Effects of Streptozotocin-Induced Diabetes on the Pineal Gland in the Domestic Pig
Abstract
:1. Introduction
2. Results
2.1. In Vivo Study
2.1.1. Content of Melatonin Synthesis-Related Indoles
2.1.2. Content of Catecholamines and Their Metabolites
2.2. In Vitro Study
2.2.1. Melatonin Secretion
2.2.2. Release of N-acetylserotonin
3. Discussion
4. Materials and Methods
4.1. Animals, Induction of Experimental Diabetes, and Sampling
4.2. In Vitro Experiment
4.2.1. Culture Medium
4.2.2. Superfusion Culture
4.2.3. Experimental Schedule
4.3. Biochemical Studies
4.3.1. Chemicals for HPLC Assays
4.3.2. Chemicals for RIA
4.3.3. Sample Preparation for HPLC Assays
4.3.4. Assay of Melatonin Synthesis-Related Indoles
4.3.5. Assay of Catecholamines and Their Metabolites
4.3.6. Protein Assay
4.3.7. Melatonin RIA
4.4. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
Abbreviations
TRP | tryptophan |
5-HTRP | 5-hydroxytryptophan |
5-HT | serotonin |
NAS | N-acetylserotonin |
5-HIAA | 5-hydroxyindole acetic acid |
5-HTOL | 5-hydroxytryptophol |
5-MIAA | 5-methoxyindole acetic acid |
5-MTOL | 5-methoxytryptophol |
5-MTAM | 5-methoxytryptamine |
NE | norepinephrine |
DA | dopamine |
DOPA | 3,4-dihydroxyphenylalanine |
DOPAC | 3,4-dihydroxyphenylacetic acid |
VMA | vanillylmandelic acid |
HPLC | high pressure liquid chromatography |
RIA | radioimmunoassay |
References
- Simonneaux, V.; Ribelayga, C. Generation of the melatonin endocrine message in mammals: A review of the complex regulations of melatonin synthesis by norepinephrine, peptides and other pineal transmitters. Pharmacol. Rev. 2003, 55, 325–395. [Google Scholar] [CrossRef] [PubMed]
- Boden, G.; Ruiz, J.; Urbain, J.L.; Chen, X. Evidence for a circadian rhythm of insulin secretion. Am. J. Physiol. 1996, 271, E246–E252. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Block, G.D.; Colwell, C.S.; Matveyenko, A.V. Consequences of exposure to light at night on the pancreatic islet circadian clock and function in rats. Diabetes 2013, 62, 3469–3478. [Google Scholar] [CrossRef] [PubMed]
- Dauchy, R.T.; Wren, M.A.; Dauchy, E.M.; Hoffman, A.E.; Hanifin, J.P.; Warfield, B.; Jabłoński, M.R.; Brainard, G.C.; Hill, S.M.; Mao, L.; et al. The influence of red light exposure at night on circadian metabolism and physiology in Sprague-Dawley rats. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Mühlbauer, E. New evidence for a role of melatonin in glucose regulation. Best. Pract. Res. Clin. Endocrinol. MeTable 2010, 24, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Peschke, D. Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 1998, 41, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Delattre, E.; Cipolla Neto, J.; Boschero, A. Diurnal variations in insulin secretion and Kþ permeability in isolated rat islets. Clin. Exp. Pharm. Physiol. 1999, 26, 505–510. [Google Scholar] [CrossRef]
- Picinato, M.C.; Haber, E.P.; Carpinelli, A.R. Daily rhythm of glucose-induced insulin secretion by isolated islets from intact and pinealectomized rat. J. Pineal Res. 2002, 33, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Tengholm, A.; Gylfe, E. Oscillatory control of insulin secretion. Mol. Cell. Endocrinol. 2009, 297, 58–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcheva, B.; Ramsey, K.M.; Buhr, E.D.; Kobayashi, Y.; Su, H.; Ko, C.H.; Ivanova, G.; Omura, C.; Mo, S.; Vitaterna, M.H.; et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466, 627–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrenko, V.; Saini, C.; Giovannoni, L.; Gobet, C.; Sage, D.; Unser, M.; Heddad Masson, M.; Gu, G.; Bosco, D.; Gachon, F.; et al. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression. Genes Dev. 2017, 31, 383–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peschke, E.; Fauteck, J.D.; Musshoff, U. Evidence for a melatonin receptor within pancreatic islets of neonate rats: Functional, autoradiographic, and molecular investigations. J. Pineal Res. 2000, 28, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Mühlbauer, E.; Musshoff, U.; Csernus, V.J.; Chankiewitz, E.; Peschke, D. Receptor (MT(1)) mediated influence of melatonin on cAMP concentration and insulin secretion of rat insulinoma cells INS-1. J. Pineal Res. 2002, 33, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Zibolka, J.; Bazwinsky-Wutschke, I.; Mühlbauer, E.; Peschke, E. Distribution and density of melatonin receptors in human main pancreatic islet cell types. J. Pineal Res. 2018, e12480. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Schucht, H.; Mühlbauer, E. Long-term enteral administration of melatonin reduces plasma insulin and increases expression of pineal insulin receptors in both Wistar and type 2-diabetic Goto-Kakizaki rats. J. Pineal Res. 2010, 49, 373–381. [Google Scholar] [CrossRef] [PubMed]
