Recent Progress of Development of Optogenetic Implantable Neural Probes
Abstract
:1. Introduction
2. Wave-Guided Structure
2.1. Laser-Based Optogenetic Implantable Probes
2.2. LED-Based Optogenetic Implantable Probes
3. µLED-on-Optrode Structure
4. Discussion
4.1. Light Delivery Stability and Precision
4.2. Optrode Dimensions
4.3. Spatial Resolution and Temporal Resolution
4.4. Intensity Controllability
4.5. Intelligent Implantable Electronics
4.6. Integrity and Degradation Evaluation
4.7. Thermal Effect
4.8. Neural Recording Function
4.9. Fabrication Technology
4.10. Power Consumption
4.11. Substrate Materials
5. Conclusions
Conflicts of Interest
References
- Fork, R.L. Laser Stimulation of Nerve Cells in Aplysia. Science 1971, 171, 907–908. [Google Scholar] [CrossRef] [PubMed]
- Crick, F. The impact of molecular biology on neuroscience. Philos. Trans. R. Soc. B Biol. Sci. 1999, 354, 2021–2025. [Google Scholar] [CrossRef] [PubMed]
- Lima, S.Q.; Miesenböck, G. Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons. Cell 2005, 121, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Callaway, E.M.; Katz, L.C. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 1993, 90, 7661–7665. [Google Scholar] [CrossRef] [PubMed]
- Volgraf, M.; Gorostiza, P.; Numano, R.; Kramer, R.H.; Isacoff, E.Y.; Trauner, D. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2006, 2, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Szobota, S.; Gorostiza, P.; Del Bene, F.; Wyart, C.; Fortin, D.L.; Kolstad, K.D.; Tulyathan, O.; Volgraf, M.; Numano, R.; Aaron, H.L.; et al. Remote Control of Neuronal Activity with a Light-Gated Glutamate Receptor. Neuron 2007, 54, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Zemelman, B.V.; Lee, G.A.; Ng, M.; Miesenböck, G. Selective Photostimulation of Genetically ChARGed Neurons. Neuron 2002, 33, 15–22. [Google Scholar] [CrossRef]
- Zemelman, B.V.; Nesnas, N.; Lee, G.A.; Miesenböck, G. Photochemical gating of heterologous ion channels: Remote control over genetically designated populations of neurons. Proc. Natl. Acad. Sci. USA 2003, 100, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, A.V.; Kreitzer, A.C. Optogenetic Manipulation of Neural Circuitry In Vivo. Curr. Opin. Neurobiol. 2011, 21, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Nagel, G.; Szellas, T.; Huhn, W.; Kateriya, S.; Adeishvili, N.; Berthold, P.; Ollig, D.; Hegemann, P.; Bamberg, E. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 2003, 100, 13940–13945. [Google Scholar] [CrossRef] [PubMed]
- Boyden, E.S.; Zhang, F.; Bamberg, E.; Nagel, G.; Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 2005, 8, 1263–1268. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gutierrez, D.V.; Hanson, M.G.; Han, J.; Mark, M.D.; Chiel, H.; Hegemann, P.; Landmesser, L.T.; Herlitze, S. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 2005, 102, 17816–17821. [Google Scholar] [CrossRef] [PubMed]
- Nagel, G.; Brauner, M.; Liewald, J.F.; Adeishvili, N.; Bamberg, E.; Gottschalk, A. Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. Curr. Biol. 2005, 15, 2279–2284. [Google Scholar] [CrossRef] [PubMed]
- Schroll, C.; Riemensperger, T.; Bucher, D.; Ehmer, J.; Völler, T.; Erbguth, K.; Gerber, B.; Hendel, T.; Nagel, G.; Buchner, E.; et al. Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae. Curr. Biol. 2006, 16, 1741–1747. [Google Scholar] [CrossRef] [PubMed]
- Petreanu, L.; Huber, D.; Sobczyk, A.; Svoboda, K. Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 2007, 10, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Arenkiel, B.R.; Peca, J.; Davison, I.G.; Feliciano, C.; Deisseroth, K.; Augustine, G.J.; Ehlers, M.D.; Feng, G. In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2. Neuron 2007, 54, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M.A.; Li-Ping, W.; Feng, Z.; Leslie, A.M.; Murtaza, Z.M.; Schneider, M.B.; Karl, D. An optical neural interface: In vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 2007, 4, S143. [Google Scholar]
