Association of HbA1C Variability and Renal Progression in Patients with Type 2 Diabetes with Chronic Kidney Disease Stages 3–4
Abstract
:1. Introduction
2. Results
3. Discussion
4. Subjects and Methods
4.1. Study Patients and Design
4.2. Collection of Demographic, Medical, and Laboratory Data
4.3. Serial HbA1C Measurements
4.4. Definition of Renal Endpoint
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DM | diabetes mellitus |
CKD | chronic kidney disease |
ESRD | end-stage renal disease |
HbA1C | glycosylated hemoglobin |
eGFR | estimated glomerular filtration rate |
MDRD | modification of diet in renal disease |
ACEIs | angiotensin converting enzyme inhibitors |
ARBs | angiotensin II receptor blockers |
CV | coefficient of variation |
ESA | erythropoiesis-stimulating agent |
RBC | red blood cell |
References
- Sudhir, R.; Mohan, V. Postprandial hyperglycemia in patients with type 2 diabetes mellitus. Treat. Endocrinol. 2002, 1, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [PubMed]
- National Kidney, F. KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 Update. Am J. Kidney Dis. 2012, 60, 850–886. [Google Scholar] [Green Version]
- American Diabetes Association. Standards of medical care in diabetes—2015: Summary of revisions. Diabetes Care 2015, 38, S4–S6. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, W.; Abraira, C.; Moritz, T.; Reda, D.; Emanuele, N.; Reaven, P.D.; Zieve, F.J.; Marks, J.; Davis, S.N.; Hayward, R.; et al. Glucose control and vascular complications in veterans with type 2 diabetes. N. Engl. J. Med. 2009, 360, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Ismail-Beigi, F.; Craven, T.; Banerji, M.A.; Basile, J.; Calles, J.; Cohen, R.M.; Cuddihy, R.; Cushman, W.C.; Genuth, S.; Grimm, R.H., Jr.; et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet 2010, 376, 419–430. [Google Scholar] [CrossRef]
- Group, A.C.; Patel, A.; MacMahon, S.; Chalmers, J.; Neal, B.; Billot, L.; Woodward, M.; Marre, M.; Cooper, M.; Glasziou, P.; et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 2008, 358, 2560–2572. [Google Scholar]
- Brownlee, M.; Hirsch, I.B. Glycemic variability: A hemoglobin A1c-independent risk factor for diabetic complications. JAMA 2006, 295, 1707–1708. [Google Scholar] [CrossRef] [PubMed]
- Cavalot, F. Do data in the literature indicate that glycaemic variability is a clinical problem? Glycaemic variability and vascular complications of diabetes. Diabetes Obes. Metab. 2013, 15, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Nalysnyk, L.; Hernandez-Medina, M.; Krishnarajah, G. Glycaemic variability and complications in patients with diabetes mellitus: Evidence from a systematic review of the literature. Diabetes Obes. Metab. 2010, 12, 288–298. [Google Scholar] [CrossRef] [PubMed]