- la Fleur, S.E.; Kalsbeek, A.; Wortel, J.; van der Vliet, J.; Buijs, R.M. Role for the pineal and melatonin in glucose homeostasis: Pinealectomy increases night-time glucose concentrations. J. Neuroendocrinol. 2001, 13, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Ramracheya, R.D.; Muller, D.S.; Squires, P.E.; Brereton, H.; Sugden, D.; Huang, G.C.; Amiel, S.A.; Jones, P.M.; Persaud, S.J. Function and expression of melatonin receptors on human pancreatic islets. J. Pineal Res. 2008, 44, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Bähr, I.; Mühlbauer, E. Melatonin and pancreatic islets: Interrelationships between melatonin, insulin and glucagon. Int. J. Mol. Sci. 2013, 14, 6981–7015. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Wolgast, S.; Bazwinsky, I.; Pönicke, K.; Muhlbauer, E. Increased melatonin synthesis in pineal glands of rats in streptozotocin induced type 1 diabetes. J. Pineal Res. 2008, 45, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Champney, T.H.; Holtorf, A.P.; Craft, C.M.; Reiter, R.J. Hormonal modulation of pineal melatonin synthesis in rats and Syrian hamsters: Effects of streptozotocin-induced diabetes and insulin injections. Comp. Biochem. Physiol. A Comp. Physiol. 1986, 83, 391–395. [Google Scholar] [CrossRef]
- Herichová, I.; Zeman, M.; Stebelová, K.; Ravingerová, T. Effect of streptozotocin-induced diabetes on daily expression of per2 and dbp in the heart and liver and melatonin rhythm in the pineal gland of Wistar rat. Mol. Cell. Biochem. 2005, 270, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.A.; Afeche, S.C.; Scialfa, J.H.; do Amaral, F.G.; dos Santos, S.H.; Lima, F.B.; Young, M.E.; Cipolla-Neto, J. Insulin modulates norepinephrine-mediated melatonin synthesis in cultured rat pineal gland. Life Sci. 2008, 82, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Amaral, F.G.; Turati, A.O.; Barone, M.; Scialfa, J.H.; do Carmo Buonfiglio, D.; Peres, R.; Peliciari-Garcia, R.A.; Afeche, S.C.; Lima, L.; Scavone, C.; et al. Melatonin synthesis impairment as a new deleterious outcome of diabetes-derived hyperglycemia. J. Pineal Res. 2014, 57, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Pang, S.F.; Tang, F.; Tang, P.L. Alloxan-induced diabetes and the pineal gland: Differential effects on the levels of pineal N-acetylserotonin, pineal melatonin, and serum melatonin. J. Pineal Res. 1985, 2, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Champney, T.H.; Brainard, G.C.; Richardson, B.A.; Reiter, R.J. Experimentally-induced diabetes reduces nocturnal pineal melatonin content in the Syrian hamster. Comp. Biochem. Physiol. A Comp. Physiol. 1983, 76, 199–201. [Google Scholar] [CrossRef]
- Frese, T.; Bach, A.G.; Mühlbauer, E.; Pönicke, K.; Brömme, H.J.; Welp, A.; Peschke, E. Pineal melatonin synthesis is decreased in type 2 diabetic Goto-Kakizaki rats. Life Sci. 2009, 85, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.G.; Mühlbauer, E.; Peschke, E. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats. Endocrinology 2010, 151, 2483–2493. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Frese, T.; Chankiewitz, E.; Peschke, D.; Preiss, U.; Schneyer, U.; Spessert, R.; Mühlbauer, E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J. Pineal Res. 2006, 40, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Tutuncu, N.B.; Batur, M.K.; Yildirir, A.; Tutuncu, T.; Deger, A.; Koray, Z.; Erbas, B.; Kabakci, G.; Aksoyek, S.; Erbas, T. Melatonin levels decrease in type 2 diabetic patients with cardiac autonomic neuropathy. J. Pineal Res. 2005, 39, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Kor, Y.; Geyikli, I.; Keskin, M.; Akan, M. Preliminary study: Evaluation of melatonin secretion in children and adolescents with type 1 diabetes mellitus. Indian J. Endocrinol. MeTable 2014, 18, 565–568. [Google Scholar] [CrossRef] [PubMed]
