Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals
3.2. Extra-Virgin Olive Oil (EVOO) Samples
3.3. Maturation Index
3.4. 3,4-DHPEA-EA Synthesis by Oleuropein Hydrolytic Conversion
3.5. Sample Preparation
3.6. Determination of Polyphenol Compounds by HPLC-DAD
3.7. Confirmation with MS
3.8. α-Tocopherol Evaluation by HPLC-FLU
3.9. Antioxidant Activity Determination
3.9.1. Total Phenols
3.9.2. Oxygen Radical Absorbance Capacity (ORAC Assay)
4. Statistical Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Frankel, E.; Bakhouche, A.; Lozano-Sánchez, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Literature review on production process to obtain extra virgin olive oil enriched in bioactive compounds. Potential use of byproducts as alternative sources of polyphenols. J. Agric. Food Chem. 2013, 61, 5179–5188. [Google Scholar] [CrossRef] [PubMed]
- Cicerale, S.; Lucas, L.J.; Keast, R.S. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C.; Bresson, J.-L.; Fairweather-Tait, S.; Flynn, A.; Golly, I.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; et al. Scientific Opinion on the substantiation of health claims related to polyphenols in olive and protection of LDL particles from oxidative damage (ID 1333, 1638, 1639, 1696, 2865), maintenance of normal blood HDL-cholesterol concentrations (ID 1639), maintenance of normal blood pressure (ID 3781), “anti-inflammatory properties” (ID 1882), “contributes to the upper respiratory tract health” (ID 3468), “can help to maintain a normal function of gastrointestinal tract” (3779), and “contributes to body defences against external agents” (ID 3467) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2011, 9, 2033. [Google Scholar]
- Caporaso, N.; Savarese, M.; Paduano, A.; Guidone, G.; de Marco, E.; Sacchi, R. Nutritional quality assessment of extra virgin olive oil from the Italian retail market: Do natural antioxidants satisfy EFSA health claims? J. Food Compost. Anal. 2015, 40, 154–162. [Google Scholar] [CrossRef]
- Bucelli, P.; Costantini, E.A.; Barbetti, R.; Franchini, E. Soil water availability in rainfed cultivation affects more than cultivar some nutraceutical components and the sensory profile of virgin olive oil. J. Agric. Food Chem. 2011, 59, 8304–8313. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Marmesat, S.; Berdeaux, O.; Márquez-Ruiz, G.; Dobarganes, C. Quantitation of short-chain glycerol-bound compounds in thermoxidized and used frying oils. A monitoring study during thermoxidation of olive and sunflower oils. J. Agric. Food Chem. 2005, 53, 4006–4011. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Gilardini Montani, M.S.; Merendino, N.; Romani, A.; Velotti, F. Hydroxytyrosol-derived compounds: A basis for the creation of new pharmacological agents for cancer prevention and therapy. J. Med. Chem. 2015, 58, 9089–9107. [Google Scholar] [CrossRef] [PubMed]
- Pedret, A.; Catalán, Ú.; Fernández-Castillejo, S.; Farràs, M.; Valls, R.M.; Rubió, L.; Canela, N.; Aragonés, G.; Romeu, M.; Castañer, O.; et al. Impact of virgin olive oil and phenol-enriched virgin olive oils on the HDL proteome in hypercholesterolemic subjects: A double blind, randomized, controlled, cross-over clinical trial (VOHF study). PLoS ONE 2015, 10, e0129160. [Google Scholar] [CrossRef] [PubMed]
- García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Pérez, A.G. Modulating oxidoreductase activity modifies the phenolic content of virgin olive oil. Food Chem. 2015, 171, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Alagna, F.; Geu-Flores, F.; Kries, H.; Panara, F.; Baldoni, L.; O’Connor, S.E.; Osbourn, A. Identification and characterization of the iridoid synthase involved in oleuropein biosynthesis in olive (Olea europaea) Fruits. J. Biol. Chem. 2016, 291, 5542–5554. [Google Scholar] [CrossRef] [PubMed]