- Sugawara, A.; Kawai, K.; Motohashi, S.; Saito, K.; Kodama, S.; Yachi, Y.; Hirasawa, R.; Shimano, H.; Yamazaki, K.; Sone, H. HbA(1c) variability and the development of microalbuminuria in type 2 diabetes: Tsukuba Kawai Diabetes Registry 2. Diabetologia 2012, 55, 2128–2131. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.C.; Chen, C.C.; Chen, F.N.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Yang, S.Y.; Lee, C.C.; Li, T.C. Risks of diabetic nephropathy with variation in hemoglobin A1c and fasting plasma glucose. Am. J. Med. 2013, 126. [Google Scholar] [CrossRef] [PubMed]
- Luk, A.O.; Ma, R.C.; Lau, E.S.; Yang, X.; Lau, W.W.; Yu, L.W.; Chow, F.C.; Chan, J.C.; So, W.Y. Risk association of HbA1C variability with chronic kidney disease and cardiovascular disease in type 2 diabetes: Prospective analysis of the Hong Kong Diabetes Registry. Diabetes Metab. Res. Rev. 2013, 29, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.F.; Li, T.C.; Li, C.I.; Liu, C.S.; Lin, W.Y.; Yang, S.Y.; Chiang, J.H.; Huang, C.C.; Sung, F.C.; Lin, C.C. Visit-to-Visit Glucose Variability Predicts the Development of End-Stage Renal Disease in Type 2 Diabetes: 10-Year Follow-Up of Taiwan Diabetes Study. Medicine 2015, 94, e1804. [Google Scholar] [CrossRef] [PubMed]
- Moen, M.F.; Zhan, M.; Hsu, V.D.; Walker, L.D.; Einhorn, L.M.; Seliger, S.L.; Fink, J.C. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Song, J.; Ma, Z.; Yang, W.; Li, C.; Zhang, X.; Hou, X.; Sun, Y.; Lin, P.; Liang, K.; et al. Fluctuation between fasting and 2-H postload glucose state is associated with chronic kidney disease in previously diagnosed type 2 diabetes patients with HbA1C >/= 7%. PLoS ONE 2014, 9, e102941. [Google Scholar] [CrossRef] [PubMed]
- UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998, 352, 837–853. [Google Scholar] [CrossRef]
- Axelsson, J.; Rippe, A.; Rippe, B. Acute hyperglycemia induces rapid, reversible increases in glomerular permeability in nondiabetic rats. Am. J. Physiol. Ren. Physiol. 2010, 298, F1306–F1312. [Google Scholar] [CrossRef] [PubMed]
- Song, K.H.; Park, J.; Ha, H. High glucose increases mesangial lipid accumulation via impaired cholesterol transporters. Transplant. Proc. 2012, 44, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.C.; Saunders, H.J.; Qi, W.; Pollock, C.A. Intermittent high glucose enhances cell growth and collagen synthesis in cultured human tubulointerstitial cells. Diabetologia 1999, 42, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Monnier, L.; Mas, E.; Ginet, C.; Michel, F.; Villon, L.; Cristol, J.P.; Colette, C. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006, 295, 1681–1687. [Google Scholar] [CrossRef] [PubMed]
- Mak, R.H. Impact of end-stage renal disease and dialysis on glycemic control. Semin. Dial. 2000, 13, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Ly, J.; Marticorena, R.; Donnelly, S. Red blood cell survival in chronic renal failure. Am. J. Kidney Dis. 2004, 44, 715–719. [Google Scholar] [CrossRef]
