Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Cationic Polyelectrolytes: P(MTARI-co-HEMA) Copolymers
2.2. Characterization of the Synthetized Copolymers: P(MTA-co-HEMA), and P(MTARI-co-HEMA)
2.3. Antibacterial Activity Studies
3. Materials and Methods
3.1. Materials
3.2. Synthesis of P(MTA-co-HEMA) Copolymers
3.3. Quaternization of Copolymers: Synthesis of Cationic Polyelectrolytes, P(MTARI-co-HEMA)
3.4. Characterization Methods
3.5. Microbial Growth Inhibition Assays
Author Contributions
Acknowledgments
Conflicts of Interest
Abbreviations
AIBN | 2,2′-azobisisobutyronitrile |
ATCC | American Type Culture Collection |
br | broad |
BuI | 1-iodobutane |
CDCl3 | deuterated chloroform |
CFU | colony-forming units |
CLSI | Clinical Laboratory Standards Institute |
DMF | N,N-dimethylformamide |
DMSO | dimethyl sulfoxide |
DMSO-d6 | deuterated dimethyl sulfoxide |
DSC | differential scanning calorimetry |
−dw/dT | rate of weight loss |
fMTA | feed molar fraction of MTA |
FMTA | molar fraction of MTA in the copolymer |
GPC | gel permeation chromatography |
HAI | hospital-acquired infections |
HEMA | 2-hydroxyethyl methacrylate |
MeOH | methanol |
MeI | iodomethane |
MIC | minimum inhibitory concentration |
Mn | number average molecular weight |
MTA | 2-(4-methylthiazol-5-yl)ethyl methacrylate |
NMR | nuclear magnetic resonance |
P. aeruginosa | Pseudomonas aeruginosa |
PBS | phosphate buffered saline |
PDI | polydispersity indexes |
PHEMA | poly(2-hydroxyethyl methacrylate) |
PMTA | poly(2-(4-methylthiazol-5-yl)ethyl methacrylate) |
P(MTA-co-HEMA) | copolymers of HEMA with MTA |
RI | alkyl iodide |
S. aureus | Staphylococcus aureus |
Tdmax | temperature of maximum rate of weight loss |
Tdonset | initial degradation temperature |
TGA | thermogravimetric analysis |
Tg | glass transition temperature |
References
- Muñoz-Bonilla, A.; Fernández-García, M. Polymeric materials with antimicrobial activity. Prog. Polym. Sci. 2012, 37, 281–339. [Google Scholar] [CrossRef]
- Huang, K.-S.; Yang, C.-H.; Huang, S.-L.; Chen, C.-Y.; Lu, Y.-Y.; Lin, Y.-S. Recent advances in antimicrobial polymers: A mini-review. Int. J. Mol. Sci. 2016, 17, 1578. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Paino, M.; Munoz-Bonilla, A.; Fernandez-Garcia, M. Antimicrobial polymers in the nano-world. Nanomaterials 2017, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.H.; Sun, G. Structures and photoactive properties of poly(styrene-co-vinylbenzophenone). J. Polym. Sci. Part B Polym. Phys. 2008, 46, 2423–2430. [Google Scholar] [CrossRef]
- Nishat, N.; Ahamad, T.; Zulfequar, M.; Hasnain, S. New antimicrobial polyurea: Synthesis, characterization, and antibacterial activities of polyurea-containing thiosemicarbazide–metal complexes. J. Appl. Polym. Sci. 2008, 110, 3305–3312. [Google Scholar] [CrossRef]
- Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and antimicrobial biomaterials: An overview. Apmis 2017, 125, 392–417. [Google Scholar] [CrossRef] [PubMed]