- Charoenprasert, S.; Mitchell, A. Factors influencing phenolic compounds in table olives (Olea europaea). J. Agric. Food Chem. 2012, 60, 7081–7095. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, R.; Sepporta, M.V.; Mazza, T.; Rosignoli, P.; Fuccelli, R.; de Bartolomeo, A.; Crescimanno, M.; Taticchi, A.; Esposto, S.; Servili, M.; et al. Influence of cultivar and concentration of selected phenolic constituents on the in vitro chemiopreventive potential of olive oil extracts. J. Agric. Food Chem. 2011, 59, 8167–8174. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Identification of lignans as major components in the phenolic fraction of olive oil. Clin. Chem. 2000, 46, 976–988. [Google Scholar] [PubMed]
- Bajoub, A.; Hurtado-Fernández, E.; El Ajal, A.; Ouazzani, N.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Comprehensive 3-year study of the phenolic profile of Moroccan monovarietal virgin olive oils from the Meknès region. J. Agric. Food Chem. 2015, 63, 4376–4385. [Google Scholar] [CrossRef] [PubMed]
- Tekaya, M.; Mechri, B.; Bchir, A.; Attia, F.; Cheheb, H.; Daassa, M.; Hammami, M. Effect of nutrient-based fertilisers of olive trees on olive oil quality. J. Sci. Food. Agric. 2013, 93, 2045–2052. [Google Scholar] [CrossRef] [PubMed]
- Romero, N.; Saavedra, J.; Tapia, F.; Sepúlveda, B.; Aparicio, R. Influence of agroclimatic parameters on phenolic and volatile compounds of Chilean virgin olive oils and characterization based on geographical origin, cultivar and ripening stage. J. Sci. Food Agric. 2016, 96, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Conde, C.; Delrot, S.; Gerós, H. Physiological, biochemical and molecular changes occurring during olive development and ripening. J. Plant Physiol. 2008, 165, 1545–1562. [Google Scholar] [CrossRef] [PubMed]
- Vichi, S.; Romero, A.; Tous, J.; Caixach, J. The activity of healthy olive microbiota during virgin olive oil extraction influences oil chemical composition. J. Agric. Food Chem. 2011, 59, 4705–4714. [Google Scholar] [CrossRef] [PubMed]
- Krichene, D.; Salvador, M.D.; Fregapane, G. Stability of virgin olive oil phenolic compounds during long-term storage (18 months) at temperatures of 5–50 °C. J. Agric. Food Chem. 2015, 63, 6779–6786. [Google Scholar] [CrossRef] [PubMed]
- Hrncirik, K.; Fritsche, S. Relation between the endogenous antioxidant system and the quality of extra virgin olive oil under accelerated storage conditions. J. Agric. Food Chem. 2005, 53, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- European Union Commission (EEC. 1992). Regulation EEC/1429/92 amending Regulation EEC2568/91 on the characteristics of olive oil and olive residue oil and on the relevant methods of analysis. J. Eur. Commun. 1992, 150, 17–20. [Google Scholar]
- Benito, M.; Lasa, J.M.; Gracia, P.; Oria, R.; Abenoza, M.; Sánchez-Gimeno, A.C. Evolution of phenols and pigments in extra virgin olive oil from irrigated super-intensive orchard. Eur. J. Lipid Sci. Technol. 2012, 114, 558–567. [Google Scholar] [CrossRef]
- Haytowitz, D.B.; Bhagwat, S. USDA Database for the Oxygen Radical Absorbance Capacity (ORAC) of Selected Foods, Release 2; US Department of Agriculture: Quilcene, WA, USA, 2010. [Google Scholar]
- Del Monaco, G.; Officioso, A.; D’Angelo, S.; La Cara, F.; Ionata, E.; Marcolongo, L.; Squillaci, G.; Maurelli, L.; Morana, A. Characterization of extra virgin olive oils produced with typical Italian varieties by their phenolic profile. Food Chem. 2015, 184, 220–228. [Google Scholar] [CrossRef] [PubMed]