- Zhang, F.; Wang, L.-P.; Brauner, M.; Liewald, J.F.; Kay, K.; Watzke, N.; Wood, P.G.; Bamberg, E.; Nagel, G.; Gottschalk, A.; et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007, 446, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, V.; Thompson, K.R.; Deisseroth, K. eNpHR: A Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 2008, 36, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.M. Information Transmission in Normal Vision and Optogenetically Resensitised Dystrophic Retinas; Newcastle University: Newcastle upon Tyne, UK, 2015. [Google Scholar]
- Mohanty, S.K.; Lakshminarayananan, V. Optical Techniques in Optogenetics. J. Mod. Opt. 2015, 62, 949–970. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y. A User’s Guide to Channelrhodopsin Variants: Features, Limitations and Future Developments. Exp. Physiol. 2011, 96, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Dawydow, A.; Gueta, R.; Ljaschenko, D.; Ullrich, S.; Hermann, M.; Ehmann, N.; Gao, S.; Fiala, A.; Langenhan, T.; Nagel, G.; et al. Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications. Proc. Natl. Acad. Sci. USA 2014, 111, 13972–13977. [Google Scholar] [CrossRef] [PubMed]
- Gradinaru, V.; Mogri, M.; Thompson, K.R.; Henderson, J.M.; Deisseroth, K. Optical Deconstruction of Parkinsonian Neural Circuitry. Science 2009, 324, 354. [Google Scholar] [CrossRef] [PubMed]
- Krook-Magnuson, E.; Armstrong, C.; Oijala, M.; Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 2013, 4, 1376. [Google Scholar] [CrossRef] [PubMed]
- RetroSense Therapeutics Granted Orphan Drug Designation for Lead Product RST-001 for Retinitis Pigmentosa. Available online: http://www.businesswire.com/news/home/20141030005642/en/RetroSense-Therapeutics-Granted-Orphan-Drug-Designation-Lead%20-%20.VFLocihTRK4 (accessed on 30 October 2014).
- Lecture 4: Optical Waveguides. Available online: http://course.ee.ust.hk/elec509/notes/Lect4-Optical%20waveguides.pdf (accessed on 6 July 2013).
- Fan, B.; Li, W. Miniaturized optogenetic neural implants: A review. Lab Chip 2015, 15, 3838–3855. [Google Scholar] [CrossRef] [PubMed]
- Warden, M.R.; Cardin, J.A.; Deisseroth, K. Optical Neural Interfaces. Annu. Rev. Biomed. Eng. 2014, 16, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Pashaie, R.; Anikeeva, P.; Lee, J.H.; Prakash, R.; Yizhar, O.; Prigge, M.; Chander, D.; Richner, T.J.; Williams, J. Optogenetic Brain Interfaces. IEEE Rev. Biomed. Eng. 2014, 7, 3–30. [Google Scholar] [CrossRef] [PubMed]
- LeChasseur, Y.; Dufour, S.; Lavertu, G.; Bories, C.; Deschenes, M.; Vallee, R.; De Koninck, Y. A microprobe for parallel optical and electrical recordings from single neurons in vivo. Nat. Methods 2011, 8, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Dufour, S.; Lavertu, G.; Dufour-Beauséjour, S.; Juneau-Fecteau, A.; Calakos, N.; Deschênes, M.; Vallée, R.; De Koninck, Y. A Multimodal Micro-Optrode Combining Field and Single Unit Recording, Multispectral Detection and Photolabeling Capabilities. PLoS ONE 2013, 8, e57703. [Google Scholar] [CrossRef] [PubMed]
- Zorzos, A.N.; Scholvin, J.; Boyden, E.S.; Fonstad, C.G. Three-dimensional multiwaveguide probe array for light delivery to distributed brain circuits. Opt. Lett. 2012, 37, 4841–4843. [Google Scholar] [CrossRef] [PubMed]
- Jing, W.; Fabien, W.; David, A.B.; Jiayi, Z.; Ilker, O.; Rebecca, D.B.; Arto, V.N.; Rick van, W.; Ilka, D.; Karl, D. Integrated device for combined optical neuromodulation and electrical recording for chronic in vivo applications. J. Neural Eng. 2012, 9, 016001. [Google Scholar]
- Schwaerzle, M.; Paul, O.; Ruther, P. Compact silicon-based optrode with integrated laser diode chips, SU-8 waveguides and platinum electrodes for optogenetic applications. J. Micromech. Microeng. 2017, 27, 065004. [Google Scholar] [CrossRef]
