Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage
Abstract
:1. Introduction
2. Common Genetic Predisposition of ICH
2.1. Genetic Variants Related to the Renin–Angiotensin System (Table 1)
Angiotensin I Converting Enzyme (ACE)
Gene Name and Abbreviation | Protein Function | Variant Locus | Population | No of Cases/Controls | MAF of Cases/Controls | OR (95% CI) | Ref | Notes |
---|---|---|---|---|---|---|---|---|
Angiotensin-converting enzyme (ACE) | Converts angiotensin I to angiotensin II | rs1799752: intron variant: Alu sequence | Asian | 2941/3715 | D 0.44/0.37 | Rec: 1.98 (1.53–2.57); Dom: 1.31 (1.18–1.45) | [25] | Meta-analysis in LICH + DICH; |
Caucasian | 414/1007 | I 0.36/0.48 [28] I 0.57/0.47 [32] | No significance | [25,26] | Meta-analysis in LICH + DICH; | |||
Alpha-2 type IV collagen (COL4A2) | Abundant component of the cerebral vasculature basement membranes. | intron variants: rs9521732 C>A; rs9521733 T>C; rs9515199 C>T | European | 1545/1485 | A 0.41/0.46; C 0.40/0.43; T0.41/0.47 | Add: 1.28 (1.13–1.44); 1.29 (1.14–1.46); 1.28 (1.14–1.44) | [33] | Meta-analysis, Significant in DICH; |
Tissue metalloproteinase inhibitor 1 (TIMP-1) | Inhibits matrix metalloproteinases and promotes cell proliferation. | rs2070584: intron variant A>C | Chinese | 275/145 (male) | 0.54/0.43 | 1.54 (1.03–2.3) (male) | [34] | LICH + DICH |
rs4898: intron variant T>C | Taiwanese | 228/212 (male) | 0.39/0.45 | 0.35 (0.15–0.81) (male) | [13] | DICH | ||
TIMP-2 | rs7503726: 5′ UTR variant G>A | German | 45/253 | 0.4/0.37 (total stroke) | Rec: 2.02 (1.1–3.7) | [35] | LICH + DICH | |
rs7503607: 5′ UTR variant C>A | Taiwanese | 396/376 | 0.18/0.13 | Add: 2.5 (1.37–4.38) (elder group) | [14] | DICH |
2.2. Genetic Variants Related to Vessel Wall Integrity (Table 1)
2.2.1. Collagen, Type IV, Alpha-2 (COL4A2)
2.2.2. Tissue Inhibitors of Metalloproteinase-1 (TIMP-1) and TIMP-2
2.3. Genetic Variants Related to Lipid Metabolism (Table 2)
2.3.1. Apolipoprotein E (APOE)
2.3.2. ER Lipid Raft Associated 1 (ERLIN1)
2.3.3. Low-Density Lipoprotein Receptor (LDLR)
2.3.4. Apolipoprotein (a) (LPA)
Gene Name and Abbreviation | Protein Function | Variant Locus | Population | No of Cases/Controls | MAF of Cases/Controls | OR (95% CI) | Ref | Notes |
---|---|---|---|---|---|---|---|---|
Apolipoprotein E (APOE) | Involved in lipid transport and metabolism, and cell membrane maintenance and repair. | Haplotypes constructed by rs7412 and rs429358. APOE ε2: missense variant | Caucasian | 2189 ICH cases and 4041 controls | 0.09–0.15/0.07–0.1 | LICH: 1.82 (1.50–2.23) | [51] | GWA in LICH and DICH |
APOE ε4: missense variant | Caucasian | 2189 ICH cases and 4041 controls | 0.12–0.24/0.08–0.19 | LICH: 2.20 (1.85–2.63); DICH: 1.21 (1.08–1.36) | [51] | GWA in LICH and DICH | ||
Caucasian | 539/1573 | 0.22/0.17 carrier frequency | 1.34 (1.07, 1.66) | [52] | Meta-analysis, LICH + DICH | |||
Asian | 699/2002 | 0.11/0.09 carrier frequency | 1.52 (1.20, 1.93) | [52] | Meta-analysis, LICH + DICH | |||
ER lipid raft associated 1 (ERLIN1) | Components of lipid rafts localized to the endoplasmic reticulum and nuclear envelope | rs1324694: upstream variant C>T | Japanese | 373/3665 | 6.4/9.9 | Dom: 0.59 (0.39–0.88) | [54] | LICH + DICH |
Low-density lipoprotein receptor (LDLR) | Cholesterol hemostasis | rs688: synonymous variant C>T | Taiwanese | 447/430 | 0.18/0.18 | Rec: 0.27 (0.10–0.79) | [56] | LICH + DICH |
Apolipoprotein(a) (LPA) | Atherogenicity, Inhibits tissue type plasminogen activator-1 | TTTTA repeat in 5′ UTR | Chinese | 499/1817 | - | 1.62 (1.09–2.37) | [58] | LICH + DICH |
2.4. Genetic Variants Related to Inflammation (Table 3)
2.4.1. Methylenetetrahydrofolate Reductase (MTHFR)
2.4.2. Interleukin 6 (IL6)
2.4.3. Tumor Necrosis Factor (TNF)
2.4.4. Trafficking Protein Particle Complex 9 (TRAPPC)
2.4.5. Endoglin (ENG)
2.4.6. Interferon Epsilon (IFNE)
2.4.7. Transforming Growth Factor Beta 2 Receptor 2 (TGFBR2)
Gene Name and Abbreviation | Protein Function | Variant Locus | Population | No of Cases/Controls | MAF of Cases/Controls | OR (95% CI) | Ref | Notes |
---|---|---|---|---|---|---|---|---|
Methylenetetrahydrofolate reductase (MTHFR) | Converts homocysteine to methionine | rs1801133 C>T, p.A222V | Asian | 1585/3620 | 0.48/0.41 | 1.42 (1.19–1.69) | [61] | Meta-analysis in LICH + DICH; |
Caucasian | 243/447 | 0.18/0.48 | Rec: 2.23 (1.06–4.71) | [61] | ||||
IL-6 (IL6) | Proinflammatory cytokine | rs1800796: intron variant, G>C (−572) | Japanese | 282/2010 | 0.19/0.25 | Rec: 1.6 (1.2–2.1) | [64] | LICH + DICH |