- El Riachy, M.; Priego-Capote, F.; León, L.; Luque de Castro, M.D.; Rallo, L. Virgin olive oil phenolic profile and variability in progenies from olive crosses. J. Sci. Food Agric. 2012, 92, 2524–2533. [Google Scholar] [CrossRef] [PubMed]
- Antonini, E.; Farina, A.; Scarpa, E.S.; Frati, A.; Ninfali, P. Quantity and quality of secoiridoids and lignans in extra virgin olive oils: The effect of two- and three-way decanters on Leccino and Raggiola olive cultivars. Int. J. Food Sci. Nutr. 2016, 67, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; di Maio, I.; Selvaggini, R.; Taticchi, A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2013, 3, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Briante, R.; Patumi, M.; Limongelli, S.; Febbraio, F.; Vaccaro, C.; di Salle, A.; la Cara, F.; Nucci, R. Changes in phenolic and enzymatic activities content during fruit ripening in two Italian cultivars of Olea europaea L. Plant Sci. 2002, 162, 791–798. [Google Scholar] [CrossRef]
- Ryana, D.; Antolovicha, M.; Prenzlera, P.; Robardsa, K.; Laveeb, S. Biotransformations of phenolic compounds in Olea europaea L. Sci. Hortic. 2002, 92, 147–176. [Google Scholar] [CrossRef]
- Alagna, F.; Mariotti, R.; Panara, F.; Caporali, S.; Urbani, S.; Veneziani, G.; Esposto, S.; Taticchi, A.; Rosati, A.; Rao, R.; et al. Olive phenolic compounds: Metabolic and transcriptional profiling during fruit development. BMC Plant Biol. 2012, 12, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research; Imperato, F., Ed.; Research Signpost: Kerala, India, 2006; pp. 23–67. [Google Scholar]
- Jemai, H.; Bouaziz, M.; Sayadi, S. Phenolic composition, sugar contents and antioxidant activity of Tunisian sweet olive cultivar with regard to fruit ripening. J. Agric. Food Chem. 2009, 57, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- Cunha, S.C.; Amaral, J.S.; Fernandes, J.O.; Oliveira, M.B. Quantification of tocopherols and tocotrienols in portuguese olive oils using HPLC with three different detection systems. J. Agric. Food Chem. 2006, 54, 3351–3356. [Google Scholar] [CrossRef] [PubMed]
- Inglese, P.; Famiani, F.; Galvano, F.; Servili, M.; Esposto, S.; Urbani, S. Factors Affecting Extra-Virgin Olive Oil Composition. In Horticultural Reviews; Janick, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; Volume 38. [Google Scholar]
- Ciafardini, G.; Zullo, B.A. Improvement of commercial olive oil quality through an evaluation of the polyphenol content of the oily fraction of the olive fruit during its period of maturation. J. Food Process. Technol. 2014, 5, 397. [Google Scholar]
- Bianco, A.D.; Piperno, A.; Romeo, G.; Uccella, N. NMR experiments of oleuropein biomimetic hydrolysis. J. Agric. Food Chem. 1999, 47, 3665–3668. [Google Scholar] [CrossRef] [PubMed]
- Daccache, A.; Lion, C.; Sibille, N.; Gerard, M.; Slomianny, C.; Lippens, G.; Cotelle, P. Oleuropein and derivatives from olives as Tau aggregation inhibitors. Neurochem. Int. 2011, 58, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Montedoro, G.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 1. Their extraction, separation, and quantitative and semiquantitative evaluation by HPLC. J. Agric. Food Chem. 1992, 40, 1571–1576. [Google Scholar] [CrossRef]
- Animal and Vegetable Fats and Oils—Determination of Tocopherol and Tocotrienol Contents by High-Performance Liquid Chromatography; UNI EN ISO 9936:2011; International Organization for Standardization: Geneva, Switzerland, 2011.