- Schwaerzle, M.; Ringwald, P.; Paul, O.; Rüther, P. First dual-color optrode with bare laser diode chips directly butt-coupled to hybrid-polymer waveguides. In Proceedings of the 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), Las Vegas, NV, USA, 22–26 January 2017; pp. 526–529. [Google Scholar]
- Mohanty, S.K.; Thakor, N.V. Front Matter: Volume 8586. In Proceedings Volume 8586 Optogenetics: Optical Methods for Cellular Control; SPIE: Bellingham, WA, USA, 2013. [Google Scholar]
- Stark, E.; Koos, T.; Buzsaki, G. Diode-probes for spatiotemporal optical control of multiple neurons in freely-moving animals. J. Neurophysiol. 2012, 108, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Schwaerzle, M.; Elmlinger, P.; Paul, O.; Ruther, P. Miniaturized tool for optogenetics based on an LED and an optical fiber interfaced by a silicon housing. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 5252–5255. [Google Scholar]
- Schwaerzle, M.; Elmlinger, P.; Paul, O.; Ruther, P. Miniaturized 3×3 optical fiber array for optogenetics with integrated 460 nm light sources and flexible electrical interconnection. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 162–165. [Google Scholar]
- Rubehn, B.; Wolff, S.B.E.; Tovote, P.; Schuettler, M.; Lüthi, A.; Stieglitz, T. Polymer-based shaft microelectrodes with optical and fluidic capabilities as a tool for optogenetics. In Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA, 30 August–3 September 2011; pp. 2969–2972. [Google Scholar]
- Wu, F.; Stark, E.; Im, M.; Cho, I.-J.; Yoon, E.-S.; Buzsáki, G.; Wise, K.D.; Yoon, E. An implantable neural probe with monolithically integrated dielectric waveguide and recording electrodes for optogenetics applications. J. Neural Eng. 2013, 10, 056012. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Lee, H.J.; Kim, J.; Lee, C.J.; Yoon, E.S.; Kim, T.G.; Cho, I.J. A new monolithically integrated multi-functional MEMS neural probe for optical stimulation and drug delivery. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 158–161. [Google Scholar]
- Keiser, G. Optical Fiber Communications; McGraw-Hill Education (India) Pvt Limited: Bengaluru, India, 2008; p. 580. [Google Scholar]
- Cao, H.; Gu, L.; Mohanty, S.K.; Chiao, J.C. An Integrated µLED Optrode for Optogenetic Stimulation and Electrical Recording. IEEE Trans. Biomed. Eng. 2013, 60, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; Kwon, K.Y.; Weber, A.J.; Li, W. An implantable, miniaturized SU-8 optical probe for optogenetics-based deep brain stimulation. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 450–453. [Google Scholar]
- Fan, B.; Kwon, K.-Y.; Rechenberg, R.; Becker, M.F.; Weber, A.J.; Li, W. A hybrid neural interface optrode with a polycrystalline diamond heat spreader for optogenetics. Technology 2016, 4, 15–22. [Google Scholar] [CrossRef]
- Fan, B.; Kwon, K.Y.; Rechenberg, R.; Khomenko, A.; Haq, M.; Becker, M.F.; Weber, A.J.; Li, W. A polycrystalline diamond-based, hybrid neural interfacing probe for optogenetics. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 616–619. [Google Scholar]
- Fischl, B.; Dale, A.M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. USA 2000, 97, 11050–11055. [Google Scholar] [CrossRef] [PubMed]
- McAlinden, N.; Massoubre, D.; Richardson, E.; Gu, E.; Sakata, S.; Dawson, M.D.; Mathieson, K. Thermal and optical characterization of micro-LED probes for in vivo optogenetic neural stimulation. Opt. Lett. 2013, 38, 992–994. [Google Scholar] [CrossRef] [PubMed]