Tumor necrosis factor (TNF) | Proinflammatory cytokine; regulator of cell proliferation, lipid metabolism, apoptosis, and coagulation | rs1799964: downstream variant 500B, upstream variant 2KB T>C (−1031) rs1800629: upstream variant G>A (−308) rs1800630: downstream variant 500B, upstream variant 2KB C>A (−863) | Taiwanese | 177/226 (male); 177/226 (male); 83/142 (female) | 0.19/0.13 (male); 0.15/0.09 (male); 0.18/0.23 (female) | Add: 1.9 (1.1–3.4); 2.6 (1.3–5.3); 0.5 (0.2–0.9) | [70] | DICH |
Trafficking protein particle complex 9 gene (TRAPPC) | Trafficking protein particle complex subunit 9 | rs12679196: intron variant C>T | Japanese | 376/3722 | 0.18/0.21 | Add: 0.2 (0.0–0.6) | [54] | LICH + DICH |
Endoglin (ENG) | Transmembrane glycoprotein, part of TGF-β receptor complex | GGGGGA insertion | US | 103/202 | 0.09/0.02 (homozygous) | 4.8 (1.3–21.6) | [77] | LICH + DICH |
Interferon epsilon (IFNE) | Proinflammatory cytokines | rs2039381, stop gained C>T, p.Q71Stop | Korean | 145/401 | 0.22/0.15 | Add: 2.0 (1.3–3) | [81] | LICH + DICH |
Transforming growth factor beta 2 receptor 2 (TGFBR2) | Transmembrane protein for development of T cells and regulator of cell proliferation | rs2228048: synonymous codon C>T, N389N | Korean | 127/395 | 0.28/0.19 | 1.7 (1.2–2.4) | [85] | LICH + DICH |
2.5. Other Genetic Variants (Table 4)
2.5.1. Polyamine-Modulated Factor 1 (PMF1)
2.5.2. Thyrotropin-Releasing Hormone Degrading Enzyme Gene (TRHDE)
2.5.3. Fibrinogen Alpha Chain (FGA)
2.5.4. Tubulin Beta-1 Chain (TUBB1)
2.5.5. WNK Lysine Deficient Protein Kinase 2 (WNK2)
2.5.6. Potassium Channel, Subfamily K, Member 17 (KCNK17)
Gene Name and Abbreviation | Protein Function | Variant Locus | Population | No of Cases/Controls | MAF of Cases/Controls | OR (95% CI) | Ref | Notes |
---|---|---|---|---|---|---|---|---|
Polyamine-modulated factor 1 (PMF1) | Required for chromosome alignment and segregation, and kinetochore formation during mitosis | rs2984613: intron variant C>T | European | 1545/1481 664 LICH and 881 DICH cases | 0.31/0.31 | Add: 1.29 (1.22–1.46) | [86] | DICH; Meta-analysis of GWAs with replication |
Solute carrier family 25, member 44 (SLC25A44) | Nuclear-encoded transporters embedded in the inner mitochondrial membrane and other organelle membranes | Within the susceptibility locus 1q22 | ||||||
Thyrotropin- releasing hormone- degrading ectoenzyme (TRHDE) | Inactivates thyrotropin-releasing hormone | rs11179580: intron variant C>T | European | 1545/1481 664 LICH and 881 DICH cases | 0.24/0.25 | Add: LICH: 1.56 (1.33–1.84); DICH: 1.25 | [86] | LICH>DICH; Meta-analysis of GWAs without replication |
Fibrinogen alpha chain (FGA) | Cleaved to yield monomers, which, together with fibrinogen beta and gamma, polymerize to form fibrin matrix | rs6050: missense T>C, p.T331A | Polish and Greek | 503/774 | 0.21/0.23 | Dom: 2.3 (1.1–4.8) | [94] | LICH + DICH |
Tubulin beta-1 chain (TUBB1) | Major constituent of microtubules | rs415064: missense G>C, p.Q43P | Spanish | 259/449 | 0.12/0.06 | 2.36 (1.25–4.45) | [98] | LICH + DICH |
WNK lysine deficient protein kinase 2 (WNK2) | Serine/threonine kinase that controls PAK1, a regulator of cell motility | rs16936752: intron variant T>G | Japanese | 376/3671 | 0.08/0.11 | Rec: 1.59 # (1.10–2.38) | [54] | LICH + DICH |
KCNK17 | potassium channel, subfamily K, member17 | rs12214600: intron variant C>T | Chinese | 182/174 | 0.10/0.17 | 0.56 (0.35–0.90) | [100] | LICH + DICH |
rs10947803: (merged into rs9471058) intron variant C>A | Chinese | 166/156 | 0.42/0.34 | Dom: 1.65 (1.04–2.62) | [101] | LICH + DICH |
3. Clinical Implications for ICH Management
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Benjamin, E.J.; Virani, S.S.; Callaway, C.W.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Chiuve, S.E.; Cushman, M.; Delling, F.N.; Deo, R.; et al. Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation 2018, 137, e67–e492. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet 2009, 373, 1632–1644. [Google Scholar] [CrossRef] [Green Version]