- Barreca, D.; Laganà, G.; Leuzzi, U.; Smeriglio, A.; Trombetta, D.; Bellocco, E. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls. Food Chem. 2016, 196, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Dávalos, A.; Gómez-Cordovés, C.; Bartolomé, B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay. J. Agric. Food Chem. 2004, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
EVOOs | Acronyms | |
---|---|---|
Early Harvest | Late Harvest | |
Frantoio * | EHF | LHF |
Casaliva * | EHC | LHC |
Organic Casaliva * | EHOC | LHOC |
Multi-varietal | EHMV | LHMV |
Organic Multi-varietal | EHOMV | LHOMV |
EVOOs | Folin Test (mg GAE Ψ/100 g FW *) | ORAC Test (µmol TE ¥/100 g FW *) |
---|---|---|
EHF | 21.69 ± 0.46 *,& | 536.90 ± 1.7153 |
EHC | 20.00 ± 0.53 *,& | 797.87 ± 5.25 ** |
EHOC | 36.36 ± 1.00 & | 1285.97 ± 5.51 **,b |
EHMV | 34.10 ± 1.04 & | 1387.37 ± 2.83 **,b,c |
EHOMV | 47.31 ± 0.56 | 1790.03 ± 2.72 **,b,c,d |
LHF | 34.67 ± 1.94 | 1250.44 ± 4.54 |
LHC | 25.26 ± 0.58 §,$ | 1145.13 ± 0.75 £ |
LHOC | 37.10 ± 0.74 | 1170.15 ± 9.10 £ |
LHMV | 30.63 a ± 1.10 | 1060.76 ± 4.72 £,#,@ |
LHOMV | 33.06 ± 1.16 | 926.95 ± 1.33 £,@,γ |
EVOOs | M.I. |
---|---|
EHF | 1.92 ± 0.03 |
EHC | 2.26 ± 0.02 * |
EHOC | 1.45 ± 0.02 *,$ |
EHMV | 1.54 ± 0.04 *,$ |
EHOMV | 1.32 ± 0.01 *,$,&,§ |
LHF | 3.58 ± 0.05 |
LHC | 3.87 ± 0.15 |
LHOC | 2.78 ± 0.08 £ |
LHMV | 3.93 ± 0.12 a |
LHOMV | 3.86 ± 0.06 a |
Phenolic Compounds | EHF | EHC | EHOC | EHMV | EHOMV |
---|---|---|---|---|---|
(mg/kg) | |||||
Hydroxytyrosol | 0.89 ± 0.00 | 0.71 ± 0.67 | 2.32 ± 0.12 | 6.35 ± 0.22 | 11.44 ± 0.55 |
Tyrosol | 4.20 ± 0.64 | 3.13± 0.41 | 1.71 ± 0.07 | 2.54 ± 0.39 | 5.59 ± 0.56 |
Vanillic acid | 1.80 ± 0.15 | 2.29 ± 0.02 | 0.90 ± 0.06 | 2.01 ± 0.37 | 1.42 ± 0.10 |
Vanillin | 3.28 ± 0.06 | 3.44 ± 0.27 | 4.26 ± 0.48 | 4.99 ± 0.41 | 4.84 ± 0.18 |
3,4-DHPEA-AC | 1.25 ± 0.16 | 1.78 ± 0.18 | 1.67 ± 0.25 | 3.43 ± 0.20 | 1.72 ± 0.12 |
3,4-DHPEA-EDA | 76.67 ± 5.83 | 56.57 ± 4.73 | 108.21 ± 9.56 | 102.44 ± 4.63 | 106.89 ± 12.58 |
p-HPEA-EDA | 6.65 ± 0.97 | 7.42 ± 0.44 | 12.29 ± 1.22 | 10.98 ± 1.01 | 12.46 ± 0.62 |
Oleuropein | 18.51 ± 1.61 | 6.61 ± 0.66 | 12.85 ± 1.91 | 10.01 ± 1.11 | 15.41 ± 1.47 |
Lignans | 69.20 ± 1.77 | 79.90 ± 7.73 | 83.81 ± 1.91 | 111.17 ± 5.22 | 130.99 ± 9.72 |
3,4-DHPEA-EA | 7.98 ± 0.43 | 3.18 ± 0.12 | 9.18 ± 0.97 | 5.50 ± 0.12 | 8.84 ± 2.96 |
Luteolin | 13.25 ± 1.98 | 4.67 ± 0.45 | 22.54 ± 2.91 | 11.76 ± 0.95 | 17.72 ± 1.26 |
Apigenin | 5.47 ± 0.56 | 4.83 ± 0.24 | 3.39 ± 0.57 | 8.43 ± 1.24 | 8.87 ± 1.48 |
Total | 209.15 | 174.53 *,$,§ | 263.13 * | 280.16 *,$ | 326.19 *,$,§,& |