- Scharf, R.; Tsunematsu, T.; McAlinden, N.; Dawson, M.D.; Sakata, S.; Mathieson, K. Depth-specific optogenetic control in vivo with a scalable, high-density μLED neural probe. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Stark, E.; Ku, P.-C.; Wise, K.D.; Buzsáki, G.; Yoon, E. Monolithically Integrated μLED on Silicon Neural Probes for High-Resolution Optogenetic Studies in Behaving Animals. Neuron 2015, 88, 1136–1148. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-I.; McCall, J.G.; Jung, Y.H.; Huang, X.; Siuda, E.R.; Li, Y.; Song, J.; Song, Y.M.; Pao, H.A.; Kim, R.-H.; et al. Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics. Science 2013, 340, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H. Self-Diagnosis Implantable Optrode for Optogenetic Stimulation. Ph.D. Thesis, Newcastle University, Newcastle upon Tyne, UK, 2017. [Google Scholar]
- Zhao, H.; Dehkhoda, F.; Ramezani, R.; Sokolov, D.; Degenaar, P.; Liu, Y.; Constandinou, T. A CMOS-based neural implantable optrode for optogenetic stimulation and electrical recording. In Proceedings of the 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS), Atlanta, GA, USA, 22–24 October 2015; pp. 1–4. [Google Scholar]
- Zhao, H.; Sokolov, D.; Degenaar, P. An implantable optrode with Self-diagnostic function in 0.35 μm CMOS for optical neural stimulation. In Proceedings of the 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, 22–24 October 2014; pp. 244–247. [Google Scholar]
- Johnson, K.; Dummer, M.; Hibbs-Brenner, M.; Hogan, W.; Steidl, C. Progress in extended wavelength VCSEL technology. Proc. SPIE 2013, 8639, 863905. [Google Scholar]
- Downing, J.; Babić, D.; Hibbs-Brenner, M. An ultra-stable VCSEL light source. Proc. SPIE 2013, 8639, 86390B. [Google Scholar]
- Shulyzki, R.; Abdelhalim, K.; Bagheri, A.; Salam, M.T.; Florez, C.M.; Velazquez, J.L.P.; Carlen, P.L.; Genov, R. 320-Channel Active Probe for High-Resolution Neuromonitoring and Responsive Neurostimulation. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Lopez, C.M.; Andrei, A.; Mitra, S.; Welkenhuysen, M.; Eberle, W.; Bartic, C.; Puers, R.; Yazicioglu, R.F.; Gielen, G.G.E. An Implantable 455-Active-Electrode 52-Channel CMOS Neural Probe. IEEE J. Solid State Circuits 2014, 49, 248–261. [Google Scholar] [CrossRef]
- Angotzi, G.N.; Malerba, M.; Zucca, S.; Berdondini, L. A 512-channels, whole array readout, CMOS implantable probe for acute recordings from the brain. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 877–880. [Google Scholar]
- Multichannel Systems TBSI-LED-211-N. Available online: http://www.multichannelsystems.com/products/tbsi-led-211-n (accessed on 16 June 2017).
- IEEE. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz; IEEE: Piscataway, NJ, USA, 2006; pp. 1–238. [Google Scholar]
- Agency, H.P. Health Effects from Radiofrequency Electromagnetic Fields; National Radiological Protection Board (NRPB): London, UK, 2012. [Google Scholar]
- Borton, D.A.; Yin, M.; Aceros, J.; Nurmikko, A. An Implantable Wireless Neural Interface for Recording Cortical Circuit Dynamics in Moving Primates. J. Neural Eng. 2013, 10, 026010. [Google Scholar] [CrossRef] [PubMed]
- Cardin, J.A.; Carlen, M.; Meletis, K.; Knoblich, U.; Zhang, F.; Deisseroth, K.; Tsai, L.-H.; Moore, C.I. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009, 459, 663–667. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.D.Y.; Vazquez, A.L. Photoelectric artefact from optogenetics and imaging on microelectrodes and bioelectronics: New challenges and opportunities. J. Mater. Chem. B 2015, 3, 4965–4978. [Google Scholar] [CrossRef] [PubMed]
Ref./Year | Light Source/Wavelength | Dimensions | No. of Sti Sites | Max Light Intensity | Max Power Consumption | Max Pulse Frequency | Electrical Recording | Fabrication Process | Substrate Material |
---|---|---|---|---|---|---|---|---|---|
[31]/2011 | Laser/488 nm | Diameter: 200 µm; Shaft tip diameter: 10 µm | 1 | 10 mW/mm2 | - | - | Yes | Custom-Fabricated | - |
[34]/2012 | Laser/473 nm | Shaft length (L): 1 mm; Spacing: 400 µm | 1 | 5 mW/mm2 | - | 40 kHz | Yes | Custom-Fabricated | - |
