 | 30 |
Immunodeficiency | 7 | 10 | 10 | 16 | 10 | 16 | 1 |
Recurrent aspiration/GER | 5 | 53 | 18 | 37 | 27 | 26 | 24 |
Heart/vessels anomalies | 2 | 9 | 9 | 3 | 29 | 5 | 2 |
Cystic fibrosis | 4 | 0 | 3 | 0 | 0 | 0 | 0 |
Primary ciliary dyskinesia | 38 | 0 | 0 | 7 * | 0 | 0 | 1 |
Tuberculosis | 2 | 0 | 3 | 0 | 0 | 0 | 0 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montella, S.; Corcione, A.; Santamaria, F. Recurrent Pneumonia in Children: A Reasoned Diagnostic Approach and a Single Centre Experience. Int. J. Mol. Sci. 2017, 18, 296. https://doi.org/10.3390/ijms18020296
Montella S, Corcione A, Santamaria F. Recurrent Pneumonia in Children: A Reasoned Diagnostic Approach and a Single Centre Experience. International Journal of Molecular Sciences. 2017; 18(2):296. https://doi.org/10.3390/ijms18020296
Chicago/Turabian StyleMontella, Silvia, Adele Corcione, and Francesca Santamaria. 2017. "Recurrent Pneumonia in Children: A Reasoned Diagnostic Approach and a Single Centre Experience" International Journal of Molecular Sciences 18, no. 2: 296. https://doi.org/10.3390/ijms18020296
APA StyleMontella, S., Corcione, A., & Santamaria, F. (2017). Recurrent Pneumonia in Children: A Reasoned Diagnostic Approach and a Single Centre Experience. International Journal of Molecular Sciences, 18(2), 296. https://doi.org/10.3390/ijms18020296