Construction and Characterization of Phthalocyanine-Loaded Particles of Curdlan and Their Photosensitivity
Abstract
:1. Introduction
2. Results
2.1. Preparation and Spectral Analysis of CUR-PC
2.2. Particle Observation and Effective Particle Size Analysis
2.3. Fourier Transform Infrared (FTIR) Spectroscopy
2.4. Conductivity
2.5. Stability of the CUR-PC Solution
2.6. Inhibition of Cancer Cells by CUR-PC
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Creation of CUR-PC by DMSO Treatment and Effective Particle Size Analysis of Complex
4.3. CUR-PC Particle Size
4.4. Infrared Spectroscopy
4.5. Transmission Electron Microscopy
4.6. Conductivity Measurements
4.7. Stability
4.8. HeLa Cell Survival
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CUR | curdlan |
CUR-PC | PC and CUR complex |
PC | phthalocyanine |
References
- Lever, A.B.P.; Hempstead, M.R.; Leznoff, C.C.; Liu, W.; Melnik, M.; Nevin, W.A.; Seymour, P. Recent studies in phthalocyanine chemistry. Pure Appl. Chem. 1986, 58. [Google Scholar] [CrossRef] [Green Version]
- Dahlen, M.A. The phthalocyanines a new class of synthetic pigments and dyes. Ind. Eng. Chem. 2002, 31, 839–847. [Google Scholar] [CrossRef]
- Da Silva Filho, D.A.; Coropceanu, V.; Gruhn, N.E.; de Oliveira Neto, P.H.; Brédas, J.L. Intramolecular reorganization energy in zinc phthalocyanine and its fluorinated derivatives: A joint experimental and theoretical study. Chem. Commun. 2013, 49, 6069–6071. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Peng, X.; Hao, G.; Kennedy, V.O.; Ivanov, I.N. Synthesis, photochemistry, and electrochemistry of a series of phthalocyanines with graded steric hindrance. J. Phys. Chem. A 2016, 107, 3503–3514. [Google Scholar] [CrossRef]
- Duong, T.; Li, X.; Yang, B.; Schumann, C.; Albarqi, H.A. Phototheranostic nanoplatform based on a single cyanine dye for image-guided combinatorial phototherapy. Nanomedicine 2016, 13. [Google Scholar] [CrossRef] [PubMed]
- Wrenn, F.R.; Good, M.L.; Handler, P. The use of positron-emitting radioisotopes for the localization of brain tumors. Science 1951, 113, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Ranyuk, E.; Cauchon, N.; Klarskov, K.; Guérin, B. Phthalocyanine-peptide conjugates: Receptor-targeting bifunctional agents for imaging and photodynamic therapy. J. Med. Chem. 2013, 56, 1520–1534. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990. [Google Scholar] [CrossRef] [PubMed]
- Rebis, T.; Lijewski, S.; Nowicka, J.; Popenda, L.; Sobotta, L. Electrochemical properties of metallated porphyrazines possessing isophthaloxybutylsulfanyl substituents: Application in the electrocatalytic oxidation of hydrazine. Electrochim. Acta 2015, 168, 216–224. [Google Scholar] [CrossRef]
- Allen, C.M.; Sharman, W.M.; Van Lier, J.E. Current status of phthalocyanines in the photodynamic therapy of cancer. J. Porphyr. Phthalocyanines 2001, 5, 161–169. [Google Scholar] [CrossRef]
- Gierszewski, M.; Falkowski, M.; Sobotta, L.; Stolarska, M.; Popenda, L. Porphyrazines with peripheral isophthaloxyalkylsulfanyl substituents and their optical properties. J. Photochem. Photobiol. A Chem. 2015, 307–308, 54–67. [Google Scholar] [CrossRef]
- Claessens, C.G.; Hahn, U.; Torres, T. Phthalocyanines: From outstanding electronic properties to emerging applications. Chem. Rec. 2008, 8, 75–97. [Google Scholar] [CrossRef] [PubMed]
- Torre, G.D.L.; Claessens, C.G.; Torres, T. Phthalocyanines: Old dyes, new materials. putting color in nanotechnology. Chem. Commun. 2007, 38, 2000–2015. [Google Scholar] [CrossRef]
- Gottfried, J.M. Surface chemistry of porphyrins and phthalocyanines. Surf. Sci. Rep. 2015, 70, 259–379. [Google Scholar] [CrossRef]
- Brasch, M.; de la Escosura, A.; Ma, Y.; Uetrecht, C.; Heck, A.J.; Torres, T. Encapsulation of phthalocyanine supramolecular stacks into virus-like particles. J. Am. Chem. Soc. 2011, 133, 6878–6881. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Hirose, D.; Taniguchi, T. Catalytic aerobic oxidation of arylhydrazides with iron phthalocyanine. Adv. Synth. Catal. 2015, 357, 3346–3352. [Google Scholar] [CrossRef]