- Hajat, C.; Dundas, R.; Stewart, J.A.; Lawrence, E.; Rudd, A.G.; Howard, R.; Wolfe, C.D. Cerebrovascular risk factors and stroke subtypes: Differences between ethnic groups. Stroke 2001, 32, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Kitamura, A.; Nakagawa, Y.; Sato, M.; Iso, H.; Sato, S.; Imano, H.; Kiyama, M.; Okada, T.; Okada, H.; Iida, M.; et al. Proportions of stroke subtypes among men and women > or =40 years of age in an urban Japanese city in 1992, 1997, and 2002. Stroke 2006, 37, 1374–1378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.F.; Yang, J.; Hong, Z.; Yuan, G.G.; Zhou, B.F.; Zhao, L.C.; Huang, Y.N.; Chen, J.; Wu, Y.F. Proportion of different subtypes of stroke in China. Stroke 2003, 34, 2091–2096. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, F.I.; Lien, L.M.; Chen, S.T.; Bai, C.H.; Sun, M.C.; Tseng, H.P.; Chen, Y.W.; Chen, C.H.; Jeng, J.S.; Tsai, S.Y.; et al. Get With the Guidelines-Stroke performance indicators: Surveillance of stroke care in the Taiwan Stroke Registry: Get With the Guidelines-Stroke in Taiwan. Circulation 2010, 122, 1116–1123. [Google Scholar] [CrossRef] [PubMed]
- Van Asch, C.J.; Luitse, M.J.; Rinkel, G.J.; van der Tweel, I.; Algra, A.; Klijn, C.J. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 167–176. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Tuhrim, S.; Broderick, J.P.; Batjer, H.H.; Hondo, H.; Hanley, D.F. Spontaneous intracerebral hemorrhage. N. Engl. J. Med. 2001, 344, 1450–1460. [Google Scholar] [CrossRef]
- Fisher, C.M. Pathological observations in hypertensive cerebral hemorrhage. J. Neuropathol. Exp. Neurol. 1971, 30, 536–550. [Google Scholar] [CrossRef]
- Krishnan, K.; Beishon, L.; Berge, E.; Christensen, H.; Dineen, R.A.; Ozturk, S.; Sprigg, N.; Wardlaw, J.M.; Bath, P.M. Relationship between race and outcome in Asian, Black, and Caucasian patients with spontaneous intracerebral hemorrhage: Data from the Virtual International Stroke Trials Archive and Efficacy of Nitric Oxide in Stroke trial. Int. J. Stroke 2018, 13, 362–373. [Google Scholar] [CrossRef]
- Flaherty, M.L.; Woo, D.; Haverbusch, M.; Sekar, P.; Khoury, J.; Sauerbeck, L.; Moomaw, C.J.; Schneider, A.; Kissela, B.; Kleindorfer, D.; et al. Racial variations in location and risk of intracerebral hemorrhage. Stroke 2005, 36, 934–937. [Google Scholar] [CrossRef] [PubMed]
- Galati, A.; King, S.L.; Nakagawa, K. Gender Disparities among Intracerebral Hemorrhage Patients from a Multi-ethnic Population. Hawaii. J. Med. Public Health 2015, 74, 12–15. [Google Scholar] [PubMed]
- Ho, W.M.; Chen, C.M.; Lee, Y.S.; Chang, K.H.; Chen, H.W.; Chen, S.T.; Chen, Y.C. Association of MMP-9 Haplotypes and TIMP-1 Polymorphism with Spontaneous Deep Intracerebral Hemorrhage in the Taiwan Population. PLoS ONE 2015, 10, e0125397. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Ho, W.M.; Lee, Y.S.; Chen, H.W.; Chen, C.M. Polymorphisms in the Promoters of the MMP-2 and TIMP-2 Genes Are Associated with Spontaneous Deep Intracerebral Hemorrhage in the Taiwan Population. PLoS ONE 2015, 10, e0142482. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Lee-Chen, G.J.; Wu, Y.R.; Hu, F.J.; Wu, H.C.; Kuo, H.C.; Chu, C.C.; Ryu, S.J.; Chen, S.T.; Chen, C.M. Analyses of interaction effect between apolipoprotein E polymorphism and alcohol use as well as cholesterol concentrations on spontaneous deep intracerebral hemorrhage in the Taiwan population. Clin. Chim. Acta 2009, 408, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Wu, Y.R.; Hsu, W.C.; Chen, C.M.; Lee, T.H.; Chen, S.T. Basal Ganglia-thalamic hemorrhage in young adults: A hospital-based study. Cerebrovasc. Dis. 2006, 22, 33–39. [Google Scholar] [CrossRef]
- Ariesen, M.J.; Claus, S.P.; Rinkel, G.J.; Algra, A. Risk factors for intracerebral hemorrhage in the general population: A systematic review. Stroke 2003, 34, 2060–2065. [Google Scholar] [CrossRef]
- Woo, D.; Sauerbeck, L.R.; Kissela, B.M.; Khoury, J.C.; Szaflarski, J.P.; Gebel, J.; Shukla, R.; Pancioli, A.M.; Jauch, E.C.; Menon, A.G.; et al. Genetic and environmental risk factors for intracerebral hemorrhage: Preliminary results of a population-based study. Stroke 2002, 33, 1190–1195. [Google Scholar] [CrossRef]
- Federico, A.; Bianchi, S.; Dotti, M.T. The spectrum of mutations for CADASIL diagnosis. Neurol. Sci. 2005, 26, 117–124. [Google Scholar] [CrossRef]
- Battistini, S.; Rocchi, R.; Cerase, A.; Citterio, A.; Tassi, L.; Lando, G.; Patrosso, M.C.; Galli, R.; Brunori, P.; Sgro, D.L.; et al. Clinical, magnetic resonance imaging, and genetic study of 5 Italian families with cerebral cavernous malformation. Arch. Neurol. 2007, 64, 843–848. [Google Scholar] [CrossRef]