Phenolic Compounds | LHF | LHC | LHOC | LHMV | LHOMV |
---|---|---|---|---|---|
(mg/kg) | |||||
Hydroxytyrosol | 3.04 ± 0.16 | 1.99 ± 0.31 | 4.29 ± 0.34 | 0.49 ± 0.03 | 0.58 ± 0.04 |
Tyrosol | 4.26 ± 0.33 | 4.56 ± 0.44 | 4.93 ± 0.80 | 1.12 ± 0.13 | 2.84 ± 0.36 |
Vanillic acid | 2.79 ± 0.18 | 3.34 ± 0.09 | 1.42 ± 0.14 | 1.13 ± 0.16 | 1.38 ± 0.12 |
Vanillin | 3.07 ± 0.34 | 3.55 ± 0.20 | 3.75 ± 0.10 | 0.53 ± 0.02 | 2.64 ± 0.14 |
3,4-DHPEA-AC | 1.96 ± 0.23 | 1.50 ± 0.19 | 3.94 ± 0.23 | 2.98 ± 0.18 | 1.95 ± 0.25 |
3,4-DHPEA-EDA | 62.17 ± 4.48 | 55.04 ±0.79 | 98.92 ± 13.33 | 54.60 ± 3.00 | 89.41 ± 1.29 |
p-HPEA-EDA | 2.23 ± 0.08 | 2.65 ± 0.23 | 7.32 ± 0.10 | 0.88 ± 0.02 | 14.38 ± 1.27 |
Oleuropein | 5.28 ± 0.25 | 1.80 ± 0.13 | 2.70 ± 0.24 | 1.52 ± 0.13 | 9.53 ± 0.67 |
Lignans | 100.00 ± 22.05 | 92.29 ± 6.14 | 106.00 ± 7.42 | 176.77 ± 14.41 | 141.96 ±6.42 |
3,4-DHPEA-EA | 2.55 ± 0.27 | 1.44 ± 0.04 | 3.49 ± 0.12 | 6.37 ± 0.59 | 2.24 ± 0.14 |
Luteolin | 2.03 ± 0.15 | 0.78 ± 0.04 | 1.75 ± 0.11 | 7.36 ± 0.82 | 10.70 ± 0.31 |
Apigenin | 3.89 ± 0.31 | 3.5 ± 0.272 | 3.37 ± 0.10 | 13.62 ± 1.79 | 14.73 ± 0.80 |
Total | 193.27 | 172.44 | 241.88 ** | 267.67 § | 292.34 *,& |
EVOOs | α-Tocopherol (mg/kg) |
---|---|
EHF | 252.65 ± 18.24 |
EHC | 170.62 ± 13.20 * |
EHOC | 280.67 ± 6.28 ** |
EHMV | 198.39 ± 10.27 |
EHOMV | 192.73 ± 15.51 |
LHF | 29.39 ± 1.94 |
LHC | 125.51 ± 11.35 & |
LHOC | 62.19 ± 1.62 &,$ |
LHMV | 46.68 ± 2.72 &,$,§ |
LHOMV | 70.57 ± 6.37 & |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trombetta, D.; Smeriglio, A.; Marcoccia, D.; Giofrè, S.V.; Toscano, G.; Mazzotti, F.; Giovanazzi, A.; Lorenzetti, S. Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives. Int. J. Mol. Sci. 2017, 18, 797. https://doi.org/10.3390/ijms18040797
Trombetta D, Smeriglio A, Marcoccia D, Giofrè SV, Toscano G, Mazzotti F, Giovanazzi A, Lorenzetti S. Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives. International Journal of Molecular Sciences. 2017; 18(4):797. https://doi.org/10.3390/ijms18040797
Chicago/Turabian StyleTrombetta, Domenico, Antonella Smeriglio, Daniele Marcoccia, Salvatore Vincenzo Giofrè, Giovanni Toscano, Fabio Mazzotti, Angelo Giovanazzi, and Stefano Lorenzetti. 2017. "Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives" International Journal of Molecular Sciences 18, no. 4: 797. https://doi.org/10.3390/ijms18040797
APA StyleTrombetta, D., Smeriglio, A., Marcoccia, D., Giofrè, S. V., Toscano, G., Mazzotti, F., Giovanazzi, A., & Lorenzetti, S. (2017). Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives. International Journal of Molecular Sciences, 18(4), 797. https://doi.org/10.3390/ijms18040797