- Peschke, E.; Hofmann, K.; Bähr, I.; Streck, S.; Albrecht, E.; Wedekind, D.; Mühlbauer, E. The insulin-melatonin antagonism: Studies in the LEW.1AR1-iddm rat (an animal model of human type 1 diabetes mellitus). Diabetologia 2011, 54, 1831–1840. [Google Scholar] [CrossRef] [PubMed]
- Klemenz, A.; Wolgast, S.; Hanitzsch, R.; Markwardt, F.; Peschke, E. Effects of insulin on norepinephrine- and acetylcholine-induced membrane currents of pinealocytes from healthy Wistar and type 2 diabetic GK rats. Cell Tissue Res. 2014, 355, 437–446. [Google Scholar] [CrossRef] [PubMed]
- Swindle, M.M. The development of swine models in drug discovery and development. Future Med. Chem. 2012, 4, 1771–1772. [Google Scholar] [CrossRef] [PubMed]
- Grüssner, R.; Nakhleh, R.; Grüssner, A.; Tomadze, G.; Diem, P.; Sutherland, D. Streptozotocin-induced diabetes mellitus in pigs. Horm. Metab. Res. 1993, 25, 199–203. [Google Scholar] [PubMed]
- Larsen, M.O.; Rolin, B. Use of the Göttingen minipig as a model of diabetes, with special focus on type 1 diabetes research. ILAR J. 2004, 45, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, B. Mechanisms of adrenergic regulation of melatonin secretion in the pig pineal gland—In vitro study. In Dissertations and Monographs; UWM Press Olsztyn: Olsztyn, Poland, 2002; Volume 60, pp. 1–158. (In Polish) [Google Scholar]
- Lewczuk, B.; Zheng, W.; Prusik, M.; Cole, P.A.; Przybylska-Gornowicz, B. N-bromoacetyltryptamine strongly and reversibly inhibits in vitro melatonin secretion from mammalian pinealocytes. Neuro Endocrinol. Lett. 2005, 5, 581–592. [Google Scholar]
- Tast, A.; Love, R.J.; Evans, G.; Telsfer, S.; Giles, R.; Nicholls, P.; Voultsios, A.; Kennaway, D.J. The pattern of melatonin secretion is rhythmic in the domestic pig and responds rapidly to changes in daylength. J. Pineal Res. 2001, 31, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, B.; Przybylska-Gornowicz, B. The effect of continuous darkness and illumination on the function and the morphology of the pineal gland in the domestic pig. Part I: The effect on plasma melatonin level. Neuro Endocrinol. Lett. 2000, 21, 283–291. [Google Scholar] [PubMed]
- Lewczuk, B.; Przybylska-Gornowicz, B. Effects of sympathicolytic and sympathicomimetic drugs on plasma immunoreactive melatonin in the domestic pig. J. Pineal Res. 1997, 23, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Przybylska-Gornowicz, B.; Lewczuk, B.; Ziółkowska, N.; Prusik, M. Adrenergic regulation of cytoplasmic structures related to secretory processes in pig pinealocytes-an ultrastructural, quantitative study. Micron 2017, 101, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, B.; Przybylska-Gornowicz, B. Effects of sympathicolytic and sympaticomimetic drugs on pineal ultrastructure in the domestic pig. J. Pineal Res. 1997, 23, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, B.; Przybylska-Gornowicz, B. The effect of continuous darkness and illumination on the function and the morphology of the pineal gland in the domestic pig. II. The effect on pinealocyte ultrastructure. Neuro Endocrinol. Lett. 2000, 21, 293–299. [Google Scholar] [PubMed]
- Lewczuk, B.; Ziółkowska, N.; Prusik, M.; Przybylska-Gornowicz, B. Adrenergic activation of melatonin secretion in ovine pineal explants in short-term superfusion culture occurs via protein synthesis independent and dependent phenomena. Biomed. Res. Int. 2014, 2014, 715708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qiu, J.; Zhou, Y.; Wang, Y.; Li, H.; Zhang, T.; Jiang, Y.; Gou, K.; Cui, S. LIM homeobox transcription factor Isl1 is required for melatonin synthesis in the pig pineal gland. J. Pineal Res. 2018, e12481. [Google Scholar] [CrossRef] [PubMed]