- Devan, W.J.; Falcone, G.J.; Anderson, C.D.; Jagiella, J.M.; Schmidt, H.; Hansen, B.M.; Jimenez-Conde, J.; Giralt-Steinhauer, E.; Cuadrado-Godia, E.; Soriano, C.; et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 2013, 44, 1578–1583. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, A.M.; Singh, I.P.; Gandhi, C.D.; Prestigiacomo, C.J. Genetic risk factors for spontaneous intracerebral haemorrhage. Nat. Rev. Neurol. 2016, 12, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Falcone, G.J.; Woo, D. Genetics of Spontaneous Intracerebral Hemorrhage. Stroke 2017, 48, 3420–3424. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Fan, C.; Yu, M.; Wallar, G.; Zhang, Z.F.; Wang, L.; Zhang, X.; Hu, R. Associations of ACE gene insertion/deletion polymorphism, ACE activity, and ACE mRNA expression with hypertension in a Chinese population. PLoS ONE 2013, 8, e75870. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, K.; Vivekanandhan, S.; Srivastava, A.; Goswami, S.; Srivastava, M.V.; Tripathi, M. Association between angiotensin converting enzyme gene insertion/deletion polymorphism and intracerebral haemorrhage in North Indian population: A case control study and meta-analysis. Neurol. Sci. 2014, 35, 1983–1990. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Y.; Watts, L.T.; Sun, Q.; Zhong, Z.; Yang, G.Y.; Bian, L. Genetic Associations of Angiotensin-Converting Enzyme with Primary Intracerebral Hemorrhage: A Meta-analysis. PLoS ONE 2013, 8, e67402. [Google Scholar] [CrossRef]
- Chen, C.M.; Chen, Y.C.; Wu, Y.R.; Hu, F.J.; Lyu, R.K.; Chang, H.S.; Ro, L.S.; Hsu, W.C.; Chen, S.T.; Lee-Chen, G.J. Angiotensin-converting enzyme polymorphisms and risk of spontaneous deep intracranial hemorrhage in Taiwan. Eur. J. Neurol. 2008, 15, 1206–1211. [Google Scholar] [CrossRef]
- Slowik, A.; Turaj, W.; Dziedzic, T.; Haefele, A.; Pera, J.; Malecki, M.T.; Glodzik-Sobanska, L.; Szermer, P.; Figlewicz, D.A.; Szczudlik, A. DD genotype of ACE gene is a risk factor for intracerebral hemorrhage. Neurology 2004, 63, 359–361. [Google Scholar] [CrossRef]
- Lee, Y.H.; Choi, S.J.; Ji, J.D.; Song, G.G. Associations between the angiotensin-converting enzyme insertion/deletion polymorphism and susceptibility to vasculitis: A meta-analysis. J. Renin Angiotensin Aldosterone Syst. 2012, 13, 196–201. [Google Scholar] [CrossRef]
- Heeneman, S.; Sluimer, J.C.; Daemen, M.J. Angiotensin-converting enzyme and vascular remodeling. Circ. Res. 2007, 101, 441–454. [Google Scholar] [CrossRef]
- Elkins, J.S.; Douglas, V.C.; Johnston, S.C. Alzheimer disease risk and genetic variation in ACE: A meta-analysis. Neurology 2004, 62, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Catto, A.; Carter, A.M.; Barrett, J.H.; Stickland, M.; Bamford, J.; Davies, J.A.; Grant, P.J. Angiotensin-converting enzyme insertion/deletion polymorphism and cerebrovascular disease. Stroke 1996, 27, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Rannikmae, K.; Davies, G.; Thomson, P.A.; Bevan, S.; Devan, W.J.; Falcone, G.J.; Traylor, M.; Anderson, C.D.; Battey, T.W.; Radmanesh, F.; et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology 2015, 84, 918–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-X.; Yang, Q.-D.; Liu, B.-Q.; Zhang, L.; Ma, M.-M.; Hu, Z.-Y.; Xia, J.; Xu, H.-W.; Du, X.-P. TIMP-1 polymorphisms in a Chinese Han population with intracerebral hemorrhage. Int. J. Neurosci. 2014, 124, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Reuter, B.; Bugert, P.; Stroick, M.; Bukow, S.; Griebe, M.; Hennerici, M.G.; Fatar, M. TIMP-2 gene polymorphism is associated with intracerebral hemorrhage. Cerebrovasc. Dis. 2009, 28, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Sessa, M. Intracerebral hemorrhage and hypertension. Neurol. Sci. 2008, 29, 258–259. [Google Scholar] [CrossRef] [PubMed]
- Jeanne, M.; Labelle-Dumais, C.; Jorgensen, J.; Kauffman, W.B.; Mancini, G.M.; Favor, J.; Valant, V.; Greenberg, S.M.; Rosand, J.; Gould, D.B. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am. J. Hum. Genet. 2012, 90, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.C.; Sonni, A.; Labelle-Dumais, C.; de Leau, M.; Kauffman, W.B.; Jeanne, M.; Biffi, A.; Greenberg, S.M.; Rosand, J.; Gould, D.B. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann. Neurol. 2012, 71, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Malemud, C.J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Front. Biosci. 2006, 11, 1696–1701. [Google Scholar] [CrossRef]
- Chang, J.J.; Emanuel, B.A.; Mack, W.J.; Tsivgoulis, G.; Alexandrov, A.V. Matrix Metalloproteinase-9: Dual Role and Temporal Profile in Intracerebral Hemorrhage. J. Stroke Cerebrovasc. Dis. 2014, 23, 2498–2505. [Google Scholar] [CrossRef]