- Hickok, N.J.; Shapiro, I.M. Immobilized antibiotics to prevent orthopaedic implant infections. Adv. Drug Deliv. Rev. 2012, 64, 1165–1176. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.; Nie, X.; Zou, M.; Shi, Y.; Cheng, G. Recent advances in materials for extended-release antibiotic delivery system. J. Antibiot. 2011, 64, 625–634. [Google Scholar] [CrossRef] [Green Version]
- Adlhart, C.; Verran, J.; Azevedo, N.F.; Olmez, H.; Keinanen-Toivola, M.M.; Gouveia, I.; Melo, L.F.; Crijns, F. Surface modifications for antimicrobial effects in the healthcare setting: A critical overview. J. Hosp. Infect. 2018, 99, 239–249. [Google Scholar] [CrossRef]
- Kelly, M.; Williams, R.; Aojula, A.; O’Neill, J.; Trzinscka, Z.; Grover, L.; Scott, R.A.; Peacock, A.F.; Logan, A.; Stamboulis, A.; et al. Peptide aptamers: Novel coatings for orthopaedic implants. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 54, 84–93. [Google Scholar] [CrossRef]
- Jo, Y.K.; Seo, J.H.; Choi, B.H.; Kim, B.J.; Shin, H.H.; Hwang, B.H.; Cha, H.J. Surface-independent antibacterial coating using silver nanoparticle-generating engineered mussel glue. ACS Appl. Mater. Interfaces 2014, 6, 20242–20253. [Google Scholar] [CrossRef] [PubMed]
- Kubacka, A.; Ferrer, M.; Fernández-García, M.; Serrano, C.; Cerrada, M.L.; Fernández-García, M. Tailoring polymer-TiO2 film properties by presence of metal (ag, cu, zn) species: Optimization of antimicrobial properties. Appl. Catal. B Environ. 2011, 104, 346–352. [Google Scholar] [CrossRef]
- De Lucas-Gil, E.; Reinosa, J.J.; Neuhaus, K.; Vera-Londono, L.; Martín-González, M.; Fernández, J.F.; Rubio-Marcos, F. Exploring new mechanisms for effective antimicrobial materials: Electric contact-killing based on multiple schottky barriers. ACS Appl. Mater. Interfaces 2017, 9, 26219–26225. [Google Scholar] [CrossRef]
- Muñoz-Bonilla, A.; Cerrada, M.; Fernández-García, M.; Kubacka, A.; Ferrer, M.; Fernández-García, M. Biodegradable polycaprolactone-titania nanocomposites: Preparation, characterization and antimicrobial properties. Int. J. Mol. Sci. 2013, 14, 9249. [Google Scholar] [CrossRef] [PubMed]
- Kubacka, A.; Cerrada, M.L.; Serrano, C.; Fernández-García, M.; Ferrer, M.; Fernández-García, M. Plasmonic nanoparticle/polymer nanocomposites with enhanced photocatalytic antimicrobial properties. J. Phys. Chem. C 2009, 113, 9182–9190. [Google Scholar] [CrossRef]
- Siedenbiedel, F.; Tiller, J.C. Antimicrobial polymers in solution and on surfaces: Overview and functional principles. Polymers 2012, 4, 46–71. [Google Scholar] [CrossRef]
- Jain, A.; Duvvuri, L.S.; Farah, S.; Beyth, N.; Domb, A.J.; Khan, W. Antimicrobial polymers. Adv. Healthc. Mater. 2014, 3, 1969–1985. [Google Scholar] [CrossRef]
- Xue, Y.; Xiao, H.; Zhang, Y. Antimicrobial polymeric materials with quaternary ammonium and phosphonium salts. Int. J. Mol. Sci. 2015, 16, 3626–3655. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Niu, L.-N.; Ma, S.; Li, J.; Tay, F.R.; Chen, J.-H. Quaternary ammonium-based biomedical materials: State-of-the-art, toxicological aspects and antimicrobial resistance. Prog. Polym. Sci. 2017, 71, 53–90. [Google Scholar] [CrossRef]