- Bacic, A.; Fincher, G.B.; Stone, B.A. Chemistry, Biochemistry, and Biology of 1–3 Beta Glucans and Related Polysaccharides; Academic Press: Burlington, MA, USA, 2009. [Google Scholar]
- Pelosi, L.; Bulone, V.; Heux, L. Polymorphism of curdlan and (1→3)-β-d-glucans synthesized in vitro: A 13C CP-MAS and X-ray diffraction analysis. Carbohydr. Polym. 2006, 66, 199–207. [Google Scholar] [CrossRef]
- Bluhm, T.L.; Sarko, A. The triple helical structure of lentinan, a linear β-(1→3)-d-glucan. Rev. Can. Chim. 2011, 55, 293–299. [Google Scholar] [CrossRef]
- Yoshiba, K.; Okamoto, S.; Dobashi, T.; Oku, H.; Christensen, B.E. Effects of carboxylation of the side chains on the order-disorder transition in aqueous solution of schizophyllan, a triple helical polysaccharide. Carbohydr. Polym. 2017, 168, 79. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, K.; Uezu, K.; Sakurai, K.; Shinkai, S. Proposal of a new hydrogen-bonding form to maintain curdlan triple helix. Chem. Biodivers. 2010, 1, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Atkins, E.D.T.; Parker, K.D. Cyclic triad of hydrogen bonds in a helical polymer. Nature 1968, 220, 784–785. [Google Scholar] [CrossRef]
- Deslandes, Y.; Marchessault, R.H.; Sarko, A. Triple-helical structure of(1→3)-β-d-glucan. Macromolecules 1980, 13, 1466–1471. [Google Scholar] [CrossRef]
- Giese, E.C.; Dekker, R.F.H.; Barbosa, A.M.; da Silva, R. Triple helix conformation of botryosphaeran, a (1→3;1→6)-β-d-glucan produced by Botryosphaeria rhodina MAMB-05. Carbohydr. Polym. 2008, 74, 953–956. [Google Scholar] [CrossRef]
- Falch, B.H.; Espevik, T.; Ryan, L.; Stokke, B.T. The cytokine stimulating activity of (1-->3)-beta-d-glucans is dependent on the triple helix conformation. Carbohydr. Res. 2000, 329, 587–596. [Google Scholar] [CrossRef]
- Meng, X.; Liang, H.; Luo, L. Antitumor polysaccharides from mushrooms: A review on the structural characteristics, antitumor mechanisms and immunomodulating activities. Carbohydr. Res. 2016, 424, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Jagodzinski, P.P.; Wiaderkiewicz, R.; Kurzawski, G.; Kloczewiak, M.; Nakashima, H.; Hyjek, E.; Kozbor, D. Mechanism of the inhibitory effect of curdlan sulfate on HIV-1 infection in vitro. Virology 1994, 202, 735–745. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, M.; Stone, B.A.; Stanisich, V.A. Curdlan and other bacterial (1-->3)-beta-d-glucans. Appl. Microbiol. Biotechnol. 2005, 68, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Tamai, N.; Tada, T.; Tatsumi, D.; Matsumoto, T. Role of water in gelation of curdlan/dmso/water ternary system. Nihon Reoroji Gakkaishi 2017, 45, 49–56. [Google Scholar] [CrossRef]
- Tada, T.; Tamai, N.; Matsumoto, T.; Masuda, T. Network structure of curdlan in dmso and mixture of dmso and water. Biopolymers 2015, 58, 129–137. [Google Scholar] [CrossRef]
- Tada, T.; Matsumoto, T.; Masuda, T. Influence of alkaline concentration on molecular association structure and viscoelastic properties of curdlan aqueous systems. Biopolymers 2015, 42, 479–487. [Google Scholar] [CrossRef]
- And, K.S.; Shinkai, S. Molecular recognition of adenine, cytosine, and uracil in a single-stranded rna by a natural polysaccharide: schizophyllan. Toxicol. Lett. 2000, 122, 1–8. [Google Scholar] [CrossRef]
- Sakurai, K.; Uezu, K.; Numata, M.; Hasegawa, T.; Li, C.; Kaneko, K.; Shinkai, S. β-1,3-Glucan polysaccharides as novel one-dimensional hosts for DNA/RNA, conjugated polymers and nanoparticles. Chem. Commun. 2005, 4383–4398. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, S.; Hasegawa, T.; Numata, M.; Fujiki, M.; Uezu, K. Oligosilane-nanofibers can be prepared through fabrication of permethyldecasilane within a helical superstructure of schizophyllan. Org. Lett. 2005, 7, 5605–5608. [Google Scholar] [CrossRef] [PubMed]