- Newby, A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 2005, 85, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Luttun, A.; Lutgens, E.; Manderveld, A.; Maris, K.; Collen, D.; Carmeliet, P.; Moons, L. Loss of matrix metalloproteinase-9 or matrix metalloproteinase-12 protects apolipoprotein E-deficient mice against atherosclerotic media destruction but differentially affects plaque growth. Circulation 2004, 109, 1408–1414. [Google Scholar] [CrossRef] [PubMed]
- Florczak-Rzepka, M.; Grond-Ginsbach, C.; Montaner, J.; Steiner, T. Matrix metalloproteinases in human spontaneous intracerebral hemorrhage: An update. Cerebrovasc. Dis. 2012, 34, 249–262. [Google Scholar] [CrossRef] [PubMed]
- Mun-Bryce, S.; Rosenberg, G.A. Matrix metalloproteinases in cerebrovascular disease. J. Cereb. Blood Flow Metab. 1998, 18, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tsirka, S.E. Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 2005, 128, 1622–1633. [Google Scholar] [CrossRef] [Green Version]
- Aoki, T.; Kataoka, H.; Moriwaki, T.; Nozaki, K.; Hashimoto, N. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms. Stroke 2007, 38, 2337–2345. [Google Scholar] [CrossRef]
- Sing, C.F.; Davignon, J. Role of the apolipoprotein E polymorphism in determining normal plasma lipid and lipoprotein variation. Am. J. Hum. Genet. 1985, 37, 268–285. [Google Scholar]
- Poirier, J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends. Neurosci. 1994, 17, 525–530. [Google Scholar] [CrossRef]
- Yamada, M. Cerebral amyloid angiopathy: Emerging concepts. J. Stroke 2015, 17, 17–30. [Google Scholar] [CrossRef]
- Tzourio, C.; Arima, H.; Harrap, S.; Anderson, C.; Godin, O.; Woodward, M.; Neal, B.; Bousser, M.G.; Chalmers, J.; Cambien, F.; et al. APOE genotype, ethnicity, and the risk of cerebral hemorrhage. Neurology 2008, 70, 1322–1328. [Google Scholar] [CrossRef]
- Biffi, A.; Sonni, A.; Anderson, C.D.; Kissela, B.; Jagiella, J.M.; Schmidt, H.; Jimenez-Conde, J.; Hansen, B.M.; Fernandez-Cadenas, I.; Cortellini, L.; et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann. Neurol. 2010, 68, 934–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.; Wang, X.; Tang, Z.; Liu, J.; Yang, S.; Zhang, Y.; Wei, Y.; Luo, W.; Wang, J.; Li, J.; et al. Apolipoprotein E gene polymorphism and the risk of intracerebral hemorrhage: A meta-analysis of epidemiologic studies. Lipids Health Dis. 2014, 13, 47. [Google Scholar] [CrossRef] [PubMed]
- Rannikmae, K.; Samarasekera, N.; Martinez-Gonzalez, N.A.; Al-Shahi Salman, R.; Sudlow, C.L. Genetics of cerebral amyloid angiopathy: Systematic review and meta-analysis. J. Neurol. Neurosurg. Psychiatry 2013, 84, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Kato, K.; Yokoi, K.; Oguri, M.; Watanabe, S.; Metoki, N.; Yoshida, H.; Satoh, K.; Aoyagi, Y.; Nozawa, Y.; et al. Association of genetic variants with hemorrhagic stroke in Japanese individuals. Int. J. Mol. Med. 2010, 25, 649–656. [Google Scholar] [PubMed]
- Gao, F.; Ihn, H.E.; Medina, M.W.; Krauss, R.M. A common polymorphism in the LDL receptor gene has multiple effects on LDL receptor function. Hum. Mol. Genet. 2013, 22, 1424–1431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.D.; Hsiao, K.M.; Lee, T.H.; Kuo, Y.W.; Huang, Y.C.; Hsu, H.L.; Lin, Y.H.; Wu, C.Y.; Lee, M.; Yang, H.T.; et al. Genetic polymorphism of LDLR (rs688) is associated with primary intracerebral hemorrhage. Curr. Neurovasc. Res. 2014, 11, 10–15. [Google Scholar] [CrossRef]
- Langsted, A.; Kamstrup, P.R.; Nordestgaard, B.G. High Lipoprotein(a) and Low Risk of Major Bleeding in Brain and Airways in the General Population: A Mendelian Randomization Study. Clin. Chem. 2017, 63, 1714–1723. [Google Scholar] [CrossRef]
- Sun, L.; Li, Z.; Zhang, H.; Ma, A.; Liao, Y.; Wang, D.; Zhao, B.; Zhu, Z.; Zhao, J.; Zhang, Z.; et al. Pentanucleotide TTTTA repeat polymorphism of apolipoprotein(a) gene and plasma lipoprotein(a) are associated with ischemic and hemorrhagic stroke in Chinese: A multicenter case-control study in China. Stroke 2003, 34, 1617–1622. [Google Scholar] [CrossRef]
- Ogino, S.; Wilson, R.B. Genotype and haplotype distributions of MTHFR677C>T and 1298A>C single nucleotide polymorphisms: A meta-analysis. J. Hum. Genet. 2003, 48, 1–7. [Google Scholar] [CrossRef]
- Lai, W.K.; Kan, M.Y. Homocysteine-Induced Endothelial Dysfunction. Ann. Nutr. Metab. 2015, 67, 1–12. [Google Scholar] [CrossRef]