- Uzu, T.; Hatta, T.; Deji, N.; Izumiya, T.; Ueda, H.; Miyazawa, I.; Kanasaki, M.; Isshiki, K.; Nishio, T.; Arimura, T. Target for glycemic control in type 2 diabetic patients on hemodialysis: Effects of anemia and erythropoietin injection on hemoglobin A(1c). Ther. Apher. Dial. 2009, 13, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Kuo, I.C.; Lin, H.Y.; Niu, S.W.; Hwang, D.Y.; Lee, J.J.; Tsai, J.C.; Hung, C.C.; Hwang, S.J.; Chen, H.C. Glycated Hemoglobin and Outcomes in Patients with Advanced Diabetic Chronic Kidney Disease. Sci. Rep. 2016, 6, 20028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shurraw, S.; Hemmelgarn, B.; Lin, M.; Majumdar, S.R.; Klarenbach, S.; Manns, B.; Bello, A.; James, M.; Turin, T.C.; Tonelli, M.; et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: A population-based cohort study. Arch. Intern. Med. 2011, 171, 1920–1927. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.E.; Garg, R. Glycemic management in ESRD and earlier stages of CKD. Am. J. Kidney Dis. 2014, 63, S22–S38. [Google Scholar] [CrossRef] [PubMed]
- National Kidney, F. K/DOQI clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Vickery, S.; Stevens, P.E.; Dalton, R.N.; van Lente, F.; Lamb, E.J. Does the ID-MS traceable MDRD equation work and is it suitable for use with compensated Jaffe and enzymatic creatinine assays? Nephrol. Dial. Transplant. 2006, 21, 2439–2445. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef] [PubMed]
Characteristics | SD Tertile 1 (n = 127) | SD Tertile 2 (n = 132) | SD Tertile 3 (n = 129) | p |
---|---|---|---|---|
SD (%) | 0.2 ± 0.1 | 0.7 ± 0.1 * | 1.5 ± 0.6 *,† | <0.001 |
Age (year) | 66.1 ± 106 | 66.3 ± 10.8 | 64.7 ± 11.4 | 0.433 |
Male gender (%) | 65.4 | 59.8 | 55.8 | 0.295 |
Hypertension (%) | 93.7 | 90.2 | 93.8 | 0.444 |
Coronary artery disease (%) | 12.6 | 12.2 | 13.3 | 0.967 |
Cerebrovascular disease (%) | 15.0 | 12.1 | 13.2 | 0.797 |
CKD Stage | 0.096 | |||
Stage 3 (%) | 33.9 | 40.2 | 35.7 | |
Stage 4 (%) | 35.4 | 36.4 | 52.7 | |
Stage 5 (%) | 30.7 | 22.7 | 11.6 | |
Smocking (%) | 36.2 | 24.2 | 35.5 | 0.091 |
Systolic blood pressure (mmHg) | 146.0 ± 19.0 | 148.6 ± 21.0 | 144.1 ± 20.1 | 0.194 |
Diastolic blood pressure (mmHg) | 74.8 ± 12.7 | 76.1 ± 11.7 | 75.3 ± 12.0 | 0.656 |
Body mass index (kg/m2) | 25.3 ± 3.6 | 26.2 ± 4.0 | 26.7 ± 4.2 * | 0.021 |
Laboratory Parameters | ||||
Hemoglobin (g/dL) | 11.1 ± 2.1 | 11.3 ± 2.0 | 11.5 ± 2.0 | 0.243 |
Mean HbA1C (%) | 6.6 ± 0.9 | 7.4 ± 1.0* | 8.6 ± 1.4 *,† | <0.001 |
HbA1C measurement frequency (times) | 5.5 ± 4.5 | 9.6 ± 6.4* | 9.7 ± 5.9 * | <0.001 |
Triglyceride (mg/dL) | 156.9 ± 85.2 | 181.8 ± 109.7 | 216.9 ± 109.7 *,† | <0.001 |
Total cholesterol (mg/dL) | 189.1 ± 46.2 | 194.4 ± 57.8 | 208.9 ± 60.6 * | 0.013 |
Baseline eGFR (mL/min/1.73 m2) | 25.4 ± 13.5 | 27.7 ± 13.9 | 27.7 ± 11.2 | 0.263 |
Calcium-phosphorous product (mg2/dL2) | 38.0 ± 8.1 | 37.8 ± 7.3 | 37.7 ± 5.6 | 0.923 |
Uric acid (mg/dL) | 8.3 ± 2.2 | 8.1 ± 1.9 | 8.1 ± 2.0 | 0.800 |
Medications | ||||
ACEI and/or ARB use (%) | 66.9 | 75.8 | 73.6 | 0.258 |
Statin | 32.3 | 34.8 | 48.8 * | 0.013 |