- Tejero, R.; Lopez, D.; Lopez-Fabal, F.; Gomez-Garces, J.L.; Fernandez-Garcia, M. Antimicrobial polymethacrylates based on quaternized 1,3-thiazole and 1,2,3-triazole side-chain groups. Polym. Chem. 2015, 6, 3449–3459. [Google Scholar] [CrossRef] [Green Version]
- Tejero, R.; Gutiérrez, B.; López, D.; López-Fabal, F.; Gómez-Garcés, J.L.; Fernández-García, M. Copolymers of acrylonitrile with quaternizable thiazole and triazole side-chain methacrylates as potent antimicrobial and hemocompatible systems. Acta Biomater. 2015, 25, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Tejero, R.; López, D.; López-Fabal, F.; Gómez-Garcés, J.L.; Fernández-García, M. High efficiency antimicrobial thiazolium and triazolium side-chain polymethacrylates obtained by controlled alkylation of the corresponding azole derivatives. Biomacromolecules 2015, 16, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
- Cuervo-Rodriguez, R.; Lopez-Fabal, F.; Gomez-Garces, J.L.; Munoz-Bonilla, A.; Fernandez-Garcia, M. Contact active antimicrobial coatings prepared by polymer blending. Macromol. Biosci. 2017, 17, 1700258. [Google Scholar] [CrossRef]
- Tejero, R.; Gutiérrez, B.; López, D.; López-Fabal, F.; Gómez-Garcés, J.; Muñoz-Bonilla, A.; Fernández-García, M. Tailoring macromolecular structure of cationic polymers towards efficient contact active antimicrobial surfaces. Polymers 2018, 10, 241. [Google Scholar] [CrossRef]
- Munoz-Bonilla, A.; Cuervo-Rodriguez, R.; Lopez-Fabal, F.; Gomez-Garces, J.L.; Fernandez-Garcia, M. Antimicrobial porous surfaces prepared by breath figures approach. Materials 2018, 11, 1266. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.S.; McCoy, C.P.; Andrews, G.P.; McCrory, R.M.; Gorman, S.P. Hydrogel antimicrobial capture coatings for endotracheal tubes: A pharmaceutical strategy designed to prevent ventilator-associated pneumonia. Mol. Pharm. 2015, 12, 2928–2936. [Google Scholar] [CrossRef] [PubMed]
- Myung, D.; Duhamel, P.-E.; Cochran, J.R.; Noolandi, J.; Ta, C.N.; Frank, C.W. Development of hydrogel-based keratoprostheses: A materials perspective. Biotechnol. Prog. 2008, 24, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Prasitsilp, M.; Siriwittayakorn, T.; Molloy, R.; Suebsanit, N.; Siriwittayakorn, P.; Veeranondha, S. Cytotoxicity study of homopolymers and copolymers of 2-hydroxyethyl methacrylate and some alkyl acrylates for potential use as temporary skin substitutes. J. Mater. Sci. Mater. Med. 2003, 14, 595–600. [Google Scholar] [CrossRef]
- Allison, B.C.; Applegate, B.M.; Youngblood, J.P. Hemocompatibility of hydrophilic antimicrobial copolymers of alkylated 4-vinylpyridine. Biomacromolecules 2007, 8, 2995–2999. [Google Scholar] [CrossRef]
- Halpenny, G.M.; Steinhardt, R.C.; Okialda, K.A.; Mascharak, P.K. Characterization of phema-based hydrogels that exhibit light-induced bactericidal effect via release of NO. J. Mater. Sci. Mater. Med. 2009, 20, 2353–2360. [Google Scholar] [CrossRef]
