Better Resolution of High-Spin Cobalt Hyperfine at Low Frequency: Co-Doped Ba(Zn1/3Ta2/3)O3 as a Model Complex
Abstract
:1. Introduction
2. Results and Discussion
2.1. No Resolvable Hyperfine Structure at X-Band
2.2. Cobalt Hyperfine Lines Resolved at Low Frequencies: S-Band and L-Band
2.3. Summary
3. Materials and Methods
3.1. Molecular Structure
3.2. EPR Spectrometers
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BZT | barium zinc tantalate |
Co | cobalt |
EPR | electron paramagnetic resonance |
Zn | zinc |
References
- Krzystek, J.; Zvyagin, S.A.; Ozarowski, A.; Fiedler, A.T.; Brunold, T.C.; Telser, J. Definitive spectroscopic determination of zero-field splitting in high-spin cobalt(II). J. Am. Chem. Soc. 2004, 126, 2148–2155. [Google Scholar] [CrossRef] [PubMed]
- Bennett, B. EPR of cobalt-substituted zinc enzymes, in metals in biology: Applications of high-resolution EPR in metalloenzymes. In Biological Magnetic Resonance; Hanson, G., Berliner, L., Eds.; Springer: New York, NY, USA, 2010; Volume 29, pp. 345–370. ISBN 978–1-4419-1139-1. [Google Scholar]
- Marts, A.R.; Greer, S.M.; Whitehead, D.R.; Woodruff, T.M.; Breece, R.M.; Shim, S.W.; Oseback, S.N.; Papish, E.T.; Jacobsen, F.E.; Cohen, S.M.; et al. Dual mode EPR studies of a Kramers ion: High-spin Co(II) in 4-,5- and 6- coordination. Appl. Magn. Reson. 2011, 40, 501–511. [Google Scholar] [CrossRef]
- Antholine, W.E. Low frequency EPR of Cu2+ in proteins. In Biomedical EPR—Part A: Free Radicals, Metals, Medicine and Physiology; Eaton, S.S., Eaton, G.R., Berliner, L.J., Eds.; Springer: New York, NY, USA, 2005; Volume 23, pp. 417–454. ISBN 978–0-306-48506-0. [Google Scholar]
- Antholine, W.E.; Bennett, B.; Hanson, G. Copper coordination environments. In Multifrequency Electron Paramagnetic Resonance: Theory and Applications; Misra, S., Ed.; Wiley: Weinheim, Germany, 2011; pp. 647–718. ISBN 9783527407798. [Google Scholar]
- Froncisz, W.; Hyde, J.S. The loop-gap resonator: A new microwave lumped circuit ESR sample structure. J. Magn. Reson. 1982, 47, 515–521. [Google Scholar] [CrossRef]
- Froncisz, W.; Hyde, J.S. Broadening by strains of lines in the g-parallel region of Cu2+ EPR spectra. J. Chem. Phys. 1980, 73, 3123–3131. [Google Scholar] [CrossRef]
- Zhang, S.; Devonport, A.; Newman, N. Main source of microwave loss in transition-metal-doped Ba(Zn1/3Ta2/3)O3 and Ba(Zn1/3Nb2/3)O3 at cryogenic temperatures. J. Am. Ceram. Soc. 2015, 98, 1188–1194. [Google Scholar] [CrossRef]
- Hagen, W.R. EPR spectroscopy of iron sulfur proteins. Adv. Inorg. Chem. 1982, 38, 165–222. [Google Scholar] [CrossRef]
- Pilbrow, J.R.; Sinclair, D.R.; Hutton, D.R.; Troup, G.J. Asymmetric lines in field-sweep EPR: Cr3+ looping transitions in ruby. J. Magn. Reson. 1983, 52, 386–399. [Google Scholar] [CrossRef]
- Gaffney, B.J.; Silverstone, H.J. Simulation methods for looping transitions. J. Magn. Reson. 1998, 134, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Antholine, W.E.; Ross, M.O.; Hoffman, B.M.; Rosenzweig, A.C. Better Resolution at Low Frequency: CoEDTA, a Model for Obtaining Co Hyperfine in High Spin Complexes of Biological Interest Like the Transmembrane Metal Binding Site for CzcP. In Proceedings of the American Chemical Society Meeting, Division of Inorganic Chemistry, Section: Bioinorganic Chemistry: Proteins and Enzymes and Model Systems, New Orleans, LA, USA, 18–22 March 2018. [Google Scholar]
- Antholine, W.E.; Mahim, A.; Petering, D.H. Better Resolution of High Spin Co Hyperfine at Low Frequency, L-band: Co-bovine Serum Albumin, A Model for Obtaining Co Hyperfine in High Spin Complexes of Biological Interest. In Proceedings of the 59th Annual Rocky Mountain Conference on Magnetic Resonance, Snowbird, UT, USA, 22–27 July 2018. Abstract Number 203. [Google Scholar]
- Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42. [Google Scholar] [CrossRef] [PubMed]
g-max | g-mid | A-max | A-mid | |
---|---|---|---|---|
X-band (9.488 GHz, exp) | ------ | 4.76 | ------ | ------ |
S-band (3.216 GHz, exp) | ------ | 4.76 | ------ | 64.9 G |
S-band (3.216 GHz, sim) | 4.83 | 4.56 | 63.8 G | 63.0 G |
L-band (1.362 GHz, sim) | 5.04 | 4.01 | 66.9 G | 67.0 G |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antholine, W.E.; Zhang, S.; Gonzales, J.; Newman, N. Better Resolution of High-Spin Cobalt Hyperfine at Low Frequency: Co-Doped Ba(Zn1/3Ta2/3)O3 as a Model Complex. Int. J. Mol. Sci. 2018, 19, 3532. https://doi.org/10.3390/ijms19113532
Antholine WE, Zhang S, Gonzales J, Newman N. Better Resolution of High-Spin Cobalt Hyperfine at Low Frequency: Co-Doped Ba(Zn1/3Ta2/3)O3 as a Model Complex. International Journal of Molecular Sciences. 2018; 19(11):3532. https://doi.org/10.3390/ijms19113532
Chicago/Turabian StyleAntholine, William E., Shengke Zhang, Justin Gonzales, and Nathan Newman. 2018. "Better Resolution of High-Spin Cobalt Hyperfine at Low Frequency: Co-Doped Ba(Zn1/3Ta2/3)O3 as a Model Complex" International Journal of Molecular Sciences 19, no. 11: 3532. https://doi.org/10.3390/ijms19113532
APA StyleAntholine, W. E., Zhang, S., Gonzales, J., & Newman, N. (2018). Better Resolution of High-Spin Cobalt Hyperfine at Low Frequency: Co-Doped Ba(Zn1/3Ta2/3)O3 as a Model Complex. International Journal of Molecular Sciences, 19(11), 3532. https://doi.org/10.3390/ijms19113532