- Numata, M.; Tamesue, S.; Fujisawa, T.; Haraguchi, S.; Hasegawa, T. Beta-1, 3-glucan polysaccharide (schizophyllan) acting as a one-dimensional host for creating supramolecular dye assemblies. Org. Lett. 2006, 8, 5533–5536. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Fujita, N.; Numata, M.; Ogura, K. Creation of supramolecular assemblies from a dipolar dye molecule by the template effect of 1,3-glucan polysaccharide. J. Mater. Chem. 2010, 20, 9022–9024. [Google Scholar] [CrossRef]
- Zhao, Z.; Chan, P.S.; Li, H.; Wong, K.L.; Wong, R.N.; Mak, N.K. Highly selective mitochondria-targeting amphiphilic silicon(iv) phthalocyanines with axially ligated rhodamine b for photodynamic therapy. Inorg. Chem. 2012, 51, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Frampton, M.J.; Claridge, T.D.; Latini, G.; Brovelli, S.; Cacialli, F. Amylose-wrapped luminescent conjugated polymers. Chem. Commun. 2008, 2797–2799. [Google Scholar] [CrossRef] [PubMed]
- Sugikawa, K.; Shiraki, T.; Tsuchiya, Y.; Haraguchi, S.; Sada, K.; Shinkai, S. Facile fabrication of CD-active 1-D polypyrrole by the templating effect of a helix-forming anionic polysaccharide. Supramol. Chem. 2011, 23, 239–243. [Google Scholar] [CrossRef]
- Star, A.; Steuerman, D.W.; Heath, J.R.; Stoddart, J.F. Starched carbon nanotubes. Angew. Chem. Int. Ed. 2002, 41, 2508–2512. [Google Scholar] [CrossRef]
- Paula, L.B.D.; Primo, F.L.; Pinto, M.R.; Morais, P.C. Evaluation of a chloroaluminium phthalocyanine-loaded magnetic nanoemulsion as a drug delivery device to treat glioblastoma using hyperthermia and photodynamic therapy. RSC Adv. 2017, 7, 9115–9122. [Google Scholar] [CrossRef] [Green Version]
- Hutnick, M.A.; Ahsanuddin, S.; Guan, L.; Lam, M.; Baron, E.D. Pegylated dendrimers as drug delivery vehicles for the photosensitizer silicon phthalocyanine pc 4 for candidal infections. Biomacromolecules 2017, 18, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Sielcken, O.E.; Tilborg, M.M.V.; Roks, M.F.M.; Hendriks, R.; Drenth, W.; Nolte, R.J.M. Cheminform abstract: Synthesis and aggregation behavior of hosts containing phthalocyanine and crown ether subunits. J. Am. Chem. Soc. 1987, 18, 4261–4265. [Google Scholar] [CrossRef]
- Morisue, M.; Ueda, S.; Kurasawa, M.; Naito, M.; Kuroda, Y. Highly fluorescent slipped-cofacial phthalocyanine dimer as a shallow inclusion complex with α-cyclodextrin. J. Phys. Chem. A 2012, 116, 5139. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Wu, X.; Bian, Y.; Jiang, J.; Zhang, X. Helical fibrous nanostructures self-assembled from metal-free phthalocyanine with peripheral chiral menthol units. ChemPhysChem 2009, 10, 2725–2732. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, D.; Sun, X.; Sun, Q.; Wu, Y.; Xu, Y. Construction and Characterization of Phthalocyanine-Loaded Particles of Curdlan and Their Photosensitivity. Int. J. Mol. Sci. 2018, 19, 3323. https://doi.org/10.3390/ijms19113323
Liu Z, Wang D, Sun X, Sun Q, Wu Y, Xu Y. Construction and Characterization of Phthalocyanine-Loaded Particles of Curdlan and Their Photosensitivity. International Journal of Molecular Sciences. 2018; 19(11):3323. https://doi.org/10.3390/ijms19113323
Chicago/Turabian StyleLiu, Zonglin, Dongfeng Wang, Xun Sun, Qingjie Sun, Yanjiang Wu, and Ying Xu. 2018. "Construction and Characterization of Phthalocyanine-Loaded Particles of Curdlan and Their Photosensitivity" International Journal of Molecular Sciences 19, no. 11: 3323. https://doi.org/10.3390/ijms19113323
APA StyleLiu, Z., Wang, D., Sun, X., Sun, Q., Wu, Y., & Xu, Y. (2018). Construction and Characterization of Phthalocyanine-Loaded Particles of Curdlan and Their Photosensitivity. International Journal of Molecular Sciences, 19(11), 3323. https://doi.org/10.3390/ijms19113323