- Ma, L.; Feng, S.; Fuente-Nunez, C.; Hancock, R.E.W.; Lu, X. Development of molecularly imprinted polymers to block quorum sensing and inhibit bacterial biofilm formation. ACS Appl. Mater. Interfaces 2018, 10, 18450–18457. [Google Scholar] [CrossRef]
- Vieira, A.P.; Pimenta, A.F.R.; Silva, D.; Gil, M.H.; Alves, P.; Coimbra, P.; Mata, J.; Bozukova, D.; Correia, T.R.; Correia, I.J.; et al. Surface modification of an intraocular lens material by plasma-assisted grafting with 2-hydroxyethyl methacrylate (HEMA), for controlled release of moxifloxacin. Eur. J. Pharm. Biopharm. 2017, 120, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katritzky, A.R.; Ramsden, C.A.; Joule, J.A.; Zhdankin, V.V. Handbook of Heterocyclic Chemistry; Elsevier Science: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Bovey, F.A.; Mirau, P.A. (Eds.) 3—The solution characterization of polymers. In NMR of Polymers; Academic Press: San Diego, CA, USA, 1996; pp. 155–241. [Google Scholar]
- Kuroda, K.; Caputo, G.A.; DeGrado, W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem. Eur. J. 2009, 15, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Bonilla, A.; Fernández-García, M. The roadmap of antimicrobial polymeric materials in macromolecular nanotechnology. Eur. Polym. J. 2015, 65, 46–62. [Google Scholar] [CrossRef] [Green Version]
- Çaykara, T.; Özyürek, C.; Kantoğlu, Ö. Investigation of thermal behavior of poly(2-hydroxyethyl methacrylate-co-itaconic acid) networks. J. Appl. Polym. Sci. 2006, 103, 1602–1607. [Google Scholar] [CrossRef]
- Demirelli, K.; Coşkun, M.; Kaya, E. A detailed study of thermal degradation of poly(2-hydroxyethyl methacrylate). Polym. Degrad. Stab. 2001, 72, 75–80. [Google Scholar] [CrossRef]
- Vargün, E.; Usanmaz, A. Degradation of poly(2-hydroxyethyl methacrylate) obtained by radiation in aqueous solution. J. Macromol. Sci. Part A 2010, 47, 882–891. [Google Scholar] [CrossRef]
- Fernandez-Garcia, M.; Torrado, M.F.; Martinez, G.; Sanchez-Chaves, M.; Madruga, E.L. Free radical copolymerization of 2-hydroxyethyl methacrylate with butyl methacrylate: Determination of monomer reactivity ratios and glass transition temperatures. Polymer 2000, 41, 8001–8008. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition; CLSI Document M07-A9; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Second Informational Supplement; CLSI Document M100-S22; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Kong, H.; Jang, J. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Biomacromolecules 2008, 9, 2677–2681. [Google Scholar] [CrossRef]
- Takahashi, H.; Palermo, E.F.; Yasuhara, K.; Caputo, G.A.; Kuroda, K. Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers. Macromol. Biosci. 2013, 13, 1285–1299. [Google Scholar] [CrossRef]
- Takahashi, H.; Caputo, G.A.; Vemparala, S.; Kuroda, K. Synthetic random copolymers as a molecular platform to mimic host-defense antimicrobial peptides. Bioconjug. Chem. 2017, 28, 1340–1350. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Fourth Informational Supplement; CLSI Document M27-S4; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Alvarez-Paino, M.; Munoz-Bonilla, A.; Lopez-Fabal, F.; Gomez-Garces, J.L.; Heuts, J.P.; Fernandez-Garcia, M. Effect of glycounits on the antimicrobial properties and toxicity behavior of polymers based on quaternized DMAEMA. Biomacromolecules 2015, 16, 295–303. [Google Scholar] [CrossRef] [PubMed]