- Gao, S.; Li, H.; Xiao, H.; Yao, G.; Shi, Y.; Wang, Y.; Zhou, X.; Yu, H. Association of MTHFR 677T variant allele with risk of intracerebral haemorrhage: A meta-analysis. J. Neurol. Sci. 2012, 323, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Tanaka, K.; Suzuki, N. Ambivalent Aspects of Interleukin-6 in Cerebral Ischemia: Inflammatory versus Neurotrophic Aspects. J. Cereb. Blood Flow Metab. 2008, 29, 464–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprague, A.H.; Khalil, R.A. Inflammatory Cytokines in Vascular Dysfunction and Vascular Disease. Biochem. Pharmacol. 2009, 78, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Metoki, N.; Yoshida, H.; Satoh, K.; Ichihara, S.; Kato, K.; Kameyama, T.; Yokoi, K.; Matsuo, H.; Segawa, T.; et al. Genetic risk for ischemic and hemorrhagic stroke. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1920–1925. [Google Scholar] [CrossRef] [PubMed]
- Fishman, D.; Faulds, G.; Jeffery, R.; Mohamed-Ali, V.; Yudkin, J.S.; Humphries, S.; Woo, P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Investig. 1998, 102, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.; Leira, R.; Tejada, J.; Lainez, J.M.; Castillo, J.; Davalos, A.; Stroke Project, Cerebrovascular Diseases Group of the Spanish Neurological Society. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 2005, 36, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.G.; Symons, J.A.; McDowell, T.L.; McDevitt, H.O.; Duff, G.W. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl. Acad. Sci. USA 1997, 94, 3195–3199. [Google Scholar] [CrossRef]
- Higuchi, T.; Seki, N.; Kamizono, S.; Yamada, A.; Kimura, A.; Kato, H.; Itoh, K. Polymorphism of the 5′-flanking region of the human tumor necrosis factor (TNF)-alpha gene in Japanese. Tissue Antigens 1998, 51, 605–612. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Pecoraro, R.; Pinto, A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: A review of the evidence to date. Drug Des. Dev. Ther. 2014, 8, 2221–2239. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Hu, F.-J.; Chen, P.; Wu, Y.-R.; Wu, H.-C.; Chen, S.-T.; Lee-Chen, G.-J.; Chen, C.-M. Association of TNF-α gene with spontaneous deep intracerebral hemorrhage in the Taiwan population: A case control study. BMC Neurol. 2010, 10, 41. [Google Scholar] [CrossRef]
- Park, H.J.; Kim, S.K.; Park, H.K.; Chung, J.H. Association of promoter polymorphism -857C/T (rs1799724) in tumor necrosis factor gene with intracerebral hemorrhage in Korean males. Neurol. Res. 2017, 39, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.-H.; Pendergast, J.S.; Mo, X.-M.; Brambilla, R.; Bracchi-Ricard, V.; Li, F.; Walters, W.M.; Blits, B.; He, L.; Schaal, S.M.; et al. NIBP, a Novel NIK and IKKβ-binding Protein That Enhances NF-κB Activation. J. Biol. Chem. 2005, 280, 29233–29241. [Google Scholar] [CrossRef] [PubMed]
- Gougos, A.; Letarte, M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J. Immunol. 1988, 141, 1925–1933. [Google Scholar] [PubMed]
- Barbara, N.P.; Wrana, J.L.; Letarte, M. Endoglin Is an Accessory Protein That Interacts with the Signaling Receptor Complex of Multiple Members of the Transforming Growth Factor-β Superfamily. J. Biol. Chem. 1999, 274, 584–594. [Google Scholar] [CrossRef] [PubMed]
- McAllister, K.A.; Grogg, K.M.; Johnson, D.W.; Gallione, C.J.; Baldwin, M.A.; Jackson, C.E.; Helmbold, E.A.; Markel, D.S.; McKinnon, W.C.; Murrel, J.; et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 1994, 8, 345. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hao, Q.; Kim, H.; Su, H.; Letarte, M.; Karumanchi, S.A.; Lawton, M.T.; Barbaro, N.M.; Yang, G.Y.; Young, W.L. Soluble endoglin modulates aberrant cerebral vascular remodeling. Ann. Neurol. 2009, 66, 19–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, M.J.; Davis, J.P.; Graffagnino, C.; McClenny, C.; Delong, D.; Granger, C.; Herbstreith, M.H.; Boteva, K.; Marchuk, D.A.; Roses, A.D. Endoglin gene polymorphism as a risk factor for sporadic intracerebral hemorrhage. Ann. Neurol. 1997, 41, 683–686. [Google Scholar] [CrossRef] [PubMed]
- Nayak, D.; Johnson, K.R.; Heydari, S.; Roth, T.L.; Zinselmeyer, B.H.; McGavern, D.B. Type I interferon programs innate myeloid dynamics and gene expression in the virally infected nervous system. PLoS Pathog. 2013, 9, e1003395. [Google Scholar] [CrossRef]
- Pestka, S.; Krause, C.D.; Walter, M.R. Interferons, interferon-like cytokines, and their receptors. Immunol. Rev. 2004, 202, 8–32. [Google Scholar] [CrossRef]