[33]/2012 | Laser/473 nm | Apertures: 9 µm × 30 µm | 1 × 25 | 148 ± 56 mW/mm2 | 1500 mW | - | No | Custom-Fabricated | Silicon |
[35]/2017 | Laser/650 nm | Shaft L: 8 mm; W: 250 µm; laser diode dimensions: 300 × 300 × 100 µm3 | 2 × 2 | 96.9 mW/mm2 | 12.82 mW | 100 kHz | Yes | Custom-Fabricated | Silicon |
[41]/2011 | Laser/473 nm, 593 nm | Shaft length: 7 mm; Width: 200 µm | 1 | - | 21 mW (for blue light) | - | Yes | Custom-Fabricated | Polyimide |
[42]/2013 | Laser/473 nm | Shaft length: 5 mm; Width: 200 µm | 1 | 9400 mW/mm2 | 50 mW | 25 Hz | Yes | Custom-Fabricated | Silicon |
[43]/2015 | Laser/473 nm | Diameter: 150 µm | 1 | 0.9 mW (~51 mW/mm2) | - | - | Yes | Custom-Fabricated | Silicon |
[38]/2012 | µLED/470, 589, 639 nm | Shaft L: 5 mm; Diameter: 60–70 µm (Blue) µLED dimensions: 1.6 × 0.6 mm2 | 1 × 6 | 40 mW/mm2 (blue light) | Current: 60 mA | - | No | Custom-Fabricated | - |
[39]/2014 | µLED/460 nm | Total length: 5 mm; Diameter: 125 µm; µLED dimensions: 270 × 220 × 50 μm3 | 1 | 1.71 mW/mm2 | Current: 30 mA | - | No | Custom-Fabricated | Polyimide |
[40]/2015 | µLED/460 nm | Total length: 5 mm; Diameter: 125 µm; µLED dimensions: 270 × 220 × 50 μm3 | 1 × 9 | 1.28 mW/mm2 | Current: 30 mA | - | No | Custom-Fabricated | Polyimide |
Ref./Year | Dimensions | No. of Sti Sites | Max Light Intensity | Max Power | Control Electronics | Integrity/Degradation Evaluation | Thermal Increment | Thermal Sensing | Electrical Recording | Substrate Material |
---|---|---|---|---|---|---|---|---|---|---|
[45]/2013 | Shaft: 12 mm; Width(W): 900 µm; µLED: 1000 × 600 × 200 μm3 | 1 | 0.7 mW/mm2 | Power: 14.5 mW | External instruments | No | - | No | Yes | Polyimide |
[46]/2014 | length(L): 4.2 mm; W: 0.86 mm; µLED: 550 × 600 × 200 μm3 | 1 | 0.95 mW/mm2 | Power: >216 mW | - | No | 0.5 °C increase with 7 mW power and 2.74 V input voltage | No | No | SU-8 |
[47,48]/2016 | Shank L: 5 mm; W: 0.9 mm; µLED: 550 × 600 × 200 μm3 | 1 | 1.5 mW/mm2 | Voltage: 3.6 V | External instruments | No | 1 °C increase with 3.6 V input voltage | No | Yes | Polycrystalline Diamond |
[50]/2013 | L: 7 mm; Shaft L: 1 mm; W: 80 µm; μLED: 40 µm diameter | 5 | 600 mW/mm2 | - | External instruments | No | 1.5 °C increase with 600 mW/mm2 and 200 ms pulse | No | No | Sapphire |
[51]/2016 | Total L: 3 mm; Shaft L: 750 µm; μLED: 25 µm diameter | 16 | 400 mW/mm2 | Current: 5 mA | External PCB control boards | No | 0.5 °C increase with 150 mW/mm2 radiance and 50 ms pulse; Max: 4 °C | No | No | Silicon |
[52]/2015 | Shank L: 5 mm; W: 70 µm; μLED: 11 × 13 µm2 | 3 × 4 | 353 mW/mm2 | Current: 5 mA | External PCB control boards | No | < 1.0 °C increase with 3.4 V voltage | No | Yes | Silicon |
[53]/2013 | Shaft L: 1 mm; W: ~400 µm; Thickness: ~20 µm; LED dimensions: 50 × 50 µm2 | 4 | ~40 mW/mm2 | Power: 40 mW | External flexible/rigid control boards | No | 1.0 °C with 17.7 mW/mm2 radiance and 10 ms pulse; Max: 10 °C | Yes | Yes | Platinum, Silicon, Polymer |
[54,55,56]/2017 | Shaft L: 4400 µm; W: 200 µm µLED dimensions: 20 µm × 20 µm2 | 6–18 | 1256 mW/mm2 | Power: 6.04 mW | In-built active electronics | Yes | 0.8 °C with 6 mW power | Yes | Yes | Silicon |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H. Recent Progress of Development of Optogenetic Implantable Neural Probes. Int. J. Mol. Sci. 2017, 18, 1751. https://doi.org/10.3390/ijms18081751
Zhao H. Recent Progress of Development of Optogenetic Implantable Neural Probes. International Journal of Molecular Sciences. 2017; 18(8):1751. https://doi.org/10.3390/ijms18081751
Chicago/Turabian StyleZhao, Hubin. 2017. "Recent Progress of Development of Optogenetic Implantable Neural Probes" International Journal of Molecular Sciences 18, no. 8: 1751. https://doi.org/10.3390/ijms18081751
APA StyleZhao, H. (2017). Recent Progress of Development of Optogenetic Implantable Neural Probes. International Journal of Molecular Sciences, 18(8), 1751. https://doi.org/10.3390/ijms18081751