- McConnell, S.J.; Ellendorff, F. Absence of nocturnal plasma melatonin surge under long and short artificial photoperiods in the domestic sow. J. Pineal Res. 1987, 4, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Griffith, M.K.; Minton, J.E. Effect of light intensity on circadian profiles of melatonin, prolactin, ACTH and cortisol in pigs. J. Anim. Sci. 1992, 70, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Bollinger, A.L.; Wilson, M.E.; Pusateri, A.E.; Green, M.L.; Martin, T.G.; Diekman, M.A. Lack of a nocturnal rise in serum concentrations of melatonin as gilts attain puberty. J. Anim. Sci. 1997, 75, 1885–1892. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, B.; Ziółkowska, N.; Prusik, M.; Przybylska-Gornowicz, B. Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ. Int. J. Mol. Sci. 2014, 15, 12604–12630. [Google Scholar] [CrossRef] [PubMed]
- Adamska, I.; Lewczuk, B.; Markowska, M.; Majewski, P.M. Daily profiles of melatonin synthesis-related indoles in the pineal glands of young chickens (Gallus gallus domesticus L.). J. Photochem. Photobiol. B 2016, 164, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.S.; Mamun, A.A.; Clavarino, A.M.; Kairuz, T. Incidence and risk of depression associated with diabetes in adults: Evidence from longitudinal studies. Community Ment. Health J. 2014, 51, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Min, M.; Wang, J.; Bao, Z.; Fan, H.; Li, X.; Adelusi, T.I.; Zhou, X.; Yin, X. Quantitative profiling of neurotransmitter abnormalities in brain, cerebrospinal fluid, and serum of experimental diabetic encephalopathy male rat. J. Neurosci. Res. 2018, 96, 138–150. [Google Scholar] [CrossRef] [PubMed]
- Phadnis, P.; Dey Sarkar, P.; Rajput, M.S. Improved serotonergic neurotransmission by genistein pretreatment regulates symptoms of obsessive-compulsive disorder in streptozotocin-induced diabetic mice. J. Basic Clin. Physiol. Pharmacol. 2018, 29, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Gambeta, E.; Sestile, C.C.; Fogaça, M.V.; Guimarães, F.S.; Audi, E.A.; da Cunha, J.M.; Zangrossi, H., Jr.; Shimene de Melo Yamashita, P.; Zanoveli, J.M. A serotonergic deficit in the dorsal periaqueductal gray matter may underpin enhanced panic-like behavior in diabetic rats. Behav. Pharmacol. 2017, 28, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.H.; Wei, I.H.; Jiang-Shieh, Y.F.; Jou, M.J.; Ko, M.H.; Chen, H.M.; Wu, C.H. Expression of protein gene product 9.5, tyrosine hydroxylase and serotonin in the pineal gland of rats with streptozotocin-induced diabetes. Neurosci. Res. 2008, 60, 233–243. [Google Scholar] [CrossRef] [PubMed]
Sampling Time | Control Group Mean ± SEM (mmol/L) | Experimental Group Mean ± SEM (mmol/L) |
---|---|---|
Before streptozotocin injection | 5.01 ± 0.10 | 5.030 ± 0.10 |
1 week after streptozotocin injection | 5.08 ± 0.10 | 17.36 ± 0.38 |
2 weeks after streptozotocin injection | 4.91 ± 0.18 | 20.72 ± 0.24 |
3 weeks after streptozotocin injection | 5.19 ± 0.06 | 21.58 ± 0.27 |
4 weeks after streptozotocin injection | 5.31 ± 0.12 | 20.08 ± 0.09 |
5 weeks after streptozotocin injection | 4.84 ± 0.32 | 22.26 ± 1.21 |
6 weeks after streptozotocin injection | 5.20 ± 0.10 | 21.45 ± 1.11 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lewczuk, B.; Prusik, M.; Ziółkowska, N.; Dąbrowski, M.; Martniuk, K.; Hanuszewska, M.; Zielonka, Ł. Effects of Streptozotocin-Induced Diabetes on the Pineal Gland in the Domestic Pig. Int. J. Mol. Sci. 2018, 19, 3077. https://doi.org/10.3390/ijms19103077
Lewczuk B, Prusik M, Ziółkowska N, Dąbrowski M, Martniuk K, Hanuszewska M, Zielonka Ł. Effects of Streptozotocin-Induced Diabetes on the Pineal Gland in the Domestic Pig. International Journal of Molecular Sciences. 2018; 19(10):3077. https://doi.org/10.3390/ijms19103077
Chicago/Turabian StyleLewczuk, Bogdan, Magdalena Prusik, Natalia Ziółkowska, Michał Dąbrowski, Kamila Martniuk, Maria Hanuszewska, and Łukasz Zielonka. 2018. "Effects of Streptozotocin-Induced Diabetes on the Pineal Gland in the Domestic Pig" International Journal of Molecular Sciences 19, no. 10: 3077. https://doi.org/10.3390/ijms19103077
APA StyleLewczuk, B., Prusik, M., Ziółkowska, N., Dąbrowski, M., Martniuk, K., Hanuszewska, M., & Zielonka, Ł. (2018). Effects of Streptozotocin-Induced Diabetes on the Pineal Gland in the Domestic Pig. International Journal of Molecular Sciences, 19(10), 3077. https://doi.org/10.3390/ijms19103077