- Lokeshwar, V.B.; Selzer, M.G. Differences in hyaluronic acid-mediated functions and signaling in arterial, microvessel and vein-derived human endothelial cells. J. Biol. Chem. 2000, 275, 27641–27649. [Google Scholar] [CrossRef]
- Kim, S.K.; Park, H.J.; Kim, J.W.; Chung, J.-H.; Yoo, S.D.; Kim, D.H.; Yun, D.H.; Kim, H.-S. T Allele of nonsense polymorphism (rs2039381, Gln71Stop) of interferon-ε is a risk factor for the development of intracerebral hemorrhage. Hum. Immunol. 2014, 75, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Travis, M.A.; Sheppard, D. TGF-β Activation and Function in Immunity. Annu. Rev. Immunol. 2014, 32, 51–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, J.J.; Barnes, A.P.; Hand, R.; Polleux, F.; Ehlers, M.D. TGF-β Signaling Specifies Axons During Brain Development. Cell 2010, 142, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Tesseur, I.; Zou, K.; Esposito, L.; Bard, F.; Berber, E.; Can, J.V.; Lin, A.H.; Crews, L.; Tremblay, P.; Mathews, P.; et al. Deficiency in neuronal TGF-β signaling promotes neurodegeneration and Alzheimer’s pathology. J. Clin. Investig. 2006, 116, 3060–3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, Y.H.; Jeong, Y.S.; Kim, S.K.; Kim, D.H.; Yun, D.H.; Yoo, SD.; Kim, H.S.; Baik, H.H. Association between TGFBR2 gene polymorphism (rs2228048, Asn389Asn) and intracerebral hemorrhage in Korean population. Immunol. Investig. 2011, 40, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Woo, D.; Falcone, G.J.; Devan, W.J.; Brown, W.M.; Biffi, A.; Howard, T.D.; Anderson, C.D.; Brouwers, H.B.; Valant, V.; Battey, T.W.; et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am. J. Hum. Genet. 2014, 94, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Devereux, W.; Stewart, T.M.; Casero, R.A., Jr. Characterization of the interaction between the transcription factors human polyamine modulated factor (PMF-1) and NF-E2-related factor 2 (Nrf-2) in the transcriptional regulation of the spermidine/spermine N1-acetyltransferase (SSAT) gene. Biochem. J. 2001, 355, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, D.; Taniura, H.; Kambe, Y.; Takarada, T.; Yoneda, Y. A critical importance of polyamine site in NMDA receptors for neurite outgrowth and fasciculation at early stages of P19 neuronal differentiation. Exp. Cell Res. 2008, 314, 2603–2617. [Google Scholar] [CrossRef]
- Koenig, H.; Goldstone, A.D.; Lu, C.Y. Blood-brain barrier breakdown in cold-injured brain is linked to a biphasic stimulation of ornithine decarboxylase activity and polyamine synthesis: Both are coordinately inhibited by verapamil, dexamethasone, and aspirin. J. Neurochem. 1989, 52, 101–109. [Google Scholar] [CrossRef]
- Haitina, T.; Lindblom, J.; Renstrom, T.; Fredriksson, R. Fourteen novel human members of mitochondrial solute carrier family 25 (SLC25) widely expressed in the central nervous system. Genomics 2006, 88, 779–790. [Google Scholar] [CrossRef] [Green Version]
- Schomburg, L.; Turwitt, S.; Prescher, G.; Lohmann, D.; Horsthemke, B.; Bauer, K. Human TRH-degrading ectoenzyme cDNA cloning, functional expression, genomic structure and chromosomal assignment. Eur. J. Biochem. 1999, 265, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Standeven, K.F.; Grant, P.J.; Carter, A.M.; Scheiner, T.; Weisel, J.W.; Ariens, R.A. Functional analysis of the fibrinogen Aalpha Thr312Ala polymorphism: Effects on fibrin structure and function. Circulation 2003, 107, 2326–2330. [Google Scholar] [CrossRef] [PubMed]
- Jeff, J.M.; Brown-Gentry, K.; Crawford, D.C. Replication and characterisation of genetic variants in the fibrinogen gene cluster with plasma fibrinogen levels and haematological traits in the Third National Health and Nutrition Examination Survey. Thromb. Haemost. 2012, 107, 458–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jagiella, J.; Dardiotis, E.; Gasowski, J.; Pera, J.; Dziedzic, T.; Klimkowicz-Mrowiec, A.; Golenia, A.; Wnuk, M.; Fountas, K.; Paterakis, K.; et al. The FGA Thr312Ala polymorphism and risk of intracerebral haemorrhage in Polish and Greek populations. Neurol. Neurochir. Polska 2014, 48, 105–110. [Google Scholar] [PubMed]