fMTA | FMTA | Mn (kDa) | PDI |
---|---|---|---|
0.00 | 0.00 | 86.8 | 2.1 |
0.20 | 0.18 | 60.8 | 2.0 |
0.40 | 0.37 | 59.2 | 2.4 |
0.60 | 0.56 | 42.6 | 2.2 |
0.80 | 0.76 | 34.5 | 2.2 |
1.00 | 1.00 | 36.6 | 1.9 |
FMTA | Tg (°C) | Tdonset (°C) | Tdmax1 (°C) | −dw1/dT (%/°C) | Tdmax2 (°C) | −dw2/dT (%/°C) | Tdmax3 (°C) | −dw3/dT (%/°C) |
---|---|---|---|---|---|---|---|---|
P(MTA-co-HEMA) | ||||||||
0.00 | 96 | 259.0 | 178.5 | 0.03 | - | - | 400.0 | 0.99 |
0.18 | 94 | 288.0 | 175.0 | 0.03 | 328.5 | 0.45 | 441.5 | 1.26 |
0.37 | 92 | 300.5 | 100.0 | 0.02 | 327.5 | 0.62 | 432.5 | 1.17 |
0.56 | 75 | 301.0 | - | - | 341.0 | 0.74 | 435.0 | 0.91 |
0.76 | 70 | 294.0 | - | - | 350.0 | 0.98 | 426.0 | 0.65 |
1.00 | 49 | 300.0 | - | - | 366.5 | 1.08 | 413.5 | 0.34 |
P(MTAMeI-co-HEMA) | ||||||||
0.00 | 96 | 259.0 | 178.5 | 0.03 | - | - | 400.0 | 0.99 |
0.18 | 109 | 185.0 | 237.5 | 0.18 | - | - | 420.5 | 1.05 |
0.37 | 126 | 186.5 | 228.5 | 0.39 | - | - | 404.0 | 0.71 |
0.56 | 133 | 196.5 | 220.5 | 0.75 | 320.0 | 0.38 | 429.5 | 0.71 |
0.76 | 145 | 205.5 | 228.5 | 0.89 | 329.5 | 0.37 | 422.0 | 0.52 |
1.00 | 157 | 209.5 | 235.5 | 1.12 | 341.5 | 0.41 | 421.5 | 0.36 |
P(MTABuI-co-HEMA) | ||||||||
0.00 | 96 | 259.0 | 178.5 | 0.03 | - | - | 400.0 | 0.99 |
0.18 | 112 | 220.0 | 250.5 | 0.37 | - | - | 433.5 | 1.32 |
0.37 | 114 | 225.0 | 247.5 | 0.96 | - | - | 432.0 | 0.89 |
0.56 | 121 | 222.0 | 242.5 | 1.20 | - | - | 426.0 | 0.73 |
0.76 | 113 | 221.0 | 244.5 | 1.43 | - | - | 419.0 | 0.55 |
1.00 | 117 | 229.0 | 251.0 | 1.80 | - | - | 418.0 | 0.36 |
FMTA | MIC (µg mL−1) | |
---|---|---|
S. aureus | P. aeruginosa | |
P(MTAMeI-co-HEMA) | ||
0.18 | 128 | 128 |
0.37 | 128 | 128 |
0.56 | 128 | 128 |
0.76 | 8 | 32 |
1.00 | 8 | 16 |
P(MTABuI-co-HEMA) | ||
0.18 | 128 | 128 |
0.37 | 128 | 128 |
0.56 | 8 | 8 |
0.76 | 8 | 8 |
1.00 | 8 | 8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Bonilla, A.; López, D.; Fernández-García, M. Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. Int. J. Mol. Sci. 2018, 19, 4120. https://doi.org/10.3390/ijms19124120
Muñoz-Bonilla A, López D, Fernández-García M. Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. International Journal of Molecular Sciences. 2018; 19(12):4120. https://doi.org/10.3390/ijms19124120
Chicago/Turabian StyleMuñoz-Bonilla, Alexandra, Daniel López, and Marta Fernández-García. 2018. "Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative" International Journal of Molecular Sciences 19, no. 12: 4120. https://doi.org/10.3390/ijms19124120
APA StyleMuñoz-Bonilla, A., López, D., & Fernández-García, M. (2018). Providing Antibacterial Activity to Poly(2-Hydroxy Ethyl Methacrylate) by Copolymerization with a Methacrylic Thiazolium Derivative. International Journal of Molecular Sciences, 19(12), 4120. https://doi.org/10.3390/ijms19124120