Oral antidiabetic agent | 83.3 | 86.6 | 89.1 | 0.413 |
Insulin | 17.3 | 26.8 | 37.5 * | 0.001 |
Erythropoetin | 23.6 | 25.0 | 17.8 | 0.339 |
SD of HbA1C | Unadjusted | |
---|---|---|
Hazard Ratios (95% CI) | p | |
All patients (n = 388) | ||
Tertile 1 (n = 127) | 1 | |
Tertile 2 (n = 132) | 0.680 (0.437–1.058) | 0.088 |
Tertile 3 (n = 129) | 0.493 (0.305–0.796) | 0.004 |
HbA1C ≧ 7% (n = 218) | ||
Tertile 1 (n = 25) | 1 | |
Tertile 2 (n = 77) | 0.369 (0.167–0.814) | 0.014 |
Tertile 3 (n = 116) | 0.307 (0.143–0.662) | 0.003 |
HbA1C < 7% (n = 170) | ||
Tertile 1 (n = 102) | 1 | |
Tertile 2 (n = 55) | 0.940 (0.530–1.666) | 0.832 |
Tertile 3 (n = 13) | 0.793 (0.280-2.249) | 0.663 |
HbA1C ≧ 7% and CKD stages 3–4 (n = 185) | ||
Tertile 1 (n = 17) | 1 | |
Tertile 2 (n = 62) | 0.378 (0.134–1.064) | 0.065 |
Tertile 3 (n = 106) | 0.329 (0.122–0.887) | 0.028 |
HbA1C ≧ 7% and CKD stage 5 (n = 33) | ||
Tertile 1 (n = 8) | 1 | |
Tertile 2 (n = 15) | 0.746 (0.217–2.562) | 0.642 |
Tertile 3 (n = 10) | 1.046 (0.294–3.720) | 0.945 |
HbA1C ≧ 7%, CKD stages 3–4 and HbA1C downward trend (n = 98) | ||
Tertile 1 (n = 7) | 1 | |
Tertile 2 (n = 32) | 0.261 (0.069–0.996) | 0.049 |
Tertile 3 (n = 59) | 0.245 (0.069–0.869) | 0.029 |
HbA1C ≧ 7%, CKD stages 3–4 and HbA1C upward trend (n = 87) | ||
Tertile 1 (n = 10) | 1 | |
Tertile 2 (n = 30) | 0.459 (0.088–2.295) | 0.356 |
Tertile 3 (n = 47) | 0.315 (0.062–1.596) | 0.163 |
Parameters | Multivariate Adjusted (1) | Multivariate Adjusted (2) | ||
---|---|---|---|---|
Hazard Ratios (95% CI) | p | Hazard Ratios (95% CI) | p | |
SD of HbA1C | ||||
Tertile 1 | 1 | 1 | ||
Tertile 2 | 0.367 (0.130–1.038) | 0.059 | 0.398 (0.134–1.179) | 0.096 |
Tertile 3 | 0.243 (0.086–0.688) | 0.008 | 0.175 (0.059–0.518) | 0.002 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.-Y.; Huang, J.-C.; Chen, S.-C.; Chiou, H.-Y.C.; Wu, P.-Y. Association of HbA1C Variability and Renal Progression in Patients with Type 2 Diabetes with Chronic Kidney Disease Stages 3–4. Int. J. Mol. Sci. 2018, 19, 4116. https://doi.org/10.3390/ijms19124116
Lee M-Y, Huang J-C, Chen S-C, Chiou H-YC, Wu P-Y. Association of HbA1C Variability and Renal Progression in Patients with Type 2 Diabetes with Chronic Kidney Disease Stages 3–4. International Journal of Molecular Sciences. 2018; 19(12):4116. https://doi.org/10.3390/ijms19124116
Chicago/Turabian StyleLee, Mei-Yueh, Jiun-Chi Huang, Szu-Chia Chen, Hsin-Ying Clair Chiou, and Pei-Yu Wu. 2018. "Association of HbA1C Variability and Renal Progression in Patients with Type 2 Diabetes with Chronic Kidney Disease Stages 3–4" International Journal of Molecular Sciences 19, no. 12: 4116. https://doi.org/10.3390/ijms19124116
APA StyleLee, M. -Y., Huang, J. -C., Chen, S. -C., Chiou, H. -Y. C., & Wu, P. -Y. (2018). Association of HbA1C Variability and Renal Progression in Patients with Type 2 Diabetes with Chronic Kidney Disease Stages 3–4. International Journal of Molecular Sciences, 19(12), 4116. https://doi.org/10.3390/ijms19124116