- Zeng, Y.; Zhang, L.; Hu, Z.; Yang, Q.; Ma, M.; Liu, B.; Xia, J.; Xu, H.; Liu, Y.; Du, X. Fibrinogen polymorphisms associated with sporadic cerebral hemorrhage in a Chinese population. J. Clin. Neurosci. 2012, 19, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Kunishima, S.; Kobayashi, R.; Itoh, T.J.; Hamaguchi, M.; Saito, H. Mutation of the beta1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 2009, 113, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Freson, K.; De Vos, R.; Wittevrongel, C.; Thys, C.; Defoor, J.; Vanhees, L.; Vermylen, J.; Peerlinck, K.; Van Geet, C. The TUBB1 Q43P functional polymorphism reduces the risk of cardiovascular disease in men by modulating platelet function and structure. Blood 2005, 106, 2356–2362. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Nunez, L.; Lozano, M.L.; Rivera, J.; Corral, J.; Roldan, V.; Gonzalez-Conejero, R.; Iniesta, J.A.; Montaner, J.; Vicente, V.; Martinez, C. The association of the beta1-tubulin Q43P polymorphism with intracerebral hemorrhage in men. Haematologica 2007, 92, 513–518. [Google Scholar] [CrossRef]
- Moniz, S.; Verissimo, F.; Matos, P.; Brazao, R.; Silva, E.; Kotelevets, L.; Chastre, E.; Gespach, C.; Jordan, P. Protein kinase WNK2 inhibits cell proliferation by negatively modulating the activation of MEK1/ERK1/2. Oncogene 2007, 26, 6071–6081. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Ma, Q.; Wang, Y.; Liu, X.; Yuan, Y.; Zhang, Y.; Ou, W.; Liu, L.; Tan, X.; Wang, X. Association of variants in KCNK17 gene with ischemic stroke and cerebral hemorrhage in a Chinese population. J. Stroke Cerebrovasc. Dis. 2014, 23, 2322–2327. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Y.; Shen, Y.; Liu, X.; Zhu, X.; Zhang, H.; Liu, L.; Tan, X.; Wang, L.; Wang, X. The rs10947803 SNP of KCNK17 is associated with cerebral hemorrhage but not ischemic stroke in a Chinese population. Neurosci. Lett. 2013, 539, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Whirl-Carrillo, M.; McDonagh, E.M.; Hebert, J.M.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Altman, R.B.; Klein, T.E. Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 2012, 92, 414–417. [Google Scholar] [CrossRef] [PubMed]
- Mizuiri, S.; Hemmi, H.; Inoue, A.; Takano, M.; Kadomatsu, S.; Tanimoto, H.; Tanegashima, M.; Hayashi, I.; Fushimi, T.; Hasegawa, A. Renal hemodynamic changes induced by captopril and angiotensin-converting enzyme gene polymorphism. Nephron 1997, 75, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Man, M.; Johnson, K.J.; Wood, L.S.; Lira, M.E.; Lloyd, D.B.; Banerjee, P.; Milos, P.M.; Myrand, S.P.; Paulauskis, J.; et al. An association study of 43 SNPs in 16 candidate genes with atorvastatin response. Pharmacogenomics J. 2005, 5, 352. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.H.; Yu, Z.; Zhang, T.T.; Shin, M.H.; Kim, H.N.; Choi, J.S. Influence of polymorphisms in MTHFR 677 C-->T, TYMS 3R-->2R and MTR 2756 A-->G on NSCLC risk and response to platinum-based chemotherapy in advanced NSCLC. Pharmacogenomics 2011, 12, 797–808. [Google Scholar] [CrossRef] [PubMed]
- Henriquez-Hernandez, L.A.; Murias-Rosales, A.; Gonzalez-Hernandez, A.; de Leon, A.C.; Diaz-Chico, N.; Fernandez-Perez, L. Distribution of TYMS, MTHFR, p53 and MDR1 gene polymorphisms in patients with breast cancer treated with neoadjuvant chemotherapy. Cancer Epidemiol. 2010, 34, 634–638. [Google Scholar] [CrossRef]
- O’Rielly, D.D.; Roslin, N.M.; Beyene, J.; Pope, A.; Rahman, P. TNF-alpha-308 G/A polymorphism and responsiveness to TNF-alpha blockade therapy in moderate to severe rheumatoid arthritis: A systematic review and meta-analysis. Pharmacogenomics J. 2009, 9, 161–167. [Google Scholar] [CrossRef]
- Tong, Q.; Zhao, L.; Qian, X.D.; Zhang, L.L.; Xu, X.; Dai, S.M.; Cai, Q.; Zhao, D.B. Association of TNF-alpha polymorphism with prediction of response to TNF blockers in spondyloarthritis and inflammatory bowel disease: A meta-analysis. Pharmacogenomics 2013, 14, 1691–1700. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Chang, K.-H.; Chen, C.-M. Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage. Int. J. Mol. Sci. 2018, 19, 3879. https://doi.org/10.3390/ijms19123879
Chen Y-C, Chang K-H, Chen C-M. Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage. International Journal of Molecular Sciences. 2018; 19(12):3879. https://doi.org/10.3390/ijms19123879
Chicago/Turabian StyleChen, Yi-Chun, Kuo-Hsuan Chang, and Chiung-Mei Chen. 2018. "Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage" International Journal of Molecular Sciences 19, no. 12: 3879. https://doi.org/10.3390/ijms19123879
APA StyleChen, Y. -C., Chang, K. -H., & Chen, C. -M. (2018). Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage. International Journal of Molecular Sciences, 19(12), 3879. https://doi.org/10.3390